Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
2dd98e7c
Commit
2dd98e7c
authored
Nov 09, 2018
by
Vitaly Tuzov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
bilateralFilter implementation moved to separate file
parent
28fd9671
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
759 additions
and
708 deletions
+759
-708
bilateral_filter.cpp
modules/imgproc/src/bilateral_filter.cpp
+759
-0
smooth.cpp
modules/imgproc/src/smooth.cpp
+0
-708
No files found.
modules/imgproc/src/bilateral_filter.cpp
0 → 100644
View file @
2dd98e7c
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, 2018, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2014-2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <vector>
#include "opencv2/core/hal/intrin.hpp"
#include "opencl_kernels_imgproc.hpp"
/****************************************************************************************\
Bilateral Filtering
\****************************************************************************************/
namespace
cv
{
class
BilateralFilter_8u_Invoker
:
public
ParallelLoopBody
{
public
:
BilateralFilter_8u_Invoker
(
Mat
&
_dest
,
const
Mat
&
_temp
,
int
_radius
,
int
_maxk
,
int
*
_space_ofs
,
float
*
_space_weight
,
float
*
_color_weight
)
:
temp
(
&
_temp
),
dest
(
&
_dest
),
radius
(
_radius
),
maxk
(
_maxk
),
space_ofs
(
_space_ofs
),
space_weight
(
_space_weight
),
color_weight
(
_color_weight
)
{
}
virtual
void
operator
()
(
const
Range
&
range
)
const
CV_OVERRIDE
{
int
i
,
j
,
cn
=
dest
->
channels
(),
k
;
Size
size
=
dest
->
size
();
for
(
i
=
range
.
start
;
i
<
range
.
end
;
i
++
)
{
const
uchar
*
sptr
=
temp
->
ptr
(
i
+
radius
)
+
radius
*
cn
;
uchar
*
dptr
=
dest
->
ptr
(
i
);
if
(
cn
==
1
)
{
AutoBuffer
<
float
>
buf
(
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
)
+
size
.
width
+
CV_SIMD_WIDTH
-
1
);
memset
(
buf
.
data
(),
0
,
buf
.
size
()
*
sizeof
(
float
));
float
*
sum
=
alignPtr
(
buf
.
data
(),
CV_SIMD_WIDTH
);
float
*
wsum
=
sum
+
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
);
for
(
k
=
0
;
k
<
maxk
;
k
++
)
{
const
uchar
*
ksptr
=
sptr
+
space_ofs
[
k
];
j
=
0
;
#if CV_SIMD
v_float32
kweight
=
vx_setall_f32
(
space_weight
[
k
]);
for
(;
j
<=
size
.
width
-
v_float32
::
nlanes
;
j
+=
v_float32
::
nlanes
)
{
v_uint32
val
=
vx_load_expand_q
(
ksptr
+
j
);
v_float32
w
=
kweight
*
v_lut
(
color_weight
,
v_reinterpret_as_s32
(
v_absdiff
(
val
,
vx_load_expand_q
(
sptr
+
j
))));
v_store_aligned
(
wsum
+
j
,
vx_load_aligned
(
wsum
+
j
)
+
w
);
v_store_aligned
(
sum
+
j
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val
)),
w
,
vx_load_aligned
(
sum
+
j
)));
}
#endif
for
(;
j
<
size
.
width
;
j
++
)
{
int
val
=
ksptr
[
j
];
float
w
=
space_weight
[
k
]
*
color_weight
[
std
::
abs
(
val
-
sptr
[
j
])];
wsum
[
j
]
+=
w
;
sum
[
j
]
+=
val
*
w
;
}
}
j
=
0
;
#if CV_SIMD
for
(;
j
<=
size
.
width
-
2
*
v_float32
::
nlanes
;
j
+=
2
*
v_float32
::
nlanes
)
v_pack_u_store
(
dptr
+
j
,
v_pack
(
v_round
(
vx_load_aligned
(
sum
+
j
)
/
vx_load_aligned
(
wsum
+
j
)),
v_round
(
vx_load_aligned
(
sum
+
j
+
v_float32
::
nlanes
)
/
vx_load_aligned
(
wsum
+
j
+
v_float32
::
nlanes
))));
#endif
for
(;
j
<
size
.
width
;
j
++
)
{
// overflow is not possible here => there is no need to use cv::saturate_cast
CV_DbgAssert
(
fabs
(
wsum
[
j
])
>
0
);
dptr
[
j
]
=
(
uchar
)
cvRound
(
sum
[
j
]
/
wsum
[
j
]);
}
}
else
{
assert
(
cn
==
3
);
AutoBuffer
<
float
>
buf
(
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
)
*
3
+
size
.
width
+
CV_SIMD_WIDTH
-
1
);
memset
(
buf
.
data
(),
0
,
buf
.
size
()
*
sizeof
(
float
));
float
*
sum_b
=
alignPtr
(
buf
.
data
(),
CV_SIMD_WIDTH
);
float
*
sum_g
=
sum_b
+
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
);
float
*
sum_r
=
sum_g
+
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
);
float
*
wsum
=
sum_r
+
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
);
for
(
k
=
0
;
k
<
maxk
;
k
++
)
{
const
uchar
*
ksptr
=
sptr
+
space_ofs
[
k
];
const
uchar
*
rsptr
=
sptr
;
j
=
0
;
#if CV_SIMD
v_float32
kweight
=
vx_setall_f32
(
space_weight
[
k
]);
for
(;
j
<=
size
.
width
-
v_uint8
::
nlanes
;
j
+=
v_uint8
::
nlanes
,
ksptr
+=
3
*
v_uint8
::
nlanes
,
rsptr
+=
3
*
v_uint8
::
nlanes
)
{
v_uint8
kb
,
kg
,
kr
,
rb
,
rg
,
rr
;
v_load_deinterleave
(
ksptr
,
kb
,
kg
,
kr
);
v_load_deinterleave
(
rsptr
,
rb
,
rg
,
rr
);
v_uint16
b_l
,
b_h
,
g_l
,
g_h
,
r_l
,
r_h
;
v_expand
(
v_absdiff
(
kb
,
rb
),
b_l
,
b_h
);
v_expand
(
v_absdiff
(
kg
,
rg
),
g_l
,
g_h
);
v_expand
(
v_absdiff
(
kr
,
rr
),
r_l
,
r_h
);
v_uint32
val0
,
val1
,
val2
,
val3
;
v_expand
(
b_l
+
g_l
+
r_l
,
val0
,
val1
);
v_expand
(
b_h
+
g_h
+
r_h
,
val2
,
val3
);
v_expand
(
kb
,
b_l
,
b_h
);
v_expand
(
kg
,
g_l
,
g_h
);
v_expand
(
kr
,
r_l
,
r_h
);
v_float32
w0
=
kweight
*
v_lut
(
color_weight
,
v_reinterpret_as_s32
(
val0
));
v_float32
w1
=
kweight
*
v_lut
(
color_weight
,
v_reinterpret_as_s32
(
val1
));
v_float32
w2
=
kweight
*
v_lut
(
color_weight
,
v_reinterpret_as_s32
(
val2
));
v_float32
w3
=
kweight
*
v_lut
(
color_weight
,
v_reinterpret_as_s32
(
val3
));
v_store_aligned
(
wsum
+
j
,
w0
+
vx_load_aligned
(
wsum
+
j
));
v_store_aligned
(
wsum
+
j
+
v_float32
::
nlanes
,
w1
+
vx_load_aligned
(
wsum
+
j
+
v_float32
::
nlanes
));
v_store_aligned
(
wsum
+
j
+
2
*
v_float32
::
nlanes
,
w2
+
vx_load_aligned
(
wsum
+
j
+
2
*
v_float32
::
nlanes
));
v_store_aligned
(
wsum
+
j
+
3
*
v_float32
::
nlanes
,
w3
+
vx_load_aligned
(
wsum
+
j
+
3
*
v_float32
::
nlanes
));
v_expand
(
b_l
,
val0
,
val1
);
v_expand
(
b_h
,
val2
,
val3
);
v_store_aligned
(
sum_b
+
j
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val0
)),
w0
,
vx_load_aligned
(
sum_b
+
j
)));
v_store_aligned
(
sum_b
+
j
+
v_float32
::
nlanes
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val1
)),
w1
,
vx_load_aligned
(
sum_b
+
j
+
v_float32
::
nlanes
)));
v_store_aligned
(
sum_b
+
j
+
2
*
v_float32
::
nlanes
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val2
)),
w2
,
vx_load_aligned
(
sum_b
+
j
+
2
*
v_float32
::
nlanes
)));
v_store_aligned
(
sum_b
+
j
+
3
*
v_float32
::
nlanes
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val3
)),
w3
,
vx_load_aligned
(
sum_b
+
j
+
3
*
v_float32
::
nlanes
)));
v_expand
(
g_l
,
val0
,
val1
);
v_expand
(
g_h
,
val2
,
val3
);
v_store_aligned
(
sum_g
+
j
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val0
)),
w0
,
vx_load_aligned
(
sum_g
+
j
)));
v_store_aligned
(
sum_g
+
j
+
v_float32
::
nlanes
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val1
)),
w1
,
vx_load_aligned
(
sum_g
+
j
+
v_float32
::
nlanes
)));
v_store_aligned
(
sum_g
+
j
+
2
*
v_float32
::
nlanes
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val2
)),
w2
,
vx_load_aligned
(
sum_g
+
j
+
2
*
v_float32
::
nlanes
)));
v_store_aligned
(
sum_g
+
j
+
3
*
v_float32
::
nlanes
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val3
)),
w3
,
vx_load_aligned
(
sum_g
+
j
+
3
*
v_float32
::
nlanes
)));
v_expand
(
r_l
,
val0
,
val1
);
v_expand
(
r_h
,
val2
,
val3
);
v_store_aligned
(
sum_r
+
j
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val0
)),
w0
,
vx_load_aligned
(
sum_r
+
j
)));
v_store_aligned
(
sum_r
+
j
+
v_float32
::
nlanes
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val1
)),
w1
,
vx_load_aligned
(
sum_r
+
j
+
v_float32
::
nlanes
)));
v_store_aligned
(
sum_r
+
j
+
2
*
v_float32
::
nlanes
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val2
)),
w2
,
vx_load_aligned
(
sum_r
+
j
+
2
*
v_float32
::
nlanes
)));
v_store_aligned
(
sum_r
+
j
+
3
*
v_float32
::
nlanes
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val3
)),
w3
,
vx_load_aligned
(
sum_r
+
j
+
3
*
v_float32
::
nlanes
)));
}
#endif
for
(;
j
<
size
.
width
;
j
++
,
ksptr
+=
3
,
rsptr
+=
3
)
{
int
b
=
ksptr
[
0
],
g
=
ksptr
[
1
],
r
=
ksptr
[
2
];
float
w
=
space_weight
[
k
]
*
color_weight
[
std
::
abs
(
b
-
rsptr
[
0
])
+
std
::
abs
(
g
-
rsptr
[
1
])
+
std
::
abs
(
r
-
rsptr
[
2
])];
wsum
[
j
]
+=
w
;
sum_b
[
j
]
+=
b
*
w
;
sum_g
[
j
]
+=
g
*
w
;
sum_r
[
j
]
+=
r
*
w
;
}
}
j
=
0
;
#if CV_SIMD
v_float32
v_one
=
vx_setall_f32
(
1.
f
);
for
(;
j
<=
size
.
width
-
v_uint8
::
nlanes
;
j
+=
v_uint8
::
nlanes
,
dptr
+=
3
*
v_uint8
::
nlanes
)
{
v_float32
w0
=
v_one
/
vx_load_aligned
(
wsum
+
j
);
v_float32
w1
=
v_one
/
vx_load_aligned
(
wsum
+
j
+
v_float32
::
nlanes
);
v_float32
w2
=
v_one
/
vx_load_aligned
(
wsum
+
j
+
2
*
v_float32
::
nlanes
);
v_float32
w3
=
v_one
/
vx_load_aligned
(
wsum
+
j
+
3
*
v_float32
::
nlanes
);
v_store_interleave
(
dptr
,
v_pack_u
(
v_pack
(
v_round
(
w0
*
vx_load_aligned
(
sum_b
+
j
)),
v_round
(
w1
*
vx_load_aligned
(
sum_b
+
j
+
v_float32
::
nlanes
))),
v_pack
(
v_round
(
w2
*
vx_load_aligned
(
sum_b
+
j
+
2
*
v_float32
::
nlanes
)),
v_round
(
w3
*
vx_load_aligned
(
sum_b
+
j
+
3
*
v_float32
::
nlanes
)))),
v_pack_u
(
v_pack
(
v_round
(
w0
*
vx_load_aligned
(
sum_g
+
j
)),
v_round
(
w1
*
vx_load_aligned
(
sum_g
+
j
+
v_float32
::
nlanes
))),
v_pack
(
v_round
(
w2
*
vx_load_aligned
(
sum_g
+
j
+
2
*
v_float32
::
nlanes
)),
v_round
(
w3
*
vx_load_aligned
(
sum_g
+
j
+
3
*
v_float32
::
nlanes
)))),
v_pack_u
(
v_pack
(
v_round
(
w0
*
vx_load_aligned
(
sum_r
+
j
)),
v_round
(
w1
*
vx_load_aligned
(
sum_r
+
j
+
v_float32
::
nlanes
))),
v_pack
(
v_round
(
w2
*
vx_load_aligned
(
sum_r
+
j
+
2
*
v_float32
::
nlanes
)),
v_round
(
w3
*
vx_load_aligned
(
sum_r
+
j
+
3
*
v_float32
::
nlanes
)))));
}
#endif
for
(;
j
<
size
.
width
;
j
++
)
{
CV_DbgAssert
(
fabs
(
wsum
[
j
])
>
0
);
wsum
[
j
]
=
1.
f
/
wsum
[
j
];
*
(
dptr
++
)
=
(
uchar
)
cvRound
(
sum_b
[
j
]
*
wsum
[
j
]);
*
(
dptr
++
)
=
(
uchar
)
cvRound
(
sum_g
[
j
]
*
wsum
[
j
]);
*
(
dptr
++
)
=
(
uchar
)
cvRound
(
sum_r
[
j
]
*
wsum
[
j
]);
}
}
}
#if CV_SIMD
vx_cleanup
();
#endif
}
private
:
const
Mat
*
temp
;
Mat
*
dest
;
int
radius
,
maxk
,
*
space_ofs
;
float
*
space_weight
,
*
color_weight
;
};
#ifdef HAVE_OPENCL
static
bool
ocl_bilateralFilter_8u
(
InputArray
_src
,
OutputArray
_dst
,
int
d
,
double
sigma_color
,
double
sigma_space
,
int
borderType
)
{
#ifdef __ANDROID__
if
(
ocl
::
Device
::
getDefault
().
isNVidia
())
return
false
;
#endif
int
type
=
_src
.
type
(),
depth
=
CV_MAT_DEPTH
(
type
),
cn
=
CV_MAT_CN
(
type
);
int
i
,
j
,
maxk
,
radius
;
if
(
depth
!=
CV_8U
||
cn
>
4
)
return
false
;
if
(
sigma_color
<=
0
)
sigma_color
=
1
;
if
(
sigma_space
<=
0
)
sigma_space
=
1
;
double
gauss_color_coeff
=
-
0.5
/
(
sigma_color
*
sigma_color
);
double
gauss_space_coeff
=
-
0.5
/
(
sigma_space
*
sigma_space
);
if
(
d
<=
0
)
radius
=
cvRound
(
sigma_space
*
1.5
);
else
radius
=
d
/
2
;
radius
=
MAX
(
radius
,
1
);
d
=
radius
*
2
+
1
;
UMat
src
=
_src
.
getUMat
(),
dst
=
_dst
.
getUMat
(),
temp
;
if
(
src
.
u
==
dst
.
u
)
return
false
;
copyMakeBorder
(
src
,
temp
,
radius
,
radius
,
radius
,
radius
,
borderType
);
std
::
vector
<
float
>
_space_weight
(
d
*
d
);
std
::
vector
<
int
>
_space_ofs
(
d
*
d
);
float
*
const
space_weight
=
&
_space_weight
[
0
];
int
*
const
space_ofs
=
&
_space_ofs
[
0
];
// initialize space-related bilateral filter coefficients
for
(
i
=
-
radius
,
maxk
=
0
;
i
<=
radius
;
i
++
)
for
(
j
=
-
radius
;
j
<=
radius
;
j
++
)
{
double
r
=
std
::
sqrt
((
double
)
i
*
i
+
(
double
)
j
*
j
);
if
(
r
>
radius
)
continue
;
space_weight
[
maxk
]
=
(
float
)
std
::
exp
(
r
*
r
*
gauss_space_coeff
);
space_ofs
[
maxk
++
]
=
(
int
)(
i
*
temp
.
step
+
j
*
cn
);
}
char
cvt
[
3
][
40
];
String
cnstr
=
cn
>
1
?
format
(
"%d"
,
cn
)
:
""
;
String
kernelName
(
"bilateral"
);
size_t
sizeDiv
=
1
;
if
((
ocl
::
Device
::
getDefault
().
isIntel
())
&&
(
ocl
::
Device
::
getDefault
().
type
()
==
ocl
::
Device
::
TYPE_GPU
))
{
//Intel GPU
if
(
dst
.
cols
%
4
==
0
&&
cn
==
1
)
// For single channel x4 sized images.
{
kernelName
=
"bilateral_float4"
;
sizeDiv
=
4
;
}
}
ocl
::
Kernel
k
(
kernelName
.
c_str
(),
ocl
::
imgproc
::
bilateral_oclsrc
,
format
(
"-D radius=%d -D maxk=%d -D cn=%d -D int_t=%s -D uint_t=uint%s -D convert_int_t=%s"
" -D uchar_t=%s -D float_t=%s -D convert_float_t=%s -D convert_uchar_t=%s -D gauss_color_coeff=(float)%f"
,
radius
,
maxk
,
cn
,
ocl
::
typeToStr
(
CV_32SC
(
cn
)),
cnstr
.
c_str
(),
ocl
::
convertTypeStr
(
CV_8U
,
CV_32S
,
cn
,
cvt
[
0
]),
ocl
::
typeToStr
(
type
),
ocl
::
typeToStr
(
CV_32FC
(
cn
)),
ocl
::
convertTypeStr
(
CV_32S
,
CV_32F
,
cn
,
cvt
[
1
]),
ocl
::
convertTypeStr
(
CV_32F
,
CV_8U
,
cn
,
cvt
[
2
]),
gauss_color_coeff
));
if
(
k
.
empty
())
return
false
;
Mat
mspace_weight
(
1
,
d
*
d
,
CV_32FC1
,
space_weight
);
Mat
mspace_ofs
(
1
,
d
*
d
,
CV_32SC1
,
space_ofs
);
UMat
ucolor_weight
,
uspace_weight
,
uspace_ofs
;
mspace_weight
.
copyTo
(
uspace_weight
);
mspace_ofs
.
copyTo
(
uspace_ofs
);
k
.
args
(
ocl
::
KernelArg
::
ReadOnlyNoSize
(
temp
),
ocl
::
KernelArg
::
WriteOnly
(
dst
),
ocl
::
KernelArg
::
PtrReadOnly
(
uspace_weight
),
ocl
::
KernelArg
::
PtrReadOnly
(
uspace_ofs
));
size_t
globalsize
[
2
]
=
{
(
size_t
)
dst
.
cols
/
sizeDiv
,
(
size_t
)
dst
.
rows
};
return
k
.
run
(
2
,
globalsize
,
NULL
,
false
);
}
#endif
static
void
bilateralFilter_8u
(
const
Mat
&
src
,
Mat
&
dst
,
int
d
,
double
sigma_color
,
double
sigma_space
,
int
borderType
)
{
int
cn
=
src
.
channels
();
int
i
,
j
,
maxk
,
radius
;
Size
size
=
src
.
size
();
CV_Assert
(
(
src
.
type
()
==
CV_8UC1
||
src
.
type
()
==
CV_8UC3
)
&&
src
.
data
!=
dst
.
data
);
if
(
sigma_color
<=
0
)
sigma_color
=
1
;
if
(
sigma_space
<=
0
)
sigma_space
=
1
;
double
gauss_color_coeff
=
-
0.5
/
(
sigma_color
*
sigma_color
);
double
gauss_space_coeff
=
-
0.5
/
(
sigma_space
*
sigma_space
);
if
(
d
<=
0
)
radius
=
cvRound
(
sigma_space
*
1.5
);
else
radius
=
d
/
2
;
radius
=
MAX
(
radius
,
1
);
d
=
radius
*
2
+
1
;
Mat
temp
;
copyMakeBorder
(
src
,
temp
,
radius
,
radius
,
radius
,
radius
,
borderType
);
std
::
vector
<
float
>
_color_weight
(
cn
*
256
);
std
::
vector
<
float
>
_space_weight
(
d
*
d
);
std
::
vector
<
int
>
_space_ofs
(
d
*
d
);
float
*
color_weight
=
&
_color_weight
[
0
];
float
*
space_weight
=
&
_space_weight
[
0
];
int
*
space_ofs
=
&
_space_ofs
[
0
];
// initialize color-related bilateral filter coefficients
for
(
i
=
0
;
i
<
256
*
cn
;
i
++
)
color_weight
[
i
]
=
(
float
)
std
::
exp
(
i
*
i
*
gauss_color_coeff
);
// initialize space-related bilateral filter coefficients
for
(
i
=
-
radius
,
maxk
=
0
;
i
<=
radius
;
i
++
)
{
j
=
-
radius
;
for
(
;
j
<=
radius
;
j
++
)
{
double
r
=
std
::
sqrt
((
double
)
i
*
i
+
(
double
)
j
*
j
);
if
(
r
>
radius
)
continue
;
space_weight
[
maxk
]
=
(
float
)
std
::
exp
(
r
*
r
*
gauss_space_coeff
);
space_ofs
[
maxk
++
]
=
(
int
)(
i
*
temp
.
step
+
j
*
cn
);
}
}
BilateralFilter_8u_Invoker
body
(
dst
,
temp
,
radius
,
maxk
,
space_ofs
,
space_weight
,
color_weight
);
parallel_for_
(
Range
(
0
,
size
.
height
),
body
,
dst
.
total
()
/
(
double
)(
1
<<
16
));
}
class
BilateralFilter_32f_Invoker
:
public
ParallelLoopBody
{
public
:
BilateralFilter_32f_Invoker
(
int
_cn
,
int
_radius
,
int
_maxk
,
int
*
_space_ofs
,
const
Mat
&
_temp
,
Mat
&
_dest
,
float
_scale_index
,
float
*
_space_weight
,
float
*
_expLUT
)
:
cn
(
_cn
),
radius
(
_radius
),
maxk
(
_maxk
),
space_ofs
(
_space_ofs
),
temp
(
&
_temp
),
dest
(
&
_dest
),
scale_index
(
_scale_index
),
space_weight
(
_space_weight
),
expLUT
(
_expLUT
)
{
}
virtual
void
operator
()
(
const
Range
&
range
)
const
CV_OVERRIDE
{
int
i
,
j
,
k
;
Size
size
=
dest
->
size
();
for
(
i
=
range
.
start
;
i
<
range
.
end
;
i
++
)
{
const
float
*
sptr
=
temp
->
ptr
<
float
>
(
i
+
radius
)
+
radius
*
cn
;
float
*
dptr
=
dest
->
ptr
<
float
>
(
i
);
if
(
cn
==
1
)
{
AutoBuffer
<
float
>
buf
(
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
)
+
size
.
width
+
CV_SIMD_WIDTH
-
1
);
memset
(
buf
.
data
(),
0
,
buf
.
size
()
*
sizeof
(
float
));
float
*
sum
=
alignPtr
(
buf
.
data
(),
CV_SIMD_WIDTH
);
float
*
wsum
=
sum
+
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
);
#if CV_SIMD
v_float32
v_one
=
vx_setall_f32
(
1.
f
);
v_float32
sindex
=
vx_setall_f32
(
scale_index
);
#endif
for
(
k
=
0
;
k
<
maxk
;
k
++
)
{
const
float
*
ksptr
=
sptr
+
space_ofs
[
k
];
j
=
0
;
#if CV_SIMD
v_float32
kweight
=
vx_setall_f32
(
space_weight
[
k
]);
for
(;
j
<=
size
.
width
-
v_float32
::
nlanes
;
j
+=
v_float32
::
nlanes
)
{
v_float32
val
=
vx_load
(
ksptr
+
j
);
v_float32
alpha
=
v_absdiff
(
val
,
vx_load
(
sptr
+
j
))
*
sindex
;
v_int32
idx
=
v_trunc
(
alpha
);
alpha
-=
v_cvt_f32
(
idx
);
v_float32
w
=
kweight
*
v_muladd
(
v_lut
(
expLUT
+
1
,
idx
),
alpha
,
v_lut
(
expLUT
,
idx
)
*
(
v_one
-
alpha
));
v_store_aligned
(
wsum
+
j
,
vx_load_aligned
(
wsum
+
j
)
+
w
);
v_store_aligned
(
sum
+
j
,
v_muladd
(
val
,
w
,
vx_load_aligned
(
sum
+
j
)));
}
#endif
for
(;
j
<
size
.
width
;
j
++
)
{
float
val
=
ksptr
[
j
];
float
alpha
=
std
::
abs
(
val
-
sptr
[
j
])
*
scale_index
;
int
idx
=
cvFloor
(
alpha
);
alpha
-=
idx
;
float
w
=
space_weight
[
k
]
*
(
expLUT
[
idx
]
+
alpha
*
(
expLUT
[
idx
+
1
]
-
expLUT
[
idx
]));
wsum
[
j
]
+=
w
;
sum
[
j
]
+=
val
*
w
;
}
}
j
=
0
;
#if CV_SIMD
for
(;
j
<=
size
.
width
-
v_float32
::
nlanes
;
j
+=
v_float32
::
nlanes
)
v_store
(
dptr
+
j
,
vx_load_aligned
(
sum
+
j
)
/
vx_load_aligned
(
wsum
+
j
));
#endif
for
(;
j
<
size
.
width
;
j
++
)
{
CV_DbgAssert
(
fabs
(
wsum
[
j
])
>
0
);
dptr
[
j
]
=
sum
[
j
]
/
wsum
[
j
];
}
}
else
{
CV_Assert
(
cn
==
3
);
AutoBuffer
<
float
>
buf
(
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
)
*
3
+
size
.
width
+
CV_SIMD_WIDTH
-
1
);
memset
(
buf
.
data
(),
0
,
buf
.
size
()
*
sizeof
(
float
));
float
*
sum_b
=
alignPtr
(
buf
.
data
(),
CV_SIMD_WIDTH
);
float
*
sum_g
=
sum_b
+
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
);
float
*
sum_r
=
sum_g
+
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
);
float
*
wsum
=
sum_r
+
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
);
#if CV_SIMD
v_float32
v_one
=
vx_setall_f32
(
1.
f
);
v_float32
sindex
=
vx_setall_f32
(
scale_index
);
#endif
for
(
k
=
0
;
k
<
maxk
;
k
++
)
{
const
float
*
ksptr
=
sptr
+
space_ofs
[
k
];
const
float
*
rsptr
=
sptr
;
j
=
0
;
#if CV_SIMD
v_float32
kweight
=
vx_setall_f32
(
space_weight
[
k
]);
for
(;
j
<=
size
.
width
-
v_float32
::
nlanes
;
j
+=
v_float32
::
nlanes
,
ksptr
+=
3
*
v_float32
::
nlanes
,
rsptr
+=
3
*
v_float32
::
nlanes
)
{
v_float32
kb
,
kg
,
kr
,
rb
,
rg
,
rr
;
v_load_deinterleave
(
ksptr
,
kb
,
kg
,
kr
);
v_load_deinterleave
(
rsptr
,
rb
,
rg
,
rr
);
v_float32
alpha
=
(
v_absdiff
(
kb
,
rb
)
+
v_absdiff
(
kg
,
rg
)
+
v_absdiff
(
kr
,
rr
))
*
sindex
;
v_int32
idx
=
v_trunc
(
alpha
);
alpha
-=
v_cvt_f32
(
idx
);
v_float32
w
=
kweight
*
v_muladd
(
v_lut
(
expLUT
+
1
,
idx
),
alpha
,
v_lut
(
expLUT
,
idx
)
*
(
v_one
-
alpha
));
v_store_aligned
(
wsum
+
j
,
vx_load_aligned
(
wsum
+
j
)
+
w
);
v_store_aligned
(
sum_b
+
j
,
v_muladd
(
kb
,
w
,
vx_load_aligned
(
sum_b
+
j
)));
v_store_aligned
(
sum_g
+
j
,
v_muladd
(
kg
,
w
,
vx_load_aligned
(
sum_g
+
j
)));
v_store_aligned
(
sum_r
+
j
,
v_muladd
(
kr
,
w
,
vx_load_aligned
(
sum_r
+
j
)));
}
#endif
for
(;
j
<
size
.
width
;
j
++
,
ksptr
+=
3
,
rsptr
+=
3
)
{
float
b
=
ksptr
[
0
],
g
=
ksptr
[
1
],
r
=
ksptr
[
2
];
float
alpha
=
(
std
::
abs
(
b
-
rsptr
[
0
])
+
std
::
abs
(
g
-
rsptr
[
1
])
+
std
::
abs
(
r
-
rsptr
[
2
]))
*
scale_index
;
int
idx
=
cvFloor
(
alpha
);
alpha
-=
idx
;
float
w
=
space_weight
[
k
]
*
(
expLUT
[
idx
]
+
alpha
*
(
expLUT
[
idx
+
1
]
-
expLUT
[
idx
]));
wsum
[
j
]
+=
w
;
sum_b
[
j
]
+=
b
*
w
;
sum_g
[
j
]
+=
g
*
w
;
sum_r
[
j
]
+=
r
*
w
;
}
}
j
=
0
;
#if CV_SIMD
for
(;
j
<=
size
.
width
-
v_float32
::
nlanes
;
j
+=
v_float32
::
nlanes
,
dptr
+=
3
*
v_float32
::
nlanes
)
{
v_float32
w
=
v_one
/
vx_load_aligned
(
wsum
+
j
);
v_store_interleave
(
dptr
,
vx_load_aligned
(
sum_b
+
j
)
*
w
,
vx_load_aligned
(
sum_g
+
j
)
*
w
,
vx_load_aligned
(
sum_r
+
j
)
*
w
);
}
#endif
for
(;
j
<
size
.
width
;
j
++
)
{
CV_DbgAssert
(
fabs
(
wsum
[
j
])
>
0
);
wsum
[
j
]
=
1.
f
/
wsum
[
j
];
*
(
dptr
++
)
=
sum_b
[
j
]
*
wsum
[
j
];
*
(
dptr
++
)
=
sum_g
[
j
]
*
wsum
[
j
];
*
(
dptr
++
)
=
sum_r
[
j
]
*
wsum
[
j
];
}
}
}
#if CV_SIMD
vx_cleanup
();
#endif
}
private
:
int
cn
,
radius
,
maxk
,
*
space_ofs
;
const
Mat
*
temp
;
Mat
*
dest
;
float
scale_index
,
*
space_weight
,
*
expLUT
;
};
static
void
bilateralFilter_32f
(
const
Mat
&
src
,
Mat
&
dst
,
int
d
,
double
sigma_color
,
double
sigma_space
,
int
borderType
)
{
int
cn
=
src
.
channels
();
int
i
,
j
,
maxk
,
radius
;
double
minValSrc
=-
1
,
maxValSrc
=
1
;
const
int
kExpNumBinsPerChannel
=
1
<<
12
;
int
kExpNumBins
=
0
;
float
lastExpVal
=
1.
f
;
float
len
,
scale_index
;
Size
size
=
src
.
size
();
CV_Assert
(
(
src
.
type
()
==
CV_32FC1
||
src
.
type
()
==
CV_32FC3
)
&&
src
.
data
!=
dst
.
data
);
if
(
sigma_color
<=
0
)
sigma_color
=
1
;
if
(
sigma_space
<=
0
)
sigma_space
=
1
;
double
gauss_color_coeff
=
-
0.5
/
(
sigma_color
*
sigma_color
);
double
gauss_space_coeff
=
-
0.5
/
(
sigma_space
*
sigma_space
);
if
(
d
<=
0
)
radius
=
cvRound
(
sigma_space
*
1.5
);
else
radius
=
d
/
2
;
radius
=
MAX
(
radius
,
1
);
d
=
radius
*
2
+
1
;
// compute the min/max range for the input image (even if multichannel)
minMaxLoc
(
src
.
reshape
(
1
),
&
minValSrc
,
&
maxValSrc
);
if
(
std
::
abs
(
minValSrc
-
maxValSrc
)
<
FLT_EPSILON
)
{
src
.
copyTo
(
dst
);
return
;
}
// temporary copy of the image with borders for easy processing
Mat
temp
;
copyMakeBorder
(
src
,
temp
,
radius
,
radius
,
radius
,
radius
,
borderType
);
minValSrc
-=
5.
*
sigma_color
;
patchNaNs
(
temp
,
minValSrc
);
// this replacement of NaNs makes the assumption that depth values are nonnegative
// TODO: make replacement parameter avalible in the outside function interface
// allocate lookup tables
std
::
vector
<
float
>
_space_weight
(
d
*
d
);
std
::
vector
<
int
>
_space_ofs
(
d
*
d
);
float
*
space_weight
=
&
_space_weight
[
0
];
int
*
space_ofs
=
&
_space_ofs
[
0
];
// assign a length which is slightly more than needed
len
=
(
float
)(
maxValSrc
-
minValSrc
)
*
cn
;
kExpNumBins
=
kExpNumBinsPerChannel
*
cn
;
std
::
vector
<
float
>
_expLUT
(
kExpNumBins
+
2
);
float
*
expLUT
=
&
_expLUT
[
0
];
scale_index
=
kExpNumBins
/
len
;
// initialize the exp LUT
for
(
i
=
0
;
i
<
kExpNumBins
+
2
;
i
++
)
{
if
(
lastExpVal
>
0.
f
)
{
double
val
=
i
/
scale_index
;
expLUT
[
i
]
=
(
float
)
std
::
exp
(
val
*
val
*
gauss_color_coeff
);
lastExpVal
=
expLUT
[
i
];
}
else
expLUT
[
i
]
=
0.
f
;
}
// initialize space-related bilateral filter coefficients
for
(
i
=
-
radius
,
maxk
=
0
;
i
<=
radius
;
i
++
)
for
(
j
=
-
radius
;
j
<=
radius
;
j
++
)
{
double
r
=
std
::
sqrt
((
double
)
i
*
i
+
(
double
)
j
*
j
);
if
(
r
>
radius
)
continue
;
space_weight
[
maxk
]
=
(
float
)
std
::
exp
(
r
*
r
*
gauss_space_coeff
);
space_ofs
[
maxk
++
]
=
(
int
)(
i
*
(
temp
.
step
/
sizeof
(
float
))
+
j
*
cn
);
}
// parallel_for usage
BilateralFilter_32f_Invoker
body
(
cn
,
radius
,
maxk
,
space_ofs
,
temp
,
dst
,
scale_index
,
space_weight
,
expLUT
);
parallel_for_
(
Range
(
0
,
size
.
height
),
body
,
dst
.
total
()
/
(
double
)(
1
<<
16
));
}
#ifdef HAVE_IPP
#define IPP_BILATERAL_PARALLEL 1
#ifdef HAVE_IPP_IW
class
ipp_bilateralFilterParallel
:
public
ParallelLoopBody
{
public
:
ipp_bilateralFilterParallel
(
::
ipp
::
IwiImage
&
_src
,
::
ipp
::
IwiImage
&
_dst
,
int
_radius
,
Ipp32f
_valSquareSigma
,
Ipp32f
_posSquareSigma
,
::
ipp
::
IwiBorderType
_borderType
,
bool
*
_ok
)
:
src
(
_src
),
dst
(
_dst
)
{
pOk
=
_ok
;
radius
=
_radius
;
valSquareSigma
=
_valSquareSigma
;
posSquareSigma
=
_posSquareSigma
;
borderType
=
_borderType
;
*
pOk
=
true
;
}
~
ipp_bilateralFilterParallel
()
{}
virtual
void
operator
()
(
const
Range
&
range
)
const
CV_OVERRIDE
{
if
(
*
pOk
==
false
)
return
;
try
{
::
ipp
::
IwiTile
tile
=
::
ipp
::
IwiRoi
(
0
,
range
.
start
,
dst
.
m_size
.
width
,
range
.
end
-
range
.
start
);
CV_INSTRUMENT_FUN_IPP
(
::
ipp
::
iwiFilterBilateral
,
src
,
dst
,
radius
,
valSquareSigma
,
posSquareSigma
,
::
ipp
::
IwDefault
(),
borderType
,
tile
);
}
catch
(
const
::
ipp
::
IwException
&
)
{
*
pOk
=
false
;
return
;
}
}
private
:
::
ipp
::
IwiImage
&
src
;
::
ipp
::
IwiImage
&
dst
;
int
radius
;
Ipp32f
valSquareSigma
;
Ipp32f
posSquareSigma
;
::
ipp
::
IwiBorderType
borderType
;
bool
*
pOk
;
const
ipp_bilateralFilterParallel
&
operator
=
(
const
ipp_bilateralFilterParallel
&
);
};
#endif
static
bool
ipp_bilateralFilter
(
Mat
&
src
,
Mat
&
dst
,
int
d
,
double
sigmaColor
,
double
sigmaSpace
,
int
borderType
)
{
#ifdef HAVE_IPP_IW
CV_INSTRUMENT_REGION_IPP
();
int
radius
=
IPP_MAX
(((
d
<=
0
)
?
cvRound
(
sigmaSpace
*
1.5
)
:
d
/
2
),
1
);
Ipp32f
valSquareSigma
=
(
Ipp32f
)((
sigmaColor
<=
0
)
?
1
:
sigmaColor
*
sigmaColor
);
Ipp32f
posSquareSigma
=
(
Ipp32f
)((
sigmaSpace
<=
0
)
?
1
:
sigmaSpace
*
sigmaSpace
);
// Acquire data and begin processing
try
{
::
ipp
::
IwiImage
iwSrc
=
ippiGetImage
(
src
);
::
ipp
::
IwiImage
iwDst
=
ippiGetImage
(
dst
);
::
ipp
::
IwiBorderSize
borderSize
(
radius
);
::
ipp
::
IwiBorderType
ippBorder
(
ippiGetBorder
(
iwSrc
,
borderType
,
borderSize
));
if
(
!
ippBorder
)
return
false
;
const
int
threads
=
ippiSuggestThreadsNum
(
iwDst
,
2
);
if
(
IPP_BILATERAL_PARALLEL
&&
threads
>
1
)
{
bool
ok
=
true
;
Range
range
(
0
,
(
int
)
iwDst
.
m_size
.
height
);
ipp_bilateralFilterParallel
invoker
(
iwSrc
,
iwDst
,
radius
,
valSquareSigma
,
posSquareSigma
,
ippBorder
,
&
ok
);
if
(
!
ok
)
return
false
;
parallel_for_
(
range
,
invoker
,
threads
*
4
);
if
(
!
ok
)
return
false
;
}
else
{
CV_INSTRUMENT_FUN_IPP
(
::
ipp
::
iwiFilterBilateral
,
iwSrc
,
iwDst
,
radius
,
valSquareSigma
,
posSquareSigma
,
::
ipp
::
IwDefault
(),
ippBorder
);
}
}
catch
(
const
::
ipp
::
IwException
&
)
{
return
false
;
}
return
true
;
#else
CV_UNUSED
(
src
);
CV_UNUSED
(
dst
);
CV_UNUSED
(
d
);
CV_UNUSED
(
sigmaColor
);
CV_UNUSED
(
sigmaSpace
);
CV_UNUSED
(
borderType
);
return
false
;
#endif
}
#endif
}
void
cv
::
bilateralFilter
(
InputArray
_src
,
OutputArray
_dst
,
int
d
,
double
sigmaColor
,
double
sigmaSpace
,
int
borderType
)
{
CV_INSTRUMENT_REGION
();
_dst
.
create
(
_src
.
size
(),
_src
.
type
()
);
CV_OCL_RUN
(
_src
.
dims
()
<=
2
&&
_dst
.
isUMat
(),
ocl_bilateralFilter_8u
(
_src
,
_dst
,
d
,
sigmaColor
,
sigmaSpace
,
borderType
))
Mat
src
=
_src
.
getMat
(),
dst
=
_dst
.
getMat
();
CV_IPP_RUN_FAST
(
ipp_bilateralFilter
(
src
,
dst
,
d
,
sigmaColor
,
sigmaSpace
,
borderType
));
if
(
src
.
depth
()
==
CV_8U
)
bilateralFilter_8u
(
src
,
dst
,
d
,
sigmaColor
,
sigmaSpace
,
borderType
);
else
if
(
src
.
depth
()
==
CV_32F
)
bilateralFilter_32f
(
src
,
dst
,
d
,
sigmaColor
,
sigmaSpace
,
borderType
);
else
CV_Error
(
CV_StsUnsupportedFormat
,
"Bilateral filtering is only implemented for 8u and 32f images"
);
}
/* End of file. */
modules/imgproc/src/smooth.cpp
View file @
2dd98e7c
...
...
@@ -2505,714 +2505,6 @@ void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize,
sepFilter2D
(
src
,
dst
,
sdepth
,
kx
,
ky
,
Point
(
-
1
,
-
1
),
0
,
borderType
);
}
/****************************************************************************************\
Bilateral Filtering
\****************************************************************************************/
namespace
cv
{
class
BilateralFilter_8u_Invoker
:
public
ParallelLoopBody
{
public
:
BilateralFilter_8u_Invoker
(
Mat
&
_dest
,
const
Mat
&
_temp
,
int
_radius
,
int
_maxk
,
int
*
_space_ofs
,
float
*
_space_weight
,
float
*
_color_weight
)
:
temp
(
&
_temp
),
dest
(
&
_dest
),
radius
(
_radius
),
maxk
(
_maxk
),
space_ofs
(
_space_ofs
),
space_weight
(
_space_weight
),
color_weight
(
_color_weight
)
{
}
virtual
void
operator
()
(
const
Range
&
range
)
const
CV_OVERRIDE
{
int
i
,
j
,
cn
=
dest
->
channels
(),
k
;
Size
size
=
dest
->
size
();
for
(
i
=
range
.
start
;
i
<
range
.
end
;
i
++
)
{
const
uchar
*
sptr
=
temp
->
ptr
(
i
+
radius
)
+
radius
*
cn
;
uchar
*
dptr
=
dest
->
ptr
(
i
);
if
(
cn
==
1
)
{
AutoBuffer
<
float
>
buf
(
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
)
+
size
.
width
+
CV_SIMD_WIDTH
-
1
);
memset
(
buf
.
data
(),
0
,
buf
.
size
()
*
sizeof
(
float
));
float
*
sum
=
alignPtr
(
buf
.
data
(),
CV_SIMD_WIDTH
);
float
*
wsum
=
sum
+
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
);
for
(
k
=
0
;
k
<
maxk
;
k
++
)
{
const
uchar
*
ksptr
=
sptr
+
space_ofs
[
k
];
j
=
0
;
#if CV_SIMD
v_float32
kweight
=
vx_setall_f32
(
space_weight
[
k
]);
for
(;
j
<=
size
.
width
-
v_float32
::
nlanes
;
j
+=
v_float32
::
nlanes
)
{
v_uint32
val
=
vx_load_expand_q
(
ksptr
+
j
);
v_float32
w
=
kweight
*
v_lut
(
color_weight
,
v_reinterpret_as_s32
(
v_absdiff
(
val
,
vx_load_expand_q
(
sptr
+
j
))));
v_store_aligned
(
wsum
+
j
,
vx_load_aligned
(
wsum
+
j
)
+
w
);
v_store_aligned
(
sum
+
j
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val
)),
w
,
vx_load_aligned
(
sum
+
j
)));
}
#endif
for
(;
j
<
size
.
width
;
j
++
)
{
int
val
=
ksptr
[
j
];
float
w
=
space_weight
[
k
]
*
color_weight
[
std
::
abs
(
val
-
sptr
[
j
])];
wsum
[
j
]
+=
w
;
sum
[
j
]
+=
val
*
w
;
}
}
j
=
0
;
#if CV_SIMD
for
(;
j
<=
size
.
width
-
2
*
v_float32
::
nlanes
;
j
+=
2
*
v_float32
::
nlanes
)
v_pack_u_store
(
dptr
+
j
,
v_pack
(
v_round
(
vx_load_aligned
(
sum
+
j
)
/
vx_load_aligned
(
wsum
+
j
)),
v_round
(
vx_load_aligned
(
sum
+
j
+
v_float32
::
nlanes
)
/
vx_load_aligned
(
wsum
+
j
+
v_float32
::
nlanes
))));
#endif
for
(;
j
<
size
.
width
;
j
++
)
{
// overflow is not possible here => there is no need to use cv::saturate_cast
CV_DbgAssert
(
fabs
(
wsum
[
j
])
>
0
);
dptr
[
j
]
=
(
uchar
)
cvRound
(
sum
[
j
]
/
wsum
[
j
]);
}
}
else
{
assert
(
cn
==
3
);
AutoBuffer
<
float
>
buf
(
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
)
*
3
+
size
.
width
+
CV_SIMD_WIDTH
-
1
);
memset
(
buf
.
data
(),
0
,
buf
.
size
()
*
sizeof
(
float
));
float
*
sum_b
=
alignPtr
(
buf
.
data
(),
CV_SIMD_WIDTH
);
float
*
sum_g
=
sum_b
+
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
);
float
*
sum_r
=
sum_g
+
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
);
float
*
wsum
=
sum_r
+
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
);
for
(
k
=
0
;
k
<
maxk
;
k
++
)
{
const
uchar
*
ksptr
=
sptr
+
space_ofs
[
k
];
const
uchar
*
rsptr
=
sptr
;
j
=
0
;
#if CV_SIMD
v_float32
kweight
=
vx_setall_f32
(
space_weight
[
k
]);
for
(;
j
<=
size
.
width
-
v_uint8
::
nlanes
;
j
+=
v_uint8
::
nlanes
,
ksptr
+=
3
*
v_uint8
::
nlanes
,
rsptr
+=
3
*
v_uint8
::
nlanes
)
{
v_uint8
kb
,
kg
,
kr
,
rb
,
rg
,
rr
;
v_load_deinterleave
(
ksptr
,
kb
,
kg
,
kr
);
v_load_deinterleave
(
rsptr
,
rb
,
rg
,
rr
);
v_uint16
b_l
,
b_h
,
g_l
,
g_h
,
r_l
,
r_h
;
v_expand
(
v_absdiff
(
kb
,
rb
),
b_l
,
b_h
);
v_expand
(
v_absdiff
(
kg
,
rg
),
g_l
,
g_h
);
v_expand
(
v_absdiff
(
kr
,
rr
),
r_l
,
r_h
);
v_uint32
val0
,
val1
,
val2
,
val3
;
v_expand
(
b_l
+
g_l
+
r_l
,
val0
,
val1
);
v_expand
(
b_h
+
g_h
+
r_h
,
val2
,
val3
);
v_expand
(
kb
,
b_l
,
b_h
);
v_expand
(
kg
,
g_l
,
g_h
);
v_expand
(
kr
,
r_l
,
r_h
);
v_float32
w0
=
kweight
*
v_lut
(
color_weight
,
v_reinterpret_as_s32
(
val0
));
v_float32
w1
=
kweight
*
v_lut
(
color_weight
,
v_reinterpret_as_s32
(
val1
));
v_float32
w2
=
kweight
*
v_lut
(
color_weight
,
v_reinterpret_as_s32
(
val2
));
v_float32
w3
=
kweight
*
v_lut
(
color_weight
,
v_reinterpret_as_s32
(
val3
));
v_store_aligned
(
wsum
+
j
,
w0
+
vx_load_aligned
(
wsum
+
j
));
v_store_aligned
(
wsum
+
j
+
v_float32
::
nlanes
,
w1
+
vx_load_aligned
(
wsum
+
j
+
v_float32
::
nlanes
));
v_store_aligned
(
wsum
+
j
+
2
*
v_float32
::
nlanes
,
w2
+
vx_load_aligned
(
wsum
+
j
+
2
*
v_float32
::
nlanes
));
v_store_aligned
(
wsum
+
j
+
3
*
v_float32
::
nlanes
,
w3
+
vx_load_aligned
(
wsum
+
j
+
3
*
v_float32
::
nlanes
));
v_expand
(
b_l
,
val0
,
val1
);
v_expand
(
b_h
,
val2
,
val3
);
v_store_aligned
(
sum_b
+
j
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val0
)),
w0
,
vx_load_aligned
(
sum_b
+
j
)));
v_store_aligned
(
sum_b
+
j
+
v_float32
::
nlanes
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val1
)),
w1
,
vx_load_aligned
(
sum_b
+
j
+
v_float32
::
nlanes
)));
v_store_aligned
(
sum_b
+
j
+
2
*
v_float32
::
nlanes
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val2
)),
w2
,
vx_load_aligned
(
sum_b
+
j
+
2
*
v_float32
::
nlanes
)));
v_store_aligned
(
sum_b
+
j
+
3
*
v_float32
::
nlanes
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val3
)),
w3
,
vx_load_aligned
(
sum_b
+
j
+
3
*
v_float32
::
nlanes
)));
v_expand
(
g_l
,
val0
,
val1
);
v_expand
(
g_h
,
val2
,
val3
);
v_store_aligned
(
sum_g
+
j
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val0
)),
w0
,
vx_load_aligned
(
sum_g
+
j
)));
v_store_aligned
(
sum_g
+
j
+
v_float32
::
nlanes
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val1
)),
w1
,
vx_load_aligned
(
sum_g
+
j
+
v_float32
::
nlanes
)));
v_store_aligned
(
sum_g
+
j
+
2
*
v_float32
::
nlanes
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val2
)),
w2
,
vx_load_aligned
(
sum_g
+
j
+
2
*
v_float32
::
nlanes
)));
v_store_aligned
(
sum_g
+
j
+
3
*
v_float32
::
nlanes
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val3
)),
w3
,
vx_load_aligned
(
sum_g
+
j
+
3
*
v_float32
::
nlanes
)));
v_expand
(
r_l
,
val0
,
val1
);
v_expand
(
r_h
,
val2
,
val3
);
v_store_aligned
(
sum_r
+
j
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val0
)),
w0
,
vx_load_aligned
(
sum_r
+
j
)));
v_store_aligned
(
sum_r
+
j
+
v_float32
::
nlanes
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val1
)),
w1
,
vx_load_aligned
(
sum_r
+
j
+
v_float32
::
nlanes
)));
v_store_aligned
(
sum_r
+
j
+
2
*
v_float32
::
nlanes
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val2
)),
w2
,
vx_load_aligned
(
sum_r
+
j
+
2
*
v_float32
::
nlanes
)));
v_store_aligned
(
sum_r
+
j
+
3
*
v_float32
::
nlanes
,
v_muladd
(
v_cvt_f32
(
v_reinterpret_as_s32
(
val3
)),
w3
,
vx_load_aligned
(
sum_r
+
j
+
3
*
v_float32
::
nlanes
)));
}
#endif
for
(;
j
<
size
.
width
;
j
++
,
ksptr
+=
3
,
rsptr
+=
3
)
{
int
b
=
ksptr
[
0
],
g
=
ksptr
[
1
],
r
=
ksptr
[
2
];
float
w
=
space_weight
[
k
]
*
color_weight
[
std
::
abs
(
b
-
rsptr
[
0
])
+
std
::
abs
(
g
-
rsptr
[
1
])
+
std
::
abs
(
r
-
rsptr
[
2
])];
wsum
[
j
]
+=
w
;
sum_b
[
j
]
+=
b
*
w
;
sum_g
[
j
]
+=
g
*
w
;
sum_r
[
j
]
+=
r
*
w
;
}
}
j
=
0
;
#if CV_SIMD
v_float32
v_one
=
vx_setall_f32
(
1.
f
);
for
(;
j
<=
size
.
width
-
v_uint8
::
nlanes
;
j
+=
v_uint8
::
nlanes
,
dptr
+=
3
*
v_uint8
::
nlanes
)
{
v_float32
w0
=
v_one
/
vx_load_aligned
(
wsum
+
j
);
v_float32
w1
=
v_one
/
vx_load_aligned
(
wsum
+
j
+
v_float32
::
nlanes
);
v_float32
w2
=
v_one
/
vx_load_aligned
(
wsum
+
j
+
2
*
v_float32
::
nlanes
);
v_float32
w3
=
v_one
/
vx_load_aligned
(
wsum
+
j
+
3
*
v_float32
::
nlanes
);
v_store_interleave
(
dptr
,
v_pack_u
(
v_pack
(
v_round
(
w0
*
vx_load_aligned
(
sum_b
+
j
)),
v_round
(
w1
*
vx_load_aligned
(
sum_b
+
j
+
v_float32
::
nlanes
))),
v_pack
(
v_round
(
w2
*
vx_load_aligned
(
sum_b
+
j
+
2
*
v_float32
::
nlanes
)),
v_round
(
w3
*
vx_load_aligned
(
sum_b
+
j
+
3
*
v_float32
::
nlanes
)))),
v_pack_u
(
v_pack
(
v_round
(
w0
*
vx_load_aligned
(
sum_g
+
j
)),
v_round
(
w1
*
vx_load_aligned
(
sum_g
+
j
+
v_float32
::
nlanes
))),
v_pack
(
v_round
(
w2
*
vx_load_aligned
(
sum_g
+
j
+
2
*
v_float32
::
nlanes
)),
v_round
(
w3
*
vx_load_aligned
(
sum_g
+
j
+
3
*
v_float32
::
nlanes
)))),
v_pack_u
(
v_pack
(
v_round
(
w0
*
vx_load_aligned
(
sum_r
+
j
)),
v_round
(
w1
*
vx_load_aligned
(
sum_r
+
j
+
v_float32
::
nlanes
))),
v_pack
(
v_round
(
w2
*
vx_load_aligned
(
sum_r
+
j
+
2
*
v_float32
::
nlanes
)),
v_round
(
w3
*
vx_load_aligned
(
sum_r
+
j
+
3
*
v_float32
::
nlanes
)))));
}
#endif
for
(;
j
<
size
.
width
;
j
++
)
{
CV_DbgAssert
(
fabs
(
wsum
[
j
])
>
0
);
wsum
[
j
]
=
1.
f
/
wsum
[
j
];
*
(
dptr
++
)
=
(
uchar
)
cvRound
(
sum_b
[
j
]
*
wsum
[
j
]);
*
(
dptr
++
)
=
(
uchar
)
cvRound
(
sum_g
[
j
]
*
wsum
[
j
]);
*
(
dptr
++
)
=
(
uchar
)
cvRound
(
sum_r
[
j
]
*
wsum
[
j
]);
}
}
}
#if CV_SIMD
vx_cleanup
();
#endif
}
private
:
const
Mat
*
temp
;
Mat
*
dest
;
int
radius
,
maxk
,
*
space_ofs
;
float
*
space_weight
,
*
color_weight
;
};
#ifdef HAVE_OPENCL
static
bool
ocl_bilateralFilter_8u
(
InputArray
_src
,
OutputArray
_dst
,
int
d
,
double
sigma_color
,
double
sigma_space
,
int
borderType
)
{
#ifdef __ANDROID__
if
(
ocl
::
Device
::
getDefault
().
isNVidia
())
return
false
;
#endif
int
type
=
_src
.
type
(),
depth
=
CV_MAT_DEPTH
(
type
),
cn
=
CV_MAT_CN
(
type
);
int
i
,
j
,
maxk
,
radius
;
if
(
depth
!=
CV_8U
||
cn
>
4
)
return
false
;
if
(
sigma_color
<=
0
)
sigma_color
=
1
;
if
(
sigma_space
<=
0
)
sigma_space
=
1
;
double
gauss_color_coeff
=
-
0.5
/
(
sigma_color
*
sigma_color
);
double
gauss_space_coeff
=
-
0.5
/
(
sigma_space
*
sigma_space
);
if
(
d
<=
0
)
radius
=
cvRound
(
sigma_space
*
1.5
);
else
radius
=
d
/
2
;
radius
=
MAX
(
radius
,
1
);
d
=
radius
*
2
+
1
;
UMat
src
=
_src
.
getUMat
(),
dst
=
_dst
.
getUMat
(),
temp
;
if
(
src
.
u
==
dst
.
u
)
return
false
;
copyMakeBorder
(
src
,
temp
,
radius
,
radius
,
radius
,
radius
,
borderType
);
std
::
vector
<
float
>
_space_weight
(
d
*
d
);
std
::
vector
<
int
>
_space_ofs
(
d
*
d
);
float
*
const
space_weight
=
&
_space_weight
[
0
];
int
*
const
space_ofs
=
&
_space_ofs
[
0
];
// initialize space-related bilateral filter coefficients
for
(
i
=
-
radius
,
maxk
=
0
;
i
<=
radius
;
i
++
)
for
(
j
=
-
radius
;
j
<=
radius
;
j
++
)
{
double
r
=
std
::
sqrt
((
double
)
i
*
i
+
(
double
)
j
*
j
);
if
(
r
>
radius
)
continue
;
space_weight
[
maxk
]
=
(
float
)
std
::
exp
(
r
*
r
*
gauss_space_coeff
);
space_ofs
[
maxk
++
]
=
(
int
)(
i
*
temp
.
step
+
j
*
cn
);
}
char
cvt
[
3
][
40
];
String
cnstr
=
cn
>
1
?
format
(
"%d"
,
cn
)
:
""
;
String
kernelName
(
"bilateral"
);
size_t
sizeDiv
=
1
;
if
((
ocl
::
Device
::
getDefault
().
isIntel
())
&&
(
ocl
::
Device
::
getDefault
().
type
()
==
ocl
::
Device
::
TYPE_GPU
))
{
//Intel GPU
if
(
dst
.
cols
%
4
==
0
&&
cn
==
1
)
// For single channel x4 sized images.
{
kernelName
=
"bilateral_float4"
;
sizeDiv
=
4
;
}
}
ocl
::
Kernel
k
(
kernelName
.
c_str
(),
ocl
::
imgproc
::
bilateral_oclsrc
,
format
(
"-D radius=%d -D maxk=%d -D cn=%d -D int_t=%s -D uint_t=uint%s -D convert_int_t=%s"
" -D uchar_t=%s -D float_t=%s -D convert_float_t=%s -D convert_uchar_t=%s -D gauss_color_coeff=(float)%f"
,
radius
,
maxk
,
cn
,
ocl
::
typeToStr
(
CV_32SC
(
cn
)),
cnstr
.
c_str
(),
ocl
::
convertTypeStr
(
CV_8U
,
CV_32S
,
cn
,
cvt
[
0
]),
ocl
::
typeToStr
(
type
),
ocl
::
typeToStr
(
CV_32FC
(
cn
)),
ocl
::
convertTypeStr
(
CV_32S
,
CV_32F
,
cn
,
cvt
[
1
]),
ocl
::
convertTypeStr
(
CV_32F
,
CV_8U
,
cn
,
cvt
[
2
]),
gauss_color_coeff
));
if
(
k
.
empty
())
return
false
;
Mat
mspace_weight
(
1
,
d
*
d
,
CV_32FC1
,
space_weight
);
Mat
mspace_ofs
(
1
,
d
*
d
,
CV_32SC1
,
space_ofs
);
UMat
ucolor_weight
,
uspace_weight
,
uspace_ofs
;
mspace_weight
.
copyTo
(
uspace_weight
);
mspace_ofs
.
copyTo
(
uspace_ofs
);
k
.
args
(
ocl
::
KernelArg
::
ReadOnlyNoSize
(
temp
),
ocl
::
KernelArg
::
WriteOnly
(
dst
),
ocl
::
KernelArg
::
PtrReadOnly
(
uspace_weight
),
ocl
::
KernelArg
::
PtrReadOnly
(
uspace_ofs
));
size_t
globalsize
[
2
]
=
{
(
size_t
)
dst
.
cols
/
sizeDiv
,
(
size_t
)
dst
.
rows
};
return
k
.
run
(
2
,
globalsize
,
NULL
,
false
);
}
#endif
static
void
bilateralFilter_8u
(
const
Mat
&
src
,
Mat
&
dst
,
int
d
,
double
sigma_color
,
double
sigma_space
,
int
borderType
)
{
int
cn
=
src
.
channels
();
int
i
,
j
,
maxk
,
radius
;
Size
size
=
src
.
size
();
CV_Assert
(
(
src
.
type
()
==
CV_8UC1
||
src
.
type
()
==
CV_8UC3
)
&&
src
.
data
!=
dst
.
data
);
if
(
sigma_color
<=
0
)
sigma_color
=
1
;
if
(
sigma_space
<=
0
)
sigma_space
=
1
;
double
gauss_color_coeff
=
-
0.5
/
(
sigma_color
*
sigma_color
);
double
gauss_space_coeff
=
-
0.5
/
(
sigma_space
*
sigma_space
);
if
(
d
<=
0
)
radius
=
cvRound
(
sigma_space
*
1.5
);
else
radius
=
d
/
2
;
radius
=
MAX
(
radius
,
1
);
d
=
radius
*
2
+
1
;
Mat
temp
;
copyMakeBorder
(
src
,
temp
,
radius
,
radius
,
radius
,
radius
,
borderType
);
std
::
vector
<
float
>
_color_weight
(
cn
*
256
);
std
::
vector
<
float
>
_space_weight
(
d
*
d
);
std
::
vector
<
int
>
_space_ofs
(
d
*
d
);
float
*
color_weight
=
&
_color_weight
[
0
];
float
*
space_weight
=
&
_space_weight
[
0
];
int
*
space_ofs
=
&
_space_ofs
[
0
];
// initialize color-related bilateral filter coefficients
for
(
i
=
0
;
i
<
256
*
cn
;
i
++
)
color_weight
[
i
]
=
(
float
)
std
::
exp
(
i
*
i
*
gauss_color_coeff
);
// initialize space-related bilateral filter coefficients
for
(
i
=
-
radius
,
maxk
=
0
;
i
<=
radius
;
i
++
)
{
j
=
-
radius
;
for
(
;
j
<=
radius
;
j
++
)
{
double
r
=
std
::
sqrt
((
double
)
i
*
i
+
(
double
)
j
*
j
);
if
(
r
>
radius
)
continue
;
space_weight
[
maxk
]
=
(
float
)
std
::
exp
(
r
*
r
*
gauss_space_coeff
);
space_ofs
[
maxk
++
]
=
(
int
)(
i
*
temp
.
step
+
j
*
cn
);
}
}
BilateralFilter_8u_Invoker
body
(
dst
,
temp
,
radius
,
maxk
,
space_ofs
,
space_weight
,
color_weight
);
parallel_for_
(
Range
(
0
,
size
.
height
),
body
,
dst
.
total
()
/
(
double
)(
1
<<
16
));
}
class
BilateralFilter_32f_Invoker
:
public
ParallelLoopBody
{
public
:
BilateralFilter_32f_Invoker
(
int
_cn
,
int
_radius
,
int
_maxk
,
int
*
_space_ofs
,
const
Mat
&
_temp
,
Mat
&
_dest
,
float
_scale_index
,
float
*
_space_weight
,
float
*
_expLUT
)
:
cn
(
_cn
),
radius
(
_radius
),
maxk
(
_maxk
),
space_ofs
(
_space_ofs
),
temp
(
&
_temp
),
dest
(
&
_dest
),
scale_index
(
_scale_index
),
space_weight
(
_space_weight
),
expLUT
(
_expLUT
)
{
}
virtual
void
operator
()
(
const
Range
&
range
)
const
CV_OVERRIDE
{
int
i
,
j
,
k
;
Size
size
=
dest
->
size
();
for
(
i
=
range
.
start
;
i
<
range
.
end
;
i
++
)
{
const
float
*
sptr
=
temp
->
ptr
<
float
>
(
i
+
radius
)
+
radius
*
cn
;
float
*
dptr
=
dest
->
ptr
<
float
>
(
i
);
if
(
cn
==
1
)
{
AutoBuffer
<
float
>
buf
(
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
)
+
size
.
width
+
CV_SIMD_WIDTH
-
1
);
memset
(
buf
.
data
(),
0
,
buf
.
size
()
*
sizeof
(
float
));
float
*
sum
=
alignPtr
(
buf
.
data
(),
CV_SIMD_WIDTH
);
float
*
wsum
=
sum
+
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
);
#if CV_SIMD
v_float32
v_one
=
vx_setall_f32
(
1.
f
);
v_float32
sindex
=
vx_setall_f32
(
scale_index
);
#endif
for
(
k
=
0
;
k
<
maxk
;
k
++
)
{
const
float
*
ksptr
=
sptr
+
space_ofs
[
k
];
j
=
0
;
#if CV_SIMD
v_float32
kweight
=
vx_setall_f32
(
space_weight
[
k
]);
for
(;
j
<=
size
.
width
-
v_float32
::
nlanes
;
j
+=
v_float32
::
nlanes
)
{
v_float32
val
=
vx_load
(
ksptr
+
j
);
v_float32
alpha
=
v_absdiff
(
val
,
vx_load
(
sptr
+
j
))
*
sindex
;
v_int32
idx
=
v_trunc
(
alpha
);
alpha
-=
v_cvt_f32
(
idx
);
v_float32
w
=
kweight
*
v_muladd
(
v_lut
(
expLUT
+
1
,
idx
),
alpha
,
v_lut
(
expLUT
,
idx
)
*
(
v_one
-
alpha
));
v_store_aligned
(
wsum
+
j
,
vx_load_aligned
(
wsum
+
j
)
+
w
);
v_store_aligned
(
sum
+
j
,
v_muladd
(
val
,
w
,
vx_load_aligned
(
sum
+
j
)));
}
#endif
for
(;
j
<
size
.
width
;
j
++
)
{
float
val
=
ksptr
[
j
];
float
alpha
=
std
::
abs
(
val
-
sptr
[
j
])
*
scale_index
;
int
idx
=
cvFloor
(
alpha
);
alpha
-=
idx
;
float
w
=
space_weight
[
k
]
*
(
expLUT
[
idx
]
+
alpha
*
(
expLUT
[
idx
+
1
]
-
expLUT
[
idx
]));
wsum
[
j
]
+=
w
;
sum
[
j
]
+=
val
*
w
;
}
}
j
=
0
;
#if CV_SIMD
for
(;
j
<=
size
.
width
-
v_float32
::
nlanes
;
j
+=
v_float32
::
nlanes
)
v_store
(
dptr
+
j
,
vx_load_aligned
(
sum
+
j
)
/
vx_load_aligned
(
wsum
+
j
));
#endif
for
(;
j
<
size
.
width
;
j
++
)
{
CV_DbgAssert
(
fabs
(
wsum
[
j
])
>
0
);
dptr
[
j
]
=
sum
[
j
]
/
wsum
[
j
];
}
}
else
{
CV_Assert
(
cn
==
3
);
AutoBuffer
<
float
>
buf
(
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
)
*
3
+
size
.
width
+
CV_SIMD_WIDTH
-
1
);
memset
(
buf
.
data
(),
0
,
buf
.
size
()
*
sizeof
(
float
));
float
*
sum_b
=
alignPtr
(
buf
.
data
(),
CV_SIMD_WIDTH
);
float
*
sum_g
=
sum_b
+
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
);
float
*
sum_r
=
sum_g
+
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
);
float
*
wsum
=
sum_r
+
alignSize
(
size
.
width
,
CV_SIMD_WIDTH
);
#if CV_SIMD
v_float32
v_one
=
vx_setall_f32
(
1.
f
);
v_float32
sindex
=
vx_setall_f32
(
scale_index
);
#endif
for
(
k
=
0
;
k
<
maxk
;
k
++
)
{
const
float
*
ksptr
=
sptr
+
space_ofs
[
k
];
const
float
*
rsptr
=
sptr
;
j
=
0
;
#if CV_SIMD
v_float32
kweight
=
vx_setall_f32
(
space_weight
[
k
]);
for
(;
j
<=
size
.
width
-
v_float32
::
nlanes
;
j
+=
v_float32
::
nlanes
,
ksptr
+=
3
*
v_float32
::
nlanes
,
rsptr
+=
3
*
v_float32
::
nlanes
)
{
v_float32
kb
,
kg
,
kr
,
rb
,
rg
,
rr
;
v_load_deinterleave
(
ksptr
,
kb
,
kg
,
kr
);
v_load_deinterleave
(
rsptr
,
rb
,
rg
,
rr
);
v_float32
alpha
=
(
v_absdiff
(
kb
,
rb
)
+
v_absdiff
(
kg
,
rg
)
+
v_absdiff
(
kr
,
rr
))
*
sindex
;
v_int32
idx
=
v_trunc
(
alpha
);
alpha
-=
v_cvt_f32
(
idx
);
v_float32
w
=
kweight
*
v_muladd
(
v_lut
(
expLUT
+
1
,
idx
),
alpha
,
v_lut
(
expLUT
,
idx
)
*
(
v_one
-
alpha
));
v_store_aligned
(
wsum
+
j
,
vx_load_aligned
(
wsum
+
j
)
+
w
);
v_store_aligned
(
sum_b
+
j
,
v_muladd
(
kb
,
w
,
vx_load_aligned
(
sum_b
+
j
)));
v_store_aligned
(
sum_g
+
j
,
v_muladd
(
kg
,
w
,
vx_load_aligned
(
sum_g
+
j
)));
v_store_aligned
(
sum_r
+
j
,
v_muladd
(
kr
,
w
,
vx_load_aligned
(
sum_r
+
j
)));
}
#endif
for
(;
j
<
size
.
width
;
j
++
,
ksptr
+=
3
,
rsptr
+=
3
)
{
float
b
=
ksptr
[
0
],
g
=
ksptr
[
1
],
r
=
ksptr
[
2
];
float
alpha
=
(
std
::
abs
(
b
-
rsptr
[
0
])
+
std
::
abs
(
g
-
rsptr
[
1
])
+
std
::
abs
(
r
-
rsptr
[
2
]))
*
scale_index
;
int
idx
=
cvFloor
(
alpha
);
alpha
-=
idx
;
float
w
=
space_weight
[
k
]
*
(
expLUT
[
idx
]
+
alpha
*
(
expLUT
[
idx
+
1
]
-
expLUT
[
idx
]));
wsum
[
j
]
+=
w
;
sum_b
[
j
]
+=
b
*
w
;
sum_g
[
j
]
+=
g
*
w
;
sum_r
[
j
]
+=
r
*
w
;
}
}
j
=
0
;
#if CV_SIMD
for
(;
j
<=
size
.
width
-
v_float32
::
nlanes
;
j
+=
v_float32
::
nlanes
,
dptr
+=
3
*
v_float32
::
nlanes
)
{
v_float32
w
=
v_one
/
vx_load_aligned
(
wsum
+
j
);
v_store_interleave
(
dptr
,
vx_load_aligned
(
sum_b
+
j
)
*
w
,
vx_load_aligned
(
sum_g
+
j
)
*
w
,
vx_load_aligned
(
sum_r
+
j
)
*
w
);
}
#endif
for
(;
j
<
size
.
width
;
j
++
)
{
CV_DbgAssert
(
fabs
(
wsum
[
j
])
>
0
);
wsum
[
j
]
=
1.
f
/
wsum
[
j
];
*
(
dptr
++
)
=
sum_b
[
j
]
*
wsum
[
j
];
*
(
dptr
++
)
=
sum_g
[
j
]
*
wsum
[
j
];
*
(
dptr
++
)
=
sum_r
[
j
]
*
wsum
[
j
];
}
}
}
#if CV_SIMD
vx_cleanup
();
#endif
}
private
:
int
cn
,
radius
,
maxk
,
*
space_ofs
;
const
Mat
*
temp
;
Mat
*
dest
;
float
scale_index
,
*
space_weight
,
*
expLUT
;
};
static
void
bilateralFilter_32f
(
const
Mat
&
src
,
Mat
&
dst
,
int
d
,
double
sigma_color
,
double
sigma_space
,
int
borderType
)
{
int
cn
=
src
.
channels
();
int
i
,
j
,
maxk
,
radius
;
double
minValSrc
=-
1
,
maxValSrc
=
1
;
const
int
kExpNumBinsPerChannel
=
1
<<
12
;
int
kExpNumBins
=
0
;
float
lastExpVal
=
1.
f
;
float
len
,
scale_index
;
Size
size
=
src
.
size
();
CV_Assert
(
(
src
.
type
()
==
CV_32FC1
||
src
.
type
()
==
CV_32FC3
)
&&
src
.
data
!=
dst
.
data
);
if
(
sigma_color
<=
0
)
sigma_color
=
1
;
if
(
sigma_space
<=
0
)
sigma_space
=
1
;
double
gauss_color_coeff
=
-
0.5
/
(
sigma_color
*
sigma_color
);
double
gauss_space_coeff
=
-
0.5
/
(
sigma_space
*
sigma_space
);
if
(
d
<=
0
)
radius
=
cvRound
(
sigma_space
*
1.5
);
else
radius
=
d
/
2
;
radius
=
MAX
(
radius
,
1
);
d
=
radius
*
2
+
1
;
// compute the min/max range for the input image (even if multichannel)
minMaxLoc
(
src
.
reshape
(
1
),
&
minValSrc
,
&
maxValSrc
);
if
(
std
::
abs
(
minValSrc
-
maxValSrc
)
<
FLT_EPSILON
)
{
src
.
copyTo
(
dst
);
return
;
}
// temporary copy of the image with borders for easy processing
Mat
temp
;
copyMakeBorder
(
src
,
temp
,
radius
,
radius
,
radius
,
radius
,
borderType
);
const
double
insteadNaNValue
=
-
5.
*
sigma_color
;
patchNaNs
(
temp
,
insteadNaNValue
);
// this replacement of NaNs makes the assumption that depth values are nonnegative
// TODO: make insteadNaNValue avalible in the outside function interface to control the cases breaking the assumption
// allocate lookup tables
std
::
vector
<
float
>
_space_weight
(
d
*
d
);
std
::
vector
<
int
>
_space_ofs
(
d
*
d
);
float
*
space_weight
=
&
_space_weight
[
0
];
int
*
space_ofs
=
&
_space_ofs
[
0
];
// assign a length which is slightly more than needed
len
=
(
float
)(
maxValSrc
-
minValSrc
)
*
cn
;
kExpNumBins
=
kExpNumBinsPerChannel
*
cn
;
std
::
vector
<
float
>
_expLUT
(
kExpNumBins
+
2
);
float
*
expLUT
=
&
_expLUT
[
0
];
scale_index
=
kExpNumBins
/
len
;
// initialize the exp LUT
for
(
i
=
0
;
i
<
kExpNumBins
+
2
;
i
++
)
{
if
(
lastExpVal
>
0.
f
)
{
double
val
=
i
/
scale_index
;
expLUT
[
i
]
=
(
float
)
std
::
exp
(
val
*
val
*
gauss_color_coeff
);
lastExpVal
=
expLUT
[
i
];
}
else
expLUT
[
i
]
=
0.
f
;
}
// initialize space-related bilateral filter coefficients
for
(
i
=
-
radius
,
maxk
=
0
;
i
<=
radius
;
i
++
)
for
(
j
=
-
radius
;
j
<=
radius
;
j
++
)
{
double
r
=
std
::
sqrt
((
double
)
i
*
i
+
(
double
)
j
*
j
);
if
(
r
>
radius
)
continue
;
space_weight
[
maxk
]
=
(
float
)
std
::
exp
(
r
*
r
*
gauss_space_coeff
);
space_ofs
[
maxk
++
]
=
(
int
)(
i
*
(
temp
.
step
/
sizeof
(
float
))
+
j
*
cn
);
}
// parallel_for usage
BilateralFilter_32f_Invoker
body
(
cn
,
radius
,
maxk
,
space_ofs
,
temp
,
dst
,
scale_index
,
space_weight
,
expLUT
);
parallel_for_
(
Range
(
0
,
size
.
height
),
body
,
dst
.
total
()
/
(
double
)(
1
<<
16
));
}
#ifdef HAVE_IPP
#define IPP_BILATERAL_PARALLEL 1
#ifdef HAVE_IPP_IW
class
ipp_bilateralFilterParallel
:
public
ParallelLoopBody
{
public
:
ipp_bilateralFilterParallel
(
::
ipp
::
IwiImage
&
_src
,
::
ipp
::
IwiImage
&
_dst
,
int
_radius
,
Ipp32f
_valSquareSigma
,
Ipp32f
_posSquareSigma
,
::
ipp
::
IwiBorderType
_borderType
,
bool
*
_ok
)
:
src
(
_src
),
dst
(
_dst
)
{
pOk
=
_ok
;
radius
=
_radius
;
valSquareSigma
=
_valSquareSigma
;
posSquareSigma
=
_posSquareSigma
;
borderType
=
_borderType
;
*
pOk
=
true
;
}
~
ipp_bilateralFilterParallel
()
{}
virtual
void
operator
()
(
const
Range
&
range
)
const
CV_OVERRIDE
{
if
(
*
pOk
==
false
)
return
;
try
{
::
ipp
::
IwiTile
tile
=
::
ipp
::
IwiRoi
(
0
,
range
.
start
,
dst
.
m_size
.
width
,
range
.
end
-
range
.
start
);
CV_INSTRUMENT_FUN_IPP
(
::
ipp
::
iwiFilterBilateral
,
src
,
dst
,
radius
,
valSquareSigma
,
posSquareSigma
,
::
ipp
::
IwDefault
(),
borderType
,
tile
);
}
catch
(
const
::
ipp
::
IwException
&
)
{
*
pOk
=
false
;
return
;
}
}
private
:
::
ipp
::
IwiImage
&
src
;
::
ipp
::
IwiImage
&
dst
;
int
radius
;
Ipp32f
valSquareSigma
;
Ipp32f
posSquareSigma
;
::
ipp
::
IwiBorderType
borderType
;
bool
*
pOk
;
const
ipp_bilateralFilterParallel
&
operator
=
(
const
ipp_bilateralFilterParallel
&
);
};
#endif
static
bool
ipp_bilateralFilter
(
Mat
&
src
,
Mat
&
dst
,
int
d
,
double
sigmaColor
,
double
sigmaSpace
,
int
borderType
)
{
#ifdef HAVE_IPP_IW
CV_INSTRUMENT_REGION_IPP
();
int
radius
=
IPP_MAX
(((
d
<=
0
)
?
cvRound
(
sigmaSpace
*
1.5
)
:
d
/
2
),
1
);
Ipp32f
valSquareSigma
=
(
Ipp32f
)((
sigmaColor
<=
0
)
?
1
:
sigmaColor
*
sigmaColor
);
Ipp32f
posSquareSigma
=
(
Ipp32f
)((
sigmaSpace
<=
0
)
?
1
:
sigmaSpace
*
sigmaSpace
);
// Acquire data and begin processing
try
{
::
ipp
::
IwiImage
iwSrc
=
ippiGetImage
(
src
);
::
ipp
::
IwiImage
iwDst
=
ippiGetImage
(
dst
);
::
ipp
::
IwiBorderSize
borderSize
(
radius
);
::
ipp
::
IwiBorderType
ippBorder
(
ippiGetBorder
(
iwSrc
,
borderType
,
borderSize
));
if
(
!
ippBorder
)
return
false
;
const
int
threads
=
ippiSuggestThreadsNum
(
iwDst
,
2
);
if
(
IPP_BILATERAL_PARALLEL
&&
threads
>
1
)
{
bool
ok
=
true
;
Range
range
(
0
,
(
int
)
iwDst
.
m_size
.
height
);
ipp_bilateralFilterParallel
invoker
(
iwSrc
,
iwDst
,
radius
,
valSquareSigma
,
posSquareSigma
,
ippBorder
,
&
ok
);
if
(
!
ok
)
return
false
;
parallel_for_
(
range
,
invoker
,
threads
*
4
);
if
(
!
ok
)
return
false
;
}
else
{
CV_INSTRUMENT_FUN_IPP
(
::
ipp
::
iwiFilterBilateral
,
iwSrc
,
iwDst
,
radius
,
valSquareSigma
,
posSquareSigma
,
::
ipp
::
IwDefault
(),
ippBorder
);
}
}
catch
(
const
::
ipp
::
IwException
&
)
{
return
false
;
}
return
true
;
#else
CV_UNUSED
(
src
);
CV_UNUSED
(
dst
);
CV_UNUSED
(
d
);
CV_UNUSED
(
sigmaColor
);
CV_UNUSED
(
sigmaSpace
);
CV_UNUSED
(
borderType
);
return
false
;
#endif
}
#endif
}
void
cv
::
bilateralFilter
(
InputArray
_src
,
OutputArray
_dst
,
int
d
,
double
sigmaColor
,
double
sigmaSpace
,
int
borderType
)
{
CV_INSTRUMENT_REGION
();
_dst
.
create
(
_src
.
size
(),
_src
.
type
()
);
CV_OCL_RUN
(
_src
.
dims
()
<=
2
&&
_dst
.
isUMat
(),
ocl_bilateralFilter_8u
(
_src
,
_dst
,
d
,
sigmaColor
,
sigmaSpace
,
borderType
))
Mat
src
=
_src
.
getMat
(),
dst
=
_dst
.
getMat
();
CV_IPP_RUN_FAST
(
ipp_bilateralFilter
(
src
,
dst
,
d
,
sigmaColor
,
sigmaSpace
,
borderType
));
if
(
src
.
depth
()
==
CV_8U
)
bilateralFilter_8u
(
src
,
dst
,
d
,
sigmaColor
,
sigmaSpace
,
borderType
);
else
if
(
src
.
depth
()
==
CV_32F
)
bilateralFilter_32f
(
src
,
dst
,
d
,
sigmaColor
,
sigmaSpace
,
borderType
);
else
CV_Error
(
CV_StsUnsupportedFormat
,
"Bilateral filtering is only implemented for 8u and 32f images"
);
}
//////////////////////////////////////////////////////////////////////////////////////////
CV_IMPL
void
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment