Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
2f4a3e40
Commit
2f4a3e40
authored
Aug 03, 2017
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #9287 from dkurt:tensorflow_unit_tests
parents
15aa0df2
33979314
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
226 additions
and
31 deletions
+226
-31
convolution_layer.cpp
modules/dnn/src/layers/convolution_layer.cpp
+1
-1
padding_layer.cpp
modules/dnn/src/layers/padding_layer.cpp
+1
-1
tf_importer.cpp
modules/dnn/src/tensorflow/tf_importer.cpp
+170
-29
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+54
-0
No files found.
modules/dnn/src/layers/convolution_layer.cpp
View file @
2f4a3e40
...
...
@@ -183,7 +183,7 @@ public:
}
else
{
getConvPoolOutParams
(
Size
(
inp
H
,
inpW
),
kernel
,
stride
,
padMode
,
out
);
getConvPoolOutParams
(
Size
(
inp
W
,
inpH
),
kernel
,
stride
,
padMode
,
out
);
}
int
ngroups
=
inpCn
/
blobs
[
0
].
size
[
1
];
...
...
modules/dnn/src/layers/padding_layer.cpp
View file @
2f4a3e40
...
...
@@ -25,7 +25,7 @@ public:
{
setParamsFrom
(
params
);
paddingDim
=
params
.
get
<
int
>
(
"padding_dim"
);
padding
=
abs
(
params
.
get
<
int
>
(
"padding"
)
);
padding
=
params
.
get
<
int
>
(
"padding"
);
inputDims
=
params
.
get
<
int
>
(
"input_dims"
,
0
);
index
=
params
.
get
<
int
>
(
"index"
,
0
);
paddingValue
=
params
.
get
<
double
>
(
"value"
,
0
);
...
...
modules/dnn/src/tensorflow/tf_importer.cpp
View file @
2f4a3e40
...
...
@@ -558,6 +558,16 @@ void TFImporter::populateNet(Net dstNet)
connect
(
layer_id
,
dstNet
,
parsePin
(
layer
.
input
(
0
)),
id
,
0
);
}
else
if
(
type
==
"BiasAdd"
||
type
==
"Add"
)
{
bool
haveConst
=
false
;
for
(
int
ii
=
0
;
!
haveConst
&&
ii
<
layer
.
input_size
();
++
ii
)
{
Pin
input
=
parsePin
(
layer
.
input
(
ii
));
haveConst
=
value_id
.
find
(
input
.
name
)
!=
value_id
.
end
();
}
CV_Assert
(
!
haveConst
||
layer
.
input_size
()
==
2
);
if
(
haveConst
)
{
layerParams
.
blobs
.
resize
(
1
);
blobFromTensor
(
getConstBlob
(
layer
,
value_id
),
layerParams
.
blobs
[
0
]);
...
...
@@ -568,12 +578,20 @@ void TFImporter::populateNet(Net dstNet)
// one input only
connect
(
layer_id
,
dstNet
,
parsePin
(
layer
.
input
(
0
)),
id
,
0
);
}
else
if
(
type
==
"Identity"
)
else
{
int
id
=
dstNet
.
addLayer
(
name
,
"Identity"
,
layerParams
);
layerParams
.
set
(
"operation"
,
"sum"
);
int
id
=
dstNet
.
addLayer
(
name
,
"Eltwise"
,
layerParams
);
layer_id
[
name
]
=
id
;
connectToAllBlobs
(
layer_id
,
dstNet
,
parsePin
(
layer
.
input
(
0
)),
id
,
layer
.
input_size
());
for
(
int
ii
=
0
;
ii
<
layer
.
input_size
();
ii
++
)
{
Pin
inp
=
parsePin
(
layer
.
input
(
ii
));
if
(
layer_id
.
find
(
inp
.
name
)
==
layer_id
.
end
())
CV_Error
(
Error
::
StsError
,
"Input layer not found: "
+
inp
.
name
);
dstNet
.
connect
(
layer_id
.
at
(
inp
.
name
),
inp
.
blobIndex
,
id
,
ii
);
}
}
}
else
if
(
type
==
"MatMul"
)
{
...
...
@@ -624,13 +642,6 @@ void TFImporter::populateNet(Net dstNet)
else
if
(
type
==
"Const"
)
{
}
else
if
(
type
==
"Softmax"
)
{
int
id
=
dstNet
.
addLayer
(
name
,
"Softmax"
,
layerParams
);
layer_id
[
name
]
=
id
;
connectToAllBlobs
(
layer_id
,
dstNet
,
parsePin
(
layer
.
input
(
0
)),
id
,
layer
.
input_size
());
}
else
if
(
type
==
"LRN"
)
{
if
(
hasLayerAttr
(
layer
,
"alpha"
))
{
...
...
@@ -653,36 +664,27 @@ void TFImporter::populateNet(Net dstNet)
connectToAllBlobs
(
layer_id
,
dstNet
,
parsePin
(
layer
.
input
(
0
)),
id
,
layer
.
input_size
());
}
else
if
(
type
==
"Concat"
)
else
if
(
type
==
"Concat"
||
type
==
"ConcatV2"
)
{
int
axis
=
getConstBlob
(
layer
,
value_id
,
0
).
int_val
().
Get
(
0
);
int
axisId
=
(
type
==
"Concat"
?
0
:
layer
.
input_size
()
-
1
);
int
axis
=
getConstBlob
(
layer
,
value_id
,
axisId
).
int_val
().
Get
(
0
);
layerParams
.
set
(
"axis"
,
toNCHW
[
axis
]);
int
id
=
dstNet
.
addLayer
(
name
,
"Concat"
,
layerParams
);
layer_id
[
name
]
=
id
;
// input(0) is concat_dim
for
(
int
ii
=
1
;
ii
<
layer
.
input_size
();
ii
++
)
int
from
=
(
type
==
"Concat"
?
1
:
0
);
int
to
=
(
type
==
"Concat"
?
layer
.
input_size
()
:
layer
.
input_size
()
-
1
);
// input(0) or input(n-1) is concat_dim
for
(
int
ii
=
from
;
ii
<
to
;
ii
++
)
{
Pin
inp
=
parsePin
(
layer
.
input
(
ii
));
if
(
layer_id
.
find
(
inp
.
name
)
==
layer_id
.
end
())
CV_Error
(
Error
::
StsError
,
"Input layer not found: "
+
inp
.
name
);
dstNet
.
connect
(
layer_id
.
at
(
inp
.
name
),
inp
.
blobIndex
,
id
,
ii
-
1
);
}
}
else
if
(
type
==
"Relu"
)
{
int
id
=
dstNet
.
addLayer
(
name
,
"ReLU"
,
layerParams
);
layer_id
[
name
]
=
id
;
connectToAllBlobs
(
layer_id
,
dstNet
,
parsePin
(
layer
.
input
(
0
)),
id
,
layer
.
input_size
());
dstNet
.
connect
(
layer_id
.
at
(
inp
.
name
),
inp
.
blobIndex
,
id
,
ii
-
from
);
}
else
if
(
type
==
"Elu"
)
{
int
id
=
dstNet
.
addLayer
(
name
,
"ELU"
,
layerParams
);
layer_id
[
name
]
=
id
;
connectToAllBlobs
(
layer_id
,
dstNet
,
parsePin
(
layer
.
input
(
0
)),
id
,
layer
.
input_size
());
}
else
if
(
type
==
"MaxPool"
)
{
...
...
@@ -736,6 +738,145 @@ void TFImporter::populateNet(Net dstNet)
// one input only
connect
(
layer_id
,
dstNet
,
parsePin
(
layer
.
input
(
1
)),
id
,
0
);
}
else
if
(
type
==
"Mul"
)
{
bool
haveConst
=
false
;
for
(
int
ii
=
0
;
!
haveConst
&&
ii
<
layer
.
input_size
();
++
ii
)
{
Pin
input
=
parsePin
(
layer
.
input
(
ii
));
haveConst
=
value_id
.
find
(
input
.
name
)
!=
value_id
.
end
();
}
CV_Assert
(
!
haveConst
||
layer
.
input_size
()
==
2
);
if
(
haveConst
)
{
// Multiplication by constant.
CV_Assert
(
layer
.
input_size
()
==
2
);
float
scale
=
getConstBlob
(
layer
,
value_id
).
float_val
()[
0
];
layerParams
.
set
(
"scale"
,
scale
);
int
id
=
dstNet
.
addLayer
(
name
,
"Power"
,
layerParams
);
layer_id
[
name
]
=
id
;
Pin
inp0
=
parsePin
(
layer
.
input
(
0
));
if
(
layer_id
.
find
(
inp0
.
name
)
!=
layer_id
.
end
())
// First operand is a constant.
connect
(
layer_id
,
dstNet
,
parsePin
(
layer
.
input
(
0
)),
id
,
0
);
else
connect
(
layer_id
,
dstNet
,
parsePin
(
layer
.
input
(
1
)),
id
,
0
);
}
else
{
layerParams
.
set
(
"operation"
,
"prod"
);
int
id
=
dstNet
.
addLayer
(
name
,
"Eltwise"
,
layerParams
);
layer_id
[
name
]
=
id
;
for
(
int
ii
=
0
;
ii
<
layer
.
input_size
();
ii
++
)
{
Pin
inp
=
parsePin
(
layer
.
input
(
ii
));
if
(
layer_id
.
find
(
inp
.
name
)
==
layer_id
.
end
())
CV_Error
(
Error
::
StsError
,
"Input layer not found: "
+
inp
.
name
);
dstNet
.
connect
(
layer_id
.
at
(
inp
.
name
),
inp
.
blobIndex
,
id
,
ii
);
}
}
}
else
if
(
type
==
"Pad"
)
{
tensorflow
::
TensorProto
paddings
=
getConstBlob
(
layer
,
value_id
,
1
);
MatShape
shape
;
blobShapeFromTensor
(
paddings
,
shape
);
if
(
shape
[
0
]
!=
4
)
CV_Error
(
Error
::
StsError
,
"Expected NHWC data format"
);
// Copy tensor with paddings.
std
::
vector
<
int32_t
>
values
(
shape
[
0
]
*
2
);
CV_Assert
(
sizeof
(
int32_t
)
*
values
.
size
()
==
paddings
.
tensor_content
().
size
());
memcpy
(
&
values
[
0
],
&
paddings
.
tensor_content
()[
0
],
paddings
.
tensor_content
().
size
());
// Allow only one padding operation per layer.
bool
padded
=
false
;
for
(
int
i
=
0
;
i
<
values
.
size
();
++
i
)
{
if
(
values
[
i
])
{
if
(
padded
)
CV_Error
(
Error
::
StsError
,
"Only single padding operation per layer is supported"
);
padded
=
true
;
int
axis
=
i
/
2
;
// Remap NHWC to NCHW.
// 0 -> 0
// 1 -> 2
// 2 -> 3
// 3 -> 1
if
(
axis
!=
0
)
axis
=
axis
%
3
+
1
;
layerParams
.
set
(
"padding_dim"
,
axis
);
if
(
i
%
2
)
// Pad after
layerParams
.
set
(
"padding"
,
values
[
i
]);
else
// Pad before
layerParams
.
set
(
"padding"
,
-
1
*
values
[
i
]);
int
id
=
dstNet
.
addLayer
(
name
,
"Padding"
,
layerParams
);
layer_id
[
name
]
=
id
;
connect
(
layer_id
,
dstNet
,
parsePin
(
layer
.
input
(
0
)),
id
,
0
);
}
}
}
else
if
(
type
==
"FusedBatchNorm"
)
{
// op: "FusedBatchNorm"
// input: "input"
// input: "BatchNorm/gamma"
// input: "BatchNorm/beta"
// input: "BatchNorm/moving_mean"
// input: "BatchNorm/moving_variance"
if
(
layer
.
input_size
()
!=
5
)
CV_Error
(
Error
::
StsNotImplemented
,
"Expected gamma, beta, mean and std"
);
layerParams
.
blobs
.
resize
(
4
);
// gamma
blobFromTensor
(
getConstBlob
(
layer
,
value_id
,
1
),
layerParams
.
blobs
[
2
]);
// beta
blobFromTensor
(
getConstBlob
(
layer
,
value_id
,
2
),
layerParams
.
blobs
[
3
]);
// mean
blobFromTensor
(
getConstBlob
(
layer
,
value_id
,
3
),
layerParams
.
blobs
[
0
]);
// std
blobFromTensor
(
getConstBlob
(
layer
,
value_id
,
4
),
layerParams
.
blobs
[
1
]);
if
(
hasLayerAttr
(
layer
,
"epsilon"
))
layerParams
.
set
(
"eps"
,
getLayerAttr
(
layer
,
"epsilon"
).
f
());
layerParams
.
set
(
"has_weight"
,
true
);
layerParams
.
set
(
"has_bias"
,
true
);
int
id
=
dstNet
.
addLayer
(
name
,
"BatchNorm"
,
layerParams
);
layer_id
[
name
]
=
id
;
// one input only
connect
(
layer_id
,
dstNet
,
parsePin
(
layer
.
input
(
0
)),
id
,
0
);
}
else
if
(
type
==
"Abs"
||
type
==
"Tanh"
||
type
==
"Sigmoid"
||
type
==
"Relu"
||
type
==
"Elu"
||
type
==
"Softmax"
||
type
==
"Identity"
)
{
std
::
string
dnnType
=
type
;
if
(
type
==
"Abs"
)
dnnType
=
"AbsVal"
;
else
if
(
type
==
"Tanh"
)
dnnType
=
"TanH"
;
else
if
(
type
==
"Relu"
)
dnnType
=
"ReLU"
;
else
if
(
type
==
"Elu"
)
dnnType
=
"ELU"
;
int
id
=
dstNet
.
addLayer
(
name
,
dnnType
,
layerParams
);
layer_id
[
name
]
=
id
;
connectToAllBlobs
(
layer_id
,
dstNet
,
parsePin
(
layer
.
input
(
0
)),
id
,
layer
.
input_size
());
}
else
{
printLayerAttr
(
layer
);
...
...
modules/dnn/test/test_tf_importer.cpp
View file @
2f4a3e40
...
...
@@ -71,4 +71,58 @@ TEST(Test_TensorFlow, inception_accuracy)
normAssert
(
ref
,
out
);
}
static
std
::
string
path
(
const
std
::
string
&
file
)
{
return
findDataFile
(
"dnn/tensorflow/"
+
file
,
false
);
}
static
void
runTensorFlowNet
(
const
std
::
string
&
prefix
)
{
std
::
string
netPath
=
path
(
prefix
+
"_net.pb"
);
std
::
string
inpPath
=
path
(
prefix
+
"_in.npy"
);
std
::
string
outPath
=
path
(
prefix
+
"_out.npy"
);
Net
net
=
readNetFromTensorflow
(
netPath
);
cv
::
Mat
input
=
blobFromNPY
(
inpPath
);
cv
::
Mat
target
=
blobFromNPY
(
outPath
);
net
.
setInput
(
input
);
cv
::
Mat
output
=
net
.
forward
();
normAssert
(
target
,
output
);
}
TEST
(
Test_TensorFlow
,
single_conv
)
{
runTensorFlowNet
(
"single_conv"
);
}
TEST
(
Test_TensorFlow
,
padding
)
{
runTensorFlowNet
(
"padding_same"
);
runTensorFlowNet
(
"padding_valid"
);
}
TEST
(
Test_TensorFlow
,
eltwise_add_mul
)
{
runTensorFlowNet
(
"eltwise_add_mul"
);
}
TEST
(
Test_TensorFlow
,
pad_and_concat
)
{
runTensorFlowNet
(
"pad_and_concat"
);
}
TEST
(
Test_TensorFlow
,
fused_batch_norm
)
{
runTensorFlowNet
(
"fused_batch_norm"
);
}
TEST
(
Test_TensorFlow
,
pooling
)
{
runTensorFlowNet
(
"max_pool_even"
);
runTensorFlowNet
(
"max_pool_odd_valid"
);
runTensorFlowNet
(
"max_pool_odd_same"
);
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment