Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
3039ed76
Commit
3039ed76
authored
Aug 05, 2013
by
Rahul Kavi
Committed by
Maksim Shabunin
Aug 18, 2014
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added test for logistic regression
parent
3bf6c3c2
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
345 additions
and
0 deletions
+345
-0
test_lr.cpp
modules/ml/test/test_lr.cpp
+345
-0
No files found.
modules/ml/test/test_lr.cpp
0 → 100644
View file @
3039ed76
///////////////////////////////////////////////////////////////////////////////////////
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
// This is a implementation of the Logistic Regression algorithm in C++ in OpenCV.
// AUTHOR:
// Rahul Kavi rahulkavi[at]live[at]com
//
// contains a subset of data from the popular Iris Dataset (taken from "http://archive.ics.uci.edu/ml/datasets/Iris")
// # You are free to use, change, or redistribute the code in any way you wish for
// # non-commercial purposes, but please maintain the name of the original author.
// # This code comes with no warranty of any kind.
// #
// # You are free to use, change, or redistribute the code in any way you wish for
// # non-commercial purposes, but please maintain the name of the original author.
// # This code comes with no warranty of any kind.
// # Logistic Regression ALGORITHM
// License Agreement
// For Open Source Computer Vision Library
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
#include "test_precomp.hpp"
using
namespace
std
;
using
namespace
cv
;
static
bool
calculateError
(
const
Mat
&
_p_labels
,
const
Mat
&
_o_labels
,
float
&
error
)
{
error
=
0.0
f
;
float
accuracy
=
0.0
f
;
Mat
_p_labels_temp
;
Mat
_o_labels_temp
;
_p_labels
.
convertTo
(
_p_labels_temp
,
CV_32S
);
_o_labels
.
convertTo
(
_o_labels_temp
,
CV_32S
);
CV_Assert
(
_p_labels_temp
.
total
()
==
_o_labels_temp
.
total
());
CV_Assert
(
_p_labels_temp
.
rows
==
_o_labels_temp
.
rows
);
Mat
result
=
(
_p_labels_temp
==
_o_labels_temp
)
/
255
;
accuracy
=
(
float
)
cv
::
sum
(
result
)[
0
]
/
result
.
rows
;
error
=
1
-
accuracy
;
return
true
;
}
//--------------------------------------------------------------------------------------------
class
CV_LRTest
:
public
cvtest
::
BaseTest
{
public
:
CV_LRTest
()
{}
protected
:
virtual
void
run
(
int
start_from
);
};
void
CV_LRTest
::
run
(
int
/*start_from*/
)
{
// initialize varibles from the popular Iris Dataset
Mat
data
=
(
Mat_
<
double
>
(
150
,
4
)
<<
5.1
,
3.5
,
1.4
,
0.2
,
4.9
,
3.0
,
1.4
,
0.2
,
4.7
,
3.2
,
1.3
,
0.2
,
4.6
,
3.1
,
1.5
,
0.2
,
5.0
,
3.6
,
1.4
,
0.2
,
5.4
,
3.9
,
1.7
,
0.4
,
4.6
,
3.4
,
1.4
,
0.3
,
5.0
,
3.4
,
1.5
,
0.2
,
4.4
,
2.9
,
1.4
,
0.2
,
4.9
,
3.1
,
1.5
,
0.1
,
5.4
,
3.7
,
1.5
,
0.2
,
4.8
,
3.4
,
1.6
,
0.2
,
4.8
,
3.0
,
1.4
,
0.1
,
4.3
,
3.0
,
1.1
,
0.1
,
5.8
,
4.0
,
1.2
,
0.2
,
5.7
,
4.4
,
1.5
,
0.4
,
5.4
,
3.9
,
1.3
,
0.4
,
5.1
,
3.5
,
1.4
,
0.3
,
5.7
,
3.8
,
1.7
,
0.3
,
5.1
,
3.8
,
1.5
,
0.3
,
5.4
,
3.4
,
1.7
,
0.2
,
5.1
,
3.7
,
1.5
,
0.4
,
4.6
,
3.6
,
1.0
,
0.2
,
5.1
,
3.3
,
1.7
,
0.5
,
4.8
,
3.4
,
1.9
,
0.2
,
5.0
,
3.0
,
1.6
,
0.2
,
5.0
,
3.4
,
1.6
,
0.4
,
5.2
,
3.5
,
1.5
,
0.2
,
5.2
,
3.4
,
1.4
,
0.2
,
4.7
,
3.2
,
1.6
,
0.2
,
4.8
,
3.1
,
1.6
,
0.2
,
5.4
,
3.4
,
1.5
,
0.4
,
5.2
,
4.1
,
1.5
,
0.1
,
5.5
,
4.2
,
1.4
,
0.2
,
4.9
,
3.1
,
1.5
,
0.1
,
5.0
,
3.2
,
1.2
,
0.2
,
5.5
,
3.5
,
1.3
,
0.2
,
4.9
,
3.1
,
1.5
,
0.1
,
4.4
,
3.0
,
1.3
,
0.2
,
5.1
,
3.4
,
1.5
,
0.2
,
5.0
,
3.5
,
1.3
,
0.3
,
4.5
,
2.3
,
1.3
,
0.3
,
4.4
,
3.2
,
1.3
,
0.2
,
5.0
,
3.5
,
1.6
,
0.6
,
5.1
,
3.8
,
1.9
,
0.4
,
4.8
,
3.0
,
1.4
,
0.3
,
5.1
,
3.8
,
1.6
,
0.2
,
4.6
,
3.2
,
1.4
,
0.2
,
5.3
,
3.7
,
1.5
,
0.2
,
5.0
,
3.3
,
1.4
,
0.2
,
7.0
,
3.2
,
4.7
,
1.4
,
6.4
,
3.2
,
4.5
,
1.5
,
6.9
,
3.1
,
4.9
,
1.5
,
5.5
,
2.3
,
4.0
,
1.3
,
6.5
,
2.8
,
4.6
,
1.5
,
5.7
,
2.8
,
4.5
,
1.3
,
6.3
,
3.3
,
4.7
,
1.6
,
4.9
,
2.4
,
3.3
,
1.0
,
6.6
,
2.9
,
4.6
,
1.3
,
5.2
,
2.7
,
3.9
,
1.4
,
5.0
,
2.0
,
3.5
,
1.0
,
5.9
,
3.0
,
4.2
,
1.5
,
6.0
,
2.2
,
4.0
,
1.0
,
6.1
,
2.9
,
4.7
,
1.4
,
5.6
,
2.9
,
3.6
,
1.3
,
6.7
,
3.1
,
4.4
,
1.4
,
5.6
,
3.0
,
4.5
,
1.5
,
5.8
,
2.7
,
4.1
,
1.0
,
6.2
,
2.2
,
4.5
,
1.5
,
5.6
,
2.5
,
3.9
,
1.1
,
5.9
,
3.2
,
4.8
,
1.8
,
6.1
,
2.8
,
4.0
,
1.3
,
6.3
,
2.5
,
4.9
,
1.5
,
6.1
,
2.8
,
4.7
,
1.2
,
6.4
,
2.9
,
4.3
,
1.3
,
6.6
,
3.0
,
4.4
,
1.4
,
6.8
,
2.8
,
4.8
,
1.4
,
6.7
,
3.0
,
5.0
,
1.7
,
6.0
,
2.9
,
4.5
,
1.5
,
5.7
,
2.6
,
3.5
,
1.0
,
5.5
,
2.4
,
3.8
,
1.1
,
5.5
,
2.4
,
3.7
,
1.0
,
5.8
,
2.7
,
3.9
,
1.2
,
6.0
,
2.7
,
5.1
,
1.6
,
5.4
,
3.0
,
4.5
,
1.5
,
6.0
,
3.4
,
4.5
,
1.6
,
6.7
,
3.1
,
4.7
,
1.5
,
6.3
,
2.3
,
4.4
,
1.3
,
5.6
,
3.0
,
4.1
,
1.3
,
5.5
,
2.5
,
4.0
,
1.3
,
5.5
,
2.6
,
4.4
,
1.2
,
6.1
,
3.0
,
4.6
,
1.4
,
5.8
,
2.6
,
4.0
,
1.2
,
5.0
,
2.3
,
3.3
,
1.0
,
5.6
,
2.7
,
4.2
,
1.3
,
5.7
,
3.0
,
4.2
,
1.2
,
5.7
,
2.9
,
4.2
,
1.3
,
6.2
,
2.9
,
4.3
,
1.3
,
5.1
,
2.5
,
3.0
,
1.1
,
5.7
,
2.8
,
4.1
,
1.3
,
6.3
,
3.3
,
6.0
,
2.5
,
5.8
,
2.7
,
5.1
,
1.9
,
7.1
,
3.0
,
5.9
,
2.1
,
6.3
,
2.9
,
5.6
,
1.8
,
6.5
,
3.0
,
5.8
,
2.2
,
7.6
,
3.0
,
6.6
,
2.1
,
4.9
,
2.5
,
4.5
,
1.7
,
7.3
,
2.9
,
6.3
,
1.8
,
6.7
,
2.5
,
5.8
,
1.8
,
7.2
,
3.6
,
6.1
,
2.5
,
6.5
,
3.2
,
5.1
,
2.0
,
6.4
,
2.7
,
5.3
,
1.9
,
6.8
,
3.0
,
5.5
,
2.1
,
5.7
,
2.5
,
5.0
,
2.0
,
5.8
,
2.8
,
5.1
,
2.4
,
6.4
,
3.2
,
5.3
,
2.3
,
6.5
,
3.0
,
5.5
,
1.8
,
7.7
,
3.8
,
6.7
,
2.2
,
7.7
,
2.6
,
6.9
,
2.3
,
6.0
,
2.2
,
5.0
,
1.5
,
6.9
,
3.2
,
5.7
,
2.3
,
5.6
,
2.8
,
4.9
,
2.0
,
7.7
,
2.8
,
6.7
,
2.0
,
6.3
,
2.7
,
4.9
,
1.8
,
6.7
,
3.3
,
5.7
,
2.1
,
7.2
,
3.2
,
6.0
,
1.8
,
6.2
,
2.8
,
4.8
,
1.8
,
6.1
,
3.0
,
4.9
,
1.8
,
6.4
,
2.8
,
5.6
,
2.1
,
7.2
,
3.0
,
5.8
,
1.6
,
7.4
,
2.8
,
6.1
,
1.9
,
7.9
,
3.8
,
6.4
,
2.0
,
6.4
,
2.8
,
5.6
,
2.2
,
6.3
,
2.8
,
5.1
,
1.5
,
6.1
,
2.6
,
5.6
,
1.4
,
7.7
,
3.0
,
6.1
,
2.3
,
6.3
,
3.4
,
5.6
,
2.4
,
6.4
,
3.1
,
5.5
,
1.8
,
6.0
,
3.0
,
4.8
,
1.8
,
6.9
,
3.1
,
5.4
,
2.1
,
6.7
,
3.1
,
5.6
,
2.4
,
6.9
,
3.1
,
5.1
,
2.3
,
5.8
,
2.7
,
5.1
,
1.9
,
6.8
,
3.2
,
5.9
,
2.3
,
6.7
,
3.3
,
5.7
,
2.5
,
6.7
,
3.0
,
5.2
,
2.3
,
6.3
,
2.5
,
5.0
,
1.9
,
6.5
,
3.0
,
5.2
,
2.0
,
6.2
,
3.4
,
5.4
,
2.3
,
5.9
,
3.0
,
5.1
,
1.8
);
Mat
labels
=
(
Mat_
<
int
>
(
150
,
1
)
<<
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
);
CvLR_TrainParams
params
=
CvLR_TrainParams
();
Mat
responses1
,
responses2
;
float
error
=
0.0
f
;
CvLR_TrainParams
params1
=
CvLR_TrainParams
();
CvLR_TrainParams
params2
=
CvLR_TrainParams
();
params1
.
alpha
=
1.0
;
params1
.
num_iters
=
10001
;
params1
.
norm
=
CvLR
::
REG_L2
;
// params1.debug = 1;
params1
.
regularized
=
1
;
params1
.
train_method
=
CvLR
::
BATCH
;
params1
.
minibatchsize
=
10
;
// run LR classifier train classifier
data
.
convertTo
(
data
,
CV_32FC1
);
labels
.
convertTo
(
labels
,
CV_32FC1
);
CvLR
lr1
(
data
,
labels
,
params1
);
// predict using the same data
lr1
.
predict
(
data
,
responses1
);
int
test_code
=
cvtest
::
TS
::
OK
;
// calculate error
if
(
!
calculateError
(
responses1
,
labels
,
error
))
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Bad prediction labels
\n
"
);
test_code
=
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
;
}
else
if
(
error
>
0.05
f
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Bad accuracy of (%f)
\n
"
,
error
);
test_code
=
cvtest
::
TS
::
FAIL_BAD_ACCURACY
;
}
params2
.
alpha
=
1.0
;
params2
.
num_iters
=
9000
;
params2
.
norm
=
CvLR
::
REG_L2
;
// params2.debug = 1;
params2
.
regularized
=
1
;
params2
.
train_method
=
CvLR
::
MINI_BATCH
;
params2
.
minibatchsize
=
10
;
// now train using mini batch gradient descent
CvLR
lr2
(
data
,
labels
,
params2
);
lr2
.
predict
(
data
,
responses2
);
responses2
.
convertTo
(
responses2
,
CV_32S
);
//calculate error
if
(
!
calculateError
(
responses2
,
labels
,
error
))
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Bad prediction labels
\n
"
);
test_code
=
cvtest
::
TS
::
FAIL_INVALID_OUTPUT
;
}
else
if
(
error
>
0.06
f
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Bad accuracy of (%f)
\n
"
,
error
);
test_code
=
cvtest
::
TS
::
FAIL_BAD_ACCURACY
;
}
ts
->
set_failed_test_info
(
test_code
);
}
//--------------------------------------------------------------------------------------------
class
CV_LRTest_SaveLoad
:
public
cvtest
::
BaseTest
{
public
:
CV_LRTest_SaveLoad
(){}
protected
:
virtual
void
run
(
int
start_from
);
};
void
CV_LRTest_SaveLoad
::
run
(
int
/*start_from*/
)
{
int
code
=
cvtest
::
TS
::
OK
;
// initialize varibles from the popular Iris Dataset
Mat
data
=
(
Mat_
<
double
>
(
150
,
4
)
<<
5.1
,
3.5
,
1.4
,
0.2
,
4.9
,
3.0
,
1.4
,
0.2
,
4.7
,
3.2
,
1.3
,
0.2
,
4.6
,
3.1
,
1.5
,
0.2
,
5.0
,
3.6
,
1.4
,
0.2
,
5.4
,
3.9
,
1.7
,
0.4
,
4.6
,
3.4
,
1.4
,
0.3
,
5.0
,
3.4
,
1.5
,
0.2
,
4.4
,
2.9
,
1.4
,
0.2
,
4.9
,
3.1
,
1.5
,
0.1
,
5.4
,
3.7
,
1.5
,
0.2
,
4.8
,
3.4
,
1.6
,
0.2
,
4.8
,
3.0
,
1.4
,
0.1
,
4.3
,
3.0
,
1.1
,
0.1
,
5.8
,
4.0
,
1.2
,
0.2
,
5.7
,
4.4
,
1.5
,
0.4
,
5.4
,
3.9
,
1.3
,
0.4
,
5.1
,
3.5
,
1.4
,
0.3
,
5.7
,
3.8
,
1.7
,
0.3
,
5.1
,
3.8
,
1.5
,
0.3
,
5.4
,
3.4
,
1.7
,
0.2
,
5.1
,
3.7
,
1.5
,
0.4
,
4.6
,
3.6
,
1.0
,
0.2
,
5.1
,
3.3
,
1.7
,
0.5
,
4.8
,
3.4
,
1.9
,
0.2
,
5.0
,
3.0
,
1.6
,
0.2
,
5.0
,
3.4
,
1.6
,
0.4
,
5.2
,
3.5
,
1.5
,
0.2
,
5.2
,
3.4
,
1.4
,
0.2
,
4.7
,
3.2
,
1.6
,
0.2
,
4.8
,
3.1
,
1.6
,
0.2
,
5.4
,
3.4
,
1.5
,
0.4
,
5.2
,
4.1
,
1.5
,
0.1
,
5.5
,
4.2
,
1.4
,
0.2
,
4.9
,
3.1
,
1.5
,
0.1
,
5.0
,
3.2
,
1.2
,
0.2
,
5.5
,
3.5
,
1.3
,
0.2
,
4.9
,
3.1
,
1.5
,
0.1
,
4.4
,
3.0
,
1.3
,
0.2
,
5.1
,
3.4
,
1.5
,
0.2
,
5.0
,
3.5
,
1.3
,
0.3
,
4.5
,
2.3
,
1.3
,
0.3
,
4.4
,
3.2
,
1.3
,
0.2
,
5.0
,
3.5
,
1.6
,
0.6
,
5.1
,
3.8
,
1.9
,
0.4
,
4.8
,
3.0
,
1.4
,
0.3
,
5.1
,
3.8
,
1.6
,
0.2
,
4.6
,
3.2
,
1.4
,
0.2
,
5.3
,
3.7
,
1.5
,
0.2
,
5.0
,
3.3
,
1.4
,
0.2
,
7.0
,
3.2
,
4.7
,
1.4
,
6.4
,
3.2
,
4.5
,
1.5
,
6.9
,
3.1
,
4.9
,
1.5
,
5.5
,
2.3
,
4.0
,
1.3
,
6.5
,
2.8
,
4.6
,
1.5
,
5.7
,
2.8
,
4.5
,
1.3
,
6.3
,
3.3
,
4.7
,
1.6
,
4.9
,
2.4
,
3.3
,
1.0
,
6.6
,
2.9
,
4.6
,
1.3
,
5.2
,
2.7
,
3.9
,
1.4
,
5.0
,
2.0
,
3.5
,
1.0
,
5.9
,
3.0
,
4.2
,
1.5
,
6.0
,
2.2
,
4.0
,
1.0
,
6.1
,
2.9
,
4.7
,
1.4
,
5.6
,
2.9
,
3.6
,
1.3
,
6.7
,
3.1
,
4.4
,
1.4
,
5.6
,
3.0
,
4.5
,
1.5
,
5.8
,
2.7
,
4.1
,
1.0
,
6.2
,
2.2
,
4.5
,
1.5
,
5.6
,
2.5
,
3.9
,
1.1
,
5.9
,
3.2
,
4.8
,
1.8
,
6.1
,
2.8
,
4.0
,
1.3
,
6.3
,
2.5
,
4.9
,
1.5
,
6.1
,
2.8
,
4.7
,
1.2
,
6.4
,
2.9
,
4.3
,
1.3
,
6.6
,
3.0
,
4.4
,
1.4
,
6.8
,
2.8
,
4.8
,
1.4
,
6.7
,
3.0
,
5.0
,
1.7
,
6.0
,
2.9
,
4.5
,
1.5
,
5.7
,
2.6
,
3.5
,
1.0
,
5.5
,
2.4
,
3.8
,
1.1
,
5.5
,
2.4
,
3.7
,
1.0
,
5.8
,
2.7
,
3.9
,
1.2
,
6.0
,
2.7
,
5.1
,
1.6
,
5.4
,
3.0
,
4.5
,
1.5
,
6.0
,
3.4
,
4.5
,
1.6
,
6.7
,
3.1
,
4.7
,
1.5
,
6.3
,
2.3
,
4.4
,
1.3
,
5.6
,
3.0
,
4.1
,
1.3
,
5.5
,
2.5
,
4.0
,
1.3
,
5.5
,
2.6
,
4.4
,
1.2
,
6.1
,
3.0
,
4.6
,
1.4
,
5.8
,
2.6
,
4.0
,
1.2
,
5.0
,
2.3
,
3.3
,
1.0
,
5.6
,
2.7
,
4.2
,
1.3
,
5.7
,
3.0
,
4.2
,
1.2
,
5.7
,
2.9
,
4.2
,
1.3
,
6.2
,
2.9
,
4.3
,
1.3
,
5.1
,
2.5
,
3.0
,
1.1
,
5.7
,
2.8
,
4.1
,
1.3
,
6.3
,
3.3
,
6.0
,
2.5
,
5.8
,
2.7
,
5.1
,
1.9
,
7.1
,
3.0
,
5.9
,
2.1
,
6.3
,
2.9
,
5.6
,
1.8
,
6.5
,
3.0
,
5.8
,
2.2
,
7.6
,
3.0
,
6.6
,
2.1
,
4.9
,
2.5
,
4.5
,
1.7
,
7.3
,
2.9
,
6.3
,
1.8
,
6.7
,
2.5
,
5.8
,
1.8
,
7.2
,
3.6
,
6.1
,
2.5
,
6.5
,
3.2
,
5.1
,
2.0
,
6.4
,
2.7
,
5.3
,
1.9
,
6.8
,
3.0
,
5.5
,
2.1
,
5.7
,
2.5
,
5.0
,
2.0
,
5.8
,
2.8
,
5.1
,
2.4
,
6.4
,
3.2
,
5.3
,
2.3
,
6.5
,
3.0
,
5.5
,
1.8
,
7.7
,
3.8
,
6.7
,
2.2
,
7.7
,
2.6
,
6.9
,
2.3
,
6.0
,
2.2
,
5.0
,
1.5
,
6.9
,
3.2
,
5.7
,
2.3
,
5.6
,
2.8
,
4.9
,
2.0
,
7.7
,
2.8
,
6.7
,
2.0
,
6.3
,
2.7
,
4.9
,
1.8
,
6.7
,
3.3
,
5.7
,
2.1
,
7.2
,
3.2
,
6.0
,
1.8
,
6.2
,
2.8
,
4.8
,
1.8
,
6.1
,
3.0
,
4.9
,
1.8
,
6.4
,
2.8
,
5.6
,
2.1
,
7.2
,
3.0
,
5.8
,
1.6
,
7.4
,
2.8
,
6.1
,
1.9
,
7.9
,
3.8
,
6.4
,
2.0
,
6.4
,
2.8
,
5.6
,
2.2
,
6.3
,
2.8
,
5.1
,
1.5
,
6.1
,
2.6
,
5.6
,
1.4
,
7.7
,
3.0
,
6.1
,
2.3
,
6.3
,
3.4
,
5.6
,
2.4
,
6.4
,
3.1
,
5.5
,
1.8
,
6.0
,
3.0
,
4.8
,
1.8
,
6.9
,
3.1
,
5.4
,
2.1
,
6.7
,
3.1
,
5.6
,
2.4
,
6.9
,
3.1
,
5.1
,
2.3
,
5.8
,
2.7
,
5.1
,
1.9
,
6.8
,
3.2
,
5.9
,
2.3
,
6.7
,
3.3
,
5.7
,
2.5
,
6.7
,
3.0
,
5.2
,
2.3
,
6.3
,
2.5
,
5.0
,
1.9
,
6.5
,
3.0
,
5.2
,
2.0
,
6.2
,
3.4
,
5.4
,
2.3
,
5.9
,
3.0
,
5.1
,
1.8
);
Mat
labels
=
(
Mat_
<
int
>
(
150
,
1
)
<<
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
);
CvLR_TrainParams
params
=
CvLR_TrainParams
();
Mat
responses1
,
responses2
;
Mat
learnt_mat1
,
learnt_mat2
;
Mat
pred_result1
,
comp_learnt_mats
;
float
errorCount
=
0.0
;
CvLR_TrainParams
params1
=
CvLR_TrainParams
();
CvLR_TrainParams
params2
=
CvLR_TrainParams
();
params1
.
alpha
=
1.0
;
params1
.
num_iters
=
10001
;
params1
.
norm
=
CvLR
::
REG_L2
;
// params1.debug = 1;
params1
.
regularized
=
1
;
params1
.
train_method
=
CvLR
::
BATCH
;
params1
.
minibatchsize
=
10
;
data
.
convertTo
(
data
,
CV_32FC1
);
labels
.
convertTo
(
labels
,
CV_32FC1
);
// run LR classifier train classifier
CvLR
lr1
(
data
,
labels
,
params1
);
CvLR
lr2
;
learnt_mat1
=
lr1
.
get_learnt_mat
();
lr1
.
predict
(
data
,
responses1
);
// now save the classifier
// Write out
string
filename
=
cv
::
tempfile
(
".xml"
);
try
{
lr1
.
save
(
filename
.
c_str
());
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Crash in write method.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_EXCEPTION
);
}
try
{
lr2
.
load
(
filename
.
c_str
());
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Crash in read method.
\n
"
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_EXCEPTION
);
}
lr2
.
predict
(
data
,
responses2
);
learnt_mat2
=
lr2
.
get_learnt_mat
();
// compare difference in prediction outputs before and after loading from disk
pred_result1
=
(
responses1
==
responses2
)
/
255
;
// compare difference in learnt matrices before and after loading from disk
comp_learnt_mats
=
(
learnt_mat1
==
learnt_mat2
);
comp_learnt_mats
=
comp_learnt_mats
.
reshape
(
1
,
comp_learnt_mats
.
rows
*
comp_learnt_mats
.
cols
);
comp_learnt_mats
.
convertTo
(
comp_learnt_mats
,
CV_32S
);
comp_learnt_mats
=
comp_learnt_mats
/
255
;
// compare difference in prediction outputs and stored inputs
// check if there is any difference between computed learnt mat and retreived mat
errorCount
+=
1
-
(
float
)
cv
::
sum
(
pred_result1
)[
0
]
/
pred_result1
.
rows
;
errorCount
+=
1
-
(
float
)
cv
::
sum
(
comp_learnt_mats
)[
0
]
/
comp_learnt_mats
.
rows
;
if
(
errorCount
>
0
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"Different prediction results before writing and after reading (errorCount=%d).
\n
"
,
errorCount
);
code
=
cvtest
::
TS
::
FAIL_BAD_ACCURACY
;
}
remove
(
filename
.
c_str
()
);
ts
->
set_failed_test_info
(
code
);
}
TEST
(
ML_LR
,
accuracy
)
{
CV_LRTest
test
;
test
.
safe_run
();
}
TEST
(
ML_LR
,
save_load
)
{
CV_LRTest_SaveLoad
test
;
test
.
safe_run
();
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment