@@ -616,7 +616,7 @@ Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
:param flags: Method for solving a PnP problem (see :ocv:func:`solvePnP` ).
The function estimates an object pose given a set of object points, their corresponding image projections, as well as the camera matrix and the distortion coefficients. This function finds such a pose that minimizes reprojection error, that is, the sum of squared distances between the observed projections ``imagePoints`` and the projected (using
:ocv:func:`projectPoints` ) ``objectPoints``. The use of RANSAC makes the function resistant to outliers.
:ocv:func:`projectPoints` ) ``objectPoints``. The use of RANSAC makes the function resistant to outliers. The function is parallelized with the TBB library.
...
...
@@ -1127,8 +1127,7 @@ Computes disparity using the BM algorithm for a rectified stereo pair.
:param state: The pre-initialized ``CvStereoBMState`` structure in the case of the old API.
The method executes the BM algorithm on a rectified stereo pair. See the ``stereo_match.cpp`` OpenCV sample on how to prepare images and call the method. Note that the method is not constant, thus you should not use the same ``StereoBM`` instance from within different threads simultaneously.
The method executes the BM algorithm on a rectified stereo pair. See the ``stereo_match.cpp`` OpenCV sample on how to prepare images and call the method. Note that the method is not constant, thus you should not use the same ``StereoBM`` instance from within different threads simultaneously. The function is parallelized with the TBB library.
The function supports the in-place mode. Dilation can be applied several ( ``iterations`` ) times. In case of multi-channel images, each channel is processed independently.
The function supports the in-place mode. Dilation can be applied several ( ``iterations`` ) times. In case of multi-channel images, each channel is processed independently. The function is parallelized with the TBB library.
.. seealso::
...
...
@@ -898,7 +898,7 @@ The function erodes the source image using the specified structuring element tha
The function supports the in-place mode. Erosion can be applied several ( ``iterations`` ) times. In case of multi-channel images, each channel is processed independently.
The function supports the in-place mode. Erosion can be applied several ( ``iterations`` ) times. In case of multi-channel images, each channel is processed independently. The function is parallelized with the TBB library.
Any of the operations can be done in-place. In case of multi-channel images, each channel is processed independently.
Any of the operations can be done in-place. In case of multi-channel images, each channel is processed independently. The function is parallelized with the TBB library.
@@ -436,7 +436,7 @@ The functions ``distanceTransform`` calculate the approximate or precise
distance from every binary image pixel to the nearest zero pixel.
For zero image pixels, the distance will obviously be zero.
When ``maskSize == CV_DIST_MASK_PRECISE`` and ``distanceType == CV_DIST_L2`` , the function runs the algorithm described in [Felzenszwalb04]_.
When ``maskSize == CV_DIST_MASK_PRECISE`` and ``distanceType == CV_DIST_L2`` , the function runs the algorithm described in [Felzenszwalb04]_. This algorithm is parallelized with the TBB library.
In other cases, the algorithm
[Borgefors86]_
...
...
@@ -708,6 +708,8 @@ value using the Otsu's algorithm and uses it instead of the specified ``thresh``
The function returns the computed threshold value.
Currently, the Otsu's method is implemented only for 8-bit images.
The function is parallelized with the TBB library except the Otsu's method.
@@ -239,6 +239,8 @@ There are four ``train`` methods in :ocv:class:`CvDTree`:
* The **last** method ``train`` is mostly used for building tree ensembles. It takes the pre-constructed :ocv:class:`CvDTreeTrainData` instance and an optional subset of the training set. The indices in ``subsampleIdx`` are counted relatively to the ``_sample_idx`` , passed to the ``CvDTreeTrainData`` constructor. For example, if ``_sample_idx=[1, 5, 7, 100]`` , then ``subsampleIdx=[0,3]`` means that the samples ``[1, 100]`` of the original training set are used.
The function is parallelized with the TBB library.
@@ -60,3 +60,4 @@ Predicts the response for sample(s).
The method estimates the most probable classes for input vectors. Input vectors (one or more) are stored as rows of the matrix ``samples``. In case of multiple input vectors, there should be one output vector ``results``. The predicted class for a single input vector is returned by the method.
The function is parallelized with the TBB library.
@@ -112,6 +112,8 @@ Trains the Random Trees model.
The method :ocv:func:`CvRTrees::train` is very similar to the method :ocv:func:`CvDTree::train` and follows the generic method :ocv:func:`CvStatModel::train` conventions. All the parameters specific to the algorithm training are passed as a :ocv:class:`CvRTParams` instance. The estimate of the training error (``oob-error``) is stored in the protected class member ``oob_error``.
The function is parallelized with the TBB library.
@@ -242,6 +242,9 @@ Predicts the response for input sample(s).
If you pass one sample then prediction result is returned. If you want to get responses for several samples then you should pass the ``results`` matrix where prediction results will be stored.
The function is parallelized with the TBB library.
@@ -41,8 +41,7 @@ Calculates an optical flow for a sparse feature set using the iterative Lucas-Ka
:param minEigThreshold: The algorithm computes a minimum eigen value of a 2x2 normal matrix of optical flow equations (this matrix is called a spatial gradient matrix in [Bouguet00]_) divided by number of pixels in a window. If this value is less then ``minEigThreshold`` then a corresponding feature is filtered out and its flow is not computed. So it allows to remove bad points earlier and speed up the computation.
The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
[Bouguet00]_.
The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See [Bouguet00]_. The function is parallelized with the TBB library.