Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
30b2a945
Commit
30b2a945
authored
Dec 06, 2012
by
marina.kolpakova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
load from config xml and fix integral representation
parent
a2382ce6
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
123 additions
and
71 deletions
+123
-71
octave.cpp
apps/sft/octave.cpp
+29
-12
sft.cpp
apps/sft/sft.cpp
+94
-59
No files found.
apps/sft/octave.cpp
View file @
30b2a945
...
...
@@ -92,6 +92,8 @@ bool sft::Octave::train( const cv::Mat& trainData, const cv::Mat& _responses, co
_params
.
weak_count
=
1
;
}
std
::
cout
<<
"WARNING: "
<<
sampleIdx
<<
std
::
endl
;
bool
update
=
false
;
return
cv
::
Boost
::
train
(
trainData
,
CV_COL_SAMPLE
,
_responses
,
varIdx
,
sampleIdx
,
varType
,
missingDataMask
,
_params
,
update
);
...
...
@@ -104,7 +106,7 @@ class Preprocessor
public
:
Preprocessor
(
int
shr
)
:
shrinkage
(
shr
)
{}
void
apply
(
const
Mat
&
frame
,
Mat
integrals
)
void
apply
(
const
Mat
&
frame
,
Mat
&
integrals
)
{
CV_Assert
(
frame
.
type
()
==
CV_8UC3
);
...
...
@@ -178,7 +180,7 @@ void sft::Octave::processPositives(const Dataset& dataset, const FeaturePool& po
dprintf
(
"Process candidate positive image %s
\n
"
,
curr
.
c_str
());
cv
::
Mat
sample
=
cv
::
imread
(
curr
);
cv
::
Mat
channels
=
integrals
.
col
(
total
).
reshape
(
0
,
h
+
1
);
cv
::
Mat
channels
=
integrals
.
row
(
total
).
reshape
(
0
,
h
+
1
);
prepocessor
.
apply
(
sample
,
channels
);
responses
.
ptr
<
float
>
(
total
)[
0
]
=
1.
f
;
...
...
@@ -198,6 +200,9 @@ void sft::Octave::generateNegatives(const Dataset& dataset)
sft
::
Random
::
engine
eng
;
sft
::
Random
::
engine
idxEng
;
int
w
=
64
*
pow
(
2
,
logScale
)
/
shrinkage
;
int
h
=
128
*
pow
(
2
,
logScale
)
/
shrinkage
*
10
;
Preprocessor
prepocessor
(
shrinkage
);
int
nimages
=
(
int
)
dataset
.
neg
.
size
();
...
...
@@ -215,24 +220,33 @@ void sft::Octave::generateNegatives(const Dataset& dataset)
Mat
frame
=
cv
::
imread
(
dataset
.
neg
[
curr
]);
prepocessor
.
apply
(
frame
,
sum
);
int
maxW
=
frame
.
cols
-
2
*
boundingBox
.
x
-
boundingBox
.
width
;
int
maxH
=
frame
.
rows
-
2
*
boundingBox
.
y
-
boundingBox
.
height
;
std
::
cout
<<
"WARNING: "
<<
frame
.
cols
<<
" "
<<
frame
.
rows
<<
std
::
endl
;
std
::
cout
<<
"WARNING: "
<<
frame
.
cols
/
shrinkage
<<
" "
<<
frame
.
rows
/
shrinkage
<<
std
::
endl
;
sft
::
Random
::
uniform
wRand
(
0
,
maxW
);
sft
::
Random
::
uniform
hRand
(
0
,
maxH
);
int
maxW
=
frame
.
cols
/
shrinkage
-
2
*
boundingBox
.
x
-
boundingBox
.
width
;
int
maxH
=
frame
.
rows
/
shrinkage
-
2
*
boundingBox
.
y
-
boundingBox
.
height
;
std
::
cout
<<
"WARNING: "
<<
maxW
<<
" "
<<
maxH
<<
std
::
endl
;
sft
::
Random
::
uniform
wRand
(
0
,
maxW
-
1
);
sft
::
Random
::
uniform
hRand
(
0
,
maxH
-
1
);
int
dx
=
wRand
(
eng
);
int
dy
=
hRand
(
eng
);
sum
=
sum
(
cv
::
Rect
(
dx
,
dy
,
boundingBox
.
width
,
boundingBox
.
height
));
std
::
cout
<<
"WARNING: "
<<
dx
<<
" "
<<
dy
<<
std
::
endl
;
std
::
cout
<<
"WARNING: "
<<
dx
+
boundingBox
.
width
+
1
<<
" "
<<
dy
+
boundingBox
.
height
+
1
<<
std
::
endl
;
std
::
cout
<<
"WARNING: "
<<
sum
.
cols
<<
" "
<<
sum
.
rows
<<
std
::
endl
;
sum
=
sum
(
cv
::
Rect
(
dx
,
dy
,
boundingBox
.
width
+
1
,
boundingBox
.
height
*
10
+
1
));
dprintf
(
"generated %d %d
\n
"
,
dx
,
dy
);
if
(
predict
(
sum
))
//
if (predict(sum))
{
responses
.
ptr
<
float
>
(
i
)[
0
]
=
0.
f
;
sum
=
sum
.
reshape
(
0
,
1
);
sum
.
copyTo
(
integrals
.
col
(
i
));
//
sum = sum.reshape(0, 1);
sum
.
copyTo
(
integrals
.
row
(
i
).
reshape
(
0
,
h
+
1
));
++
i
;
}
}
...
...
@@ -257,7 +271,7 @@ bool sft::Octave::train(const Dataset& dataset, const FeaturePool& pool)
// 3. only sumple case (all samples used)
int
nsamples
=
npositives
+
nnegatives
;
cv
::
Mat
sampleIdx
(
1
,
nsamples
,
CV_32SC1
);
ptr
=
var
Idx
.
ptr
<
int
>
(
0
);
ptr
=
sample
Idx
.
ptr
<
int
>
(
0
);
for
(
int
x
=
0
;
x
<
nsamples
;
++
x
)
ptr
[
x
]
=
x
;
...
...
@@ -281,7 +295,10 @@ bool sft::Octave::train(const Dataset& dataset, const FeaturePool& pool)
cv
::
Mat
missingMask
;
return
train
(
trainData
,
responses
,
varIdx
,
sampleIdx
,
varType
,
missingMask
);
bool
ok
=
train
(
trainData
,
responses
,
varIdx
,
sampleIdx
,
varType
,
missingMask
);
if
(
!
ok
)
std
::
cout
<<
"ERROR:tree couldnot be trained"
<<
std
::
endl
;
return
ok
;
}
...
...
apps/sft/sft.cpp
View file @
30b2a945
...
...
@@ -44,85 +44,119 @@
#include <sft/common.hpp>
#include <sft/octave.hpp>
#include <sft/config.hpp>
int
main
(
int
argc
,
char
**
argv
)
{
// hard coded now
int
nfeatures
=
50
;
int
npositives
=
10
;
int
nnegatives
=
10
;
using
namespace
sft
;
int
shrinkage
=
4
;
int
octave
=
0
;
const
string
keys
=
"{help h usage ? | | print this message }"
"{config c | | path to configuration xml }"
;
int
nsamples
=
npositives
+
nnegatives
;
cv
::
Size
model
(
64
,
128
);
std
::
string
path
=
"/home/kellan/cuda-dev/opencv_extra/testdata/sctrain/rescaled-train-2012-10-27-19-02-52"
;
cv
::
CommandLineParser
parser
(
argc
,
argv
,
keys
);
parser
.
about
(
"Soft cascade training application."
);
cv
::
Rect
boundingBox
(
5
,
5
,
16
,
32
);
sft
::
Octave
boost
(
boundingBox
,
npositives
,
nnegatives
,
octave
,
shrinkage
);
if
(
parser
.
has
(
"help"
))
{
parser
.
printMessage
();
return
0
;
}
sft
::
FeaturePool
pool
(
model
,
nfeatures
);
sft
::
Dataset
dataset
(
path
,
boost
.
logScale
);
if
(
!
parser
.
check
())
{
parser
.
printErrors
();
return
1
;
}
boost
.
train
(
dataset
,
pool
);
string
configPath
=
parser
.
get
<
string
>
(
"config"
);
if
(
configPath
.
empty
())
{
std
::
cout
<<
"Configuration file is missing or empty. Could not start training."
<<
std
::
endl
<<
std
::
flush
;
return
0
;
}
cv
::
Mat
train_data
(
nfeatures
,
nsamples
,
CV_32FC1
);
cv
::
RNG
rng
;
std
::
cout
<<
"Read configuration from file "
<<
configPath
<<
std
::
endl
;
cv
::
FileStorage
fs
(
configPath
,
cv
::
FileStorage
::
READ
);
if
(
!
fs
.
isOpened
())
{
std
::
cout
<<
"Configuration file "
<<
configPath
<<
" can't be opened."
<<
std
::
endl
<<
std
::
flush
;
return
1
;
}
for
(
int
y
=
0
;
y
<
nfeatures
;
++
y
)
for
(
int
x
=
0
;
x
<
nsamples
;
++
x
)
train_data
.
at
<
float
>
(
y
,
x
)
=
rng
.
uniform
(
0.
f
,
1.
f
);
// +
int
tflag
=
CV_COL_SAMPLE
;
cv
::
Mat
responses
(
nsamples
,
1
,
CV_32FC1
);
for
(
int
y
=
0
;
y
<
nsamples
;
++
y
)
responses
.
at
<
float
>
(
y
,
0
)
=
(
y
<
npositives
)
?
1.
f
:
0.
f
;
// 1. load config
sft
::
Config
cfg
;
fs
[
"config"
]
>>
cfg
;
std
::
cout
<<
std
::
endl
<<
"Training will be executed for configuration:"
<<
std
::
endl
<<
cfg
<<
std
::
endl
;
// 2. check and open output file
cv
::
FileStorage
fso
(
cfg
.
outXmlPath
,
cv
::
FileStorage
::
WRITE
);
if
(
!
fs
.
isOpened
())
{
std
::
cout
<<
"Training stopped. Output classifier Xml file "
<<
cfg
.
outXmlPath
<<
" can't be opened."
<<
std
::
endl
<<
std
::
flush
;
return
1
;
}
cv
::
Mat
var_idx
(
1
,
nfeatures
,
CV_32SC1
);
for
(
int
x
=
0
;
x
<
nfeatures
;
++
x
)
var_idx
.
at
<
int
>
(
0
,
x
)
=
x
;
// ovector strong;
// strong.reserve(cfg.octaves.size());
// Mat sample_idx;
cv
::
Mat
sample_idx
(
1
,
nsamples
,
CV_32SC1
);
for
(
int
x
=
0
;
x
<
nsamples
;
++
x
)
sample_idx
.
at
<
int
>
(
0
,
x
)
=
x
;
// fso << "softcascade" << "{" << "octaves" << "[";
cv
::
Mat
var_type
(
1
,
nfeatures
+
1
,
CV_8UC1
);
for
(
int
x
=
0
;
x
<
nfeatures
;
++
x
)
var_type
.
at
<
uchar
>
(
0
,
x
)
=
CV_VAR_ORDERED
;
// 3. Train all octaves
for
(
ivector
::
const_iterator
it
=
cfg
.
octaves
.
begin
();
it
!=
cfg
.
octaves
.
end
();
++
it
)
{
int
nfeatures
=
cfg
.
poolSize
;
int
npositives
=
cfg
.
positives
;
int
nnegatives
=
cfg
.
negatives
;
var_type
.
at
<
uchar
>
(
0
,
nfeatures
)
=
CV_VAR_CATEGORICAL
;
int
shrinkage
=
cfg
.
shrinkage
;
int
octave
=
*
it
;
cv
::
Mat
missing_mask
;
cv
::
Size
model
=
cfg
.
modelWinSize
;
std
::
string
path
=
cfg
.
trainPath
;
CvBoostParams
params
;
{
params
.
max_categories
=
10
;
params
.
max_depth
=
2
;
params
.
min_sample_count
=
2
;
params
.
cv_folds
=
0
;
params
.
truncate_pruned_tree
=
false
;
/// ??????????????????
params
.
regression_accuracy
=
0.01
;
params
.
use_surrogates
=
false
;
params
.
use_1se_rule
=
false
;
///////// boost params
params
.
boost_type
=
CvBoost
::
GENTLE
;
params
.
weak_count
=
1
;
params
.
split_criteria
=
CvBoost
::
SQERR
;
params
.
weight_trim_rate
=
0.95
;
cv
::
Rect
boundingBox
(
cfg
.
offset
.
x
/
cfg
.
shrinkage
,
cfg
.
offset
.
y
/
cfg
.
shrinkage
,
cfg
.
modelWinSize
.
width
/
cfg
.
shrinkage
,
cfg
.
modelWinSize
.
height
/
cfg
.
shrinkage
);
sft
::
Octave
boost
(
boundingBox
,
npositives
,
nnegatives
,
octave
,
shrinkage
);
sft
::
FeaturePool
pool
(
model
,
nfeatures
);
sft
::
Dataset
dataset
(
path
,
boost
.
logScale
);
if
(
boost
.
train
(
dataset
,
pool
))
{
}
std
::
cout
<<
"Octave "
<<
octave
<<
" was successfully trained..."
<<
std
::
endl
;
// // d. crain octave
// if (octave.train(pool, cfg.positives, cfg.negatives, cfg.weaks))
// {
// strong.push_back(octave);
// }
}
bool
update
=
false
;
// fso << "]" << "}";
// // 3. create Soft Cascade
// // sft::SCascade cascade(cfg.modelWinSize, cfg.octs, cfg.shrinkage);
// // // 4. Generate feature pool
// // std::vector<sft::ICF> pool;
// // sft::fillPool(pool, cfg.poolSize, cfg.modelWinSize / cfg.shrinkage, cfg.seed);
// // // 5. Train all octaves
// // cascade.train(cfg.trainPath);
// // // 6. Set thresolds
// // cascade.prune();
// boost.train(train_data, responses, var_idx, sample_idx, var_type, missing_mask);
// // // 7. Postprocess
// // cascade.normolize();
// CvFileStorage* fs = cvOpenFileStorage( "/home/kellan/train_res.xml", 0, CV_STORAGE_WRITE );
// boost.write(fs, "test_res");
// // // 8. Write result xml
// // cv::FileStorage ofs(cfg.outXmlPath, cv::FileStorage::WRITE);
// // ofs << cfg.cascadeName << cascade;
// cvReleaseFileStorage( &fs );
std
::
cout
<<
"Training complete..."
<<
std
::
endl
;
return
0
;
}
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment