Commit 2e56a47f authored by catree's avatar catree

Allow to use 3 points in SolvePnP if SOLVEPNP_ITERATIVE and…

Allow to use 3 points in SolvePnP if SOLVEPNP_ITERATIVE and useExtrinsicGuess==true. Add bibtex citations for P3P. Update SolvPnP tests.
parent abad8977
......@@ -563,7 +563,7 @@ Estimation" (@cite penate2013exhaustive). In this case the function also estimat
assuming that both have the same value. Then the cameraMatrix is updated with the estimated
focal length.
- **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis.
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem". In this case the
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17). In this case the
function requires exactly four object and image points.
The function estimates the object pose given a set of object points, their corresponding image
......@@ -585,9 +585,12 @@ projections, as well as the camera matrix and the distortion coefficients.
- The methods **SOLVEPNP_DLS** and **SOLVEPNP_UPNP** cannot be used as the current implementations are
unstable and sometimes give completely wrong results. If you pass one of these two
flags, **SOLVEPNP_EPNP** method will be used instead.
- The minimum number of points is 4. In the case of **SOLVEPNP_P3P** and **SOLVEPNP_AP3P**
- The minimum number of points is 4 in the general case. In the case of **SOLVEPNP_P3P** and **SOLVEPNP_AP3P**
methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
- With **SOLVEPNP_ITERATIVE** method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
global solution to converge.
*/
CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
InputArray cameraMatrix, InputArray distCoeffs,
......@@ -658,9 +661,9 @@ the model coordinate system to the camera coordinate system. A P3P problem has u
@param tvecs Output translation vectors.
@param flags Method for solving a P3P problem:
- **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
"Complete Solution Classification for the Perspective-Three-Point Problem".
"Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
- **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis.
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem".
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
The function estimates the object pose given 3 object points, their corresponding image
projections, as well as the camera matrix and the distortion coefficients.
......
......@@ -61,7 +61,8 @@ bool solvePnP( InputArray _opoints, InputArray _ipoints,
Mat opoints = _opoints.getMat(), ipoints = _ipoints.getMat();
int npoints = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
CV_Assert( npoints >= 4 && npoints == std::max(ipoints.checkVector(2, CV_32F), ipoints.checkVector(2, CV_64F)) );
CV_Assert( ( (npoints >= 4) || (npoints == 3 && flags == SOLVEPNP_ITERATIVE && useExtrinsicGuess) )
&& npoints == std::max(ipoints.checkVector(2, CV_32F), ipoints.checkVector(2, CV_64F)) );
Mat rvec, tvec;
if( flags != SOLVEPNP_ITERATIVE )
......
......@@ -302,18 +302,15 @@ class CV_solveP3P_Test : public CV_solvePnPRansac_Test
if (num_of_solutions != (int) rvecs.size() || num_of_solutions != (int) tvecs.size() || num_of_solutions == 0)
return false;
double min_rvecDiff = DBL_MAX, min_tvecDiff = DBL_MAX;
for (unsigned int i = 0; i < rvecs.size(); ++i) {
bool isTestSuccess = false;
double error = DBL_MAX;
for (unsigned int i = 0; i < rvecs.size() && !isTestSuccess; ++i) {
double rvecDiff = norm(rvecs[i]-trueRvec);
min_rvecDiff = std::min(rvecDiff, min_rvecDiff);
}
for (unsigned int i = 0; i < tvecs.size(); ++i) {
double tvecDiff = norm(tvecs[i]-trueTvec);
min_tvecDiff = std::min(tvecDiff, min_tvecDiff);
isTestSuccess = rvecDiff < epsilon[method] && tvecDiff < epsilon[method];
error = std::min(error, std::max(rvecDiff, tvecDiff));
}
bool isTestSuccess = min_rvecDiff < epsilon[method] && min_tvecDiff < epsilon[method];
double error = std::max(min_rvecDiff, min_tvecDiff);
if (error > maxError)
maxError = error;
......@@ -324,7 +321,7 @@ class CV_solveP3P_Test : public CV_solvePnPRansac_Test
{
ts->set_failed_test_info(cvtest::TS::OK);
vector<Point3f> points, points_dls;
vector<Point3f> points;
points.resize(pointsCount);
generate3DPointCloud(points);
......@@ -529,3 +526,68 @@ TEST(Calib3d_SolvePnP, translation)
EXPECT_TRUE(checkRange(rvec));
EXPECT_TRUE(checkRange(tvec));
}
TEST(Calib3d_SolvePnP, iterativeInitialGuess3pts)
{
{
Matx33d intrinsics(605.4, 0.0, 317.35,
0.0, 601.2, 242.63,
0.0, 0.0, 1.0);
double L = 0.1;
vector<Point3d> p3d;
p3d.push_back(Point3d(-L, -L, 0.0));
p3d.push_back(Point3d(L, -L, 0.0));
p3d.push_back(Point3d(L, L, 0.0));
Mat rvec_ground_truth = (Mat_<double>(3,1) << 0.3, -0.2, 0.75);
Mat tvec_ground_truth = (Mat_<double>(3,1) << 0.15, -0.2, 1.5);
vector<Point2d> p2d;
projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d);
Mat rvec_est = (Mat_<double>(3,1) << 0.2, -0.1, 0.6);
Mat tvec_est = (Mat_<double>(3,1) << 0.05, -0.05, 1.0);
solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est, true, SOLVEPNP_ITERATIVE);
std::cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
std::cout << "rvec_est: " << rvec_est.t() << std::endl;
std::cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
std::cout << "tvec_est: " << tvec_est.t() << std::endl;
EXPECT_LE(norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6);
EXPECT_LE(norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6);
}
{
Matx33f intrinsics(605.4f, 0.0f, 317.35f,
0.0f, 601.2f, 242.63f,
0.0f, 0.0f, 1.0f);
float L = 0.1f;
vector<Point3f> p3d;
p3d.push_back(Point3f(-L, -L, 0.0f));
p3d.push_back(Point3f(L, -L, 0.0f));
p3d.push_back(Point3f(L, L, 0.0f));
Mat rvec_ground_truth = (Mat_<float>(3,1) << -0.75f, 0.4f, 0.34f);
Mat tvec_ground_truth = (Mat_<float>(3,1) << -0.15f, 0.35f, 1.58f);
vector<Point2f> p2d;
projectPoints(p3d, rvec_ground_truth, tvec_ground_truth, intrinsics, noArray(), p2d);
Mat rvec_est = (Mat_<float>(3,1) << -0.5f, 0.2f, 0.2f);
Mat tvec_est = (Mat_<float>(3,1) << 0.0f, 0.2f, 1.0f);
solvePnP(p3d, p2d, intrinsics, noArray(), rvec_est, tvec_est, true, SOLVEPNP_ITERATIVE);
std::cout << "rvec_ground_truth: " << rvec_ground_truth.t() << std::endl;
std::cout << "rvec_est: " << rvec_est.t() << std::endl;
std::cout << "tvec_ground_truth: " << tvec_ground_truth.t() << std::endl;
std::cout << "tvec_est: " << tvec_est.t() << std::endl;
EXPECT_LE(norm(rvec_ground_truth, rvec_est, NORM_INF), 1e-6);
EXPECT_LE(norm(tvec_ground_truth, tvec_est, NORM_INF), 1e-6);
}
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment