Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
2d5a1dac
Commit
2d5a1dac
authored
Sep 09, 2013
by
Jin Ma
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added Kalman Filter of OpenCL version.
parent
ff1eb0d5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
475 additions
and
0 deletions
+475
-0
ocl.hpp
modules/ocl/include/opencv2/ocl/ocl.hpp
+32
-0
arithm.cpp
modules/ocl/src/arithm.cpp
+60
-0
kalman.cpp
modules/ocl/src/kalman.cpp
+136
-0
arithm_setidentity.cl
modules/ocl/src/opencl/arithm_setidentity.cl
+100
-0
test_kalman.cpp
modules/ocl/test/test_kalman.cpp
+147
-0
No files found.
modules/ocl/include/opencv2/ocl/ocl.hpp
View file @
2d5a1dac
...
...
@@ -587,6 +587,7 @@ namespace cv
CV_EXPORTS
void
cvtColor
(
const
oclMat
&
src
,
oclMat
&
dst
,
int
code
,
int
dcn
=
0
);
CV_EXPORTS
void
setIdentity
(
oclMat
&
src
,
double
val
);
//////////////////////////////// Filter Engine ////////////////////////////////
/*!
...
...
@@ -1847,6 +1848,37 @@ namespace cv
oclMat
bgmodelUsedModes_
;
//keep track of number of modes per pixel
};
/*!***************Kalman Filter*************!*/
class
CV_EXPORTS
KalmanFilter
{
public
:
KalmanFilter
();
//! the full constructor taking the dimensionality of the state, of the measurement and of the control vector
KalmanFilter
(
int
dynamParams
,
int
measureParams
,
int
controlParams
=
0
,
int
type
=
CV_32F
);
//! re-initializes Kalman filter. The previous content is destroyed.
void
init
(
int
dynamParams
,
int
measureParams
,
int
controlParams
=
0
,
int
type
=
CV_32F
);
const
oclMat
&
predict
(
const
oclMat
&
control
=
oclMat
());
const
oclMat
&
correct
(
const
oclMat
&
measurement
);
oclMat
statePre
;
//!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
oclMat
statePost
;
//!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
oclMat
transitionMatrix
;
//!< state transition matrix (A)
oclMat
controlMatrix
;
//!< control matrix (B) (not used if there is no control)
oclMat
measurementMatrix
;
//!< measurement matrix (H)
oclMat
processNoiseCov
;
//!< process noise covariance matrix (Q)
oclMat
measurementNoiseCov
;
//!< measurement noise covariance matrix (R)
oclMat
errorCovPre
;
//!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
oclMat
gain
;
//!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
oclMat
errorCovPost
;
//!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
private
:
oclMat
temp1
;
oclMat
temp2
;
oclMat
temp3
;
oclMat
temp4
;
oclMat
temp5
;
};
}
}
#if defined _MSC_VER && _MSC_VER >= 1200
...
...
modules/ocl/src/arithm.cpp
View file @
2d5a1dac
...
...
@@ -98,6 +98,7 @@ namespace cv
extern
const
char
*
arithm_phase
;
extern
const
char
*
arithm_pow
;
extern
const
char
*
arithm_magnitudeSqr
;
extern
const
char
*
arithm_setidentity
;
//extern const char * jhp_transpose_kernel;
int64
kernelrealtotal
=
0
;
int64
kernelalltotal
=
0
;
...
...
@@ -2342,3 +2343,62 @@ void cv::ocl::pow(const oclMat &x, double p, oclMat &y)
arithmetic_pow_run
(
x
,
p
,
y
,
kernelName
,
&
arithm_pow
);
}
void
cv
::
ocl
::
setIdentity
(
oclMat
&
src
,
double
scalar
)
{
CV_Assert
(
src
.
empty
()
==
false
&&
src
.
rows
==
src
.
cols
);
CV_Assert
(
src
.
type
()
==
CV_32SC1
||
src
.
type
()
==
CV_32FC1
);
int
src_step
=
src
.
step
/
src
.
elemSize
();
Context
*
clCxt
=
Context
::
getContext
();
size_t
local_threads
[]
=
{
16
,
16
,
1
};
size_t
global_threads
[]
=
{
src
.
cols
,
src
.
rows
,
1
};
string
kernelName
=
"setIdentityKernel"
;
if
(
src
.
type
()
==
CV_32FC1
)
kernelName
+=
"_F1"
;
else
if
(
src
.
type
()
==
CV_32SC1
)
kernelName
+=
"_I1"
;
else
{
kernelName
+=
"_D1"
;
if
(
!
(
clCxt
->
supportsFeature
(
Context
::
CL_DOUBLE
)))
{
oclMat
temp
;
src
.
convertTo
(
temp
,
CV_32FC1
);
temp
.
copyTo
(
src
);
}
}
vector
<
pair
<
size_t
,
const
void
*>
>
args
;
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
src
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src
.
rows
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src
.
cols
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src_step
));
int
scalar_i
=
0
;
float
scalar_f
=
0.0
f
;
if
(
clCxt
->
supportsFeature
(
Context
::
CL_DOUBLE
))
{
if
(
src
.
type
()
==
CV_32SC1
)
{
scalar_i
=
(
int
)
scalar
;
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
scalar_i
));
}
else
args
.
push_back
(
make_pair
(
sizeof
(
cl_double
),
(
void
*
)
&
scalar
));
}
else
{
if
(
src
.
type
()
==
CV_32SC1
)
{
scalar_i
=
(
int
)
scalar
;
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
scalar_i
));
}
else
{
scalar_f
=
(
float
)
scalar
;
args
.
push_back
(
make_pair
(
sizeof
(
cl_float
),
(
void
*
)
&
scalar_f
));
}
}
openCLExecuteKernel
(
clCxt
,
&
arithm_setidentity
,
kernelName
,
global_threads
,
local_threads
,
args
,
-
1
,
-
1
);
}
modules/ocl/src/kalman.cpp
0 → 100644
View file @
2d5a1dac
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Jin Ma, jin@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using
namespace
std
;
using
namespace
cv
;
using
namespace
cv
::
ocl
;
KalmanFilter
::
KalmanFilter
()
{
}
KalmanFilter
::
KalmanFilter
(
int
dynamParams
,
int
measureParams
,
int
controlParams
,
int
type
)
{
init
(
dynamParams
,
measureParams
,
controlParams
,
type
);
}
void
KalmanFilter
::
init
(
int
DP
,
int
MP
,
int
CP
,
int
type
)
{
CV_Assert
(
DP
>
0
&&
MP
>
0
);
CV_Assert
(
type
==
CV_32F
||
type
==
CV_64F
);
CP
=
cv
::
max
(
CP
,
0
);
statePre
.
create
(
DP
,
1
,
type
);
statePre
.
setTo
(
Scalar
::
all
(
0
));
statePost
.
create
(
DP
,
1
,
type
);
statePost
.
setTo
(
Scalar
::
all
(
0
));
transitionMatrix
.
create
(
DP
,
DP
,
type
);
setIdentity
(
transitionMatrix
,
1
);
processNoiseCov
.
create
(
DP
,
DP
,
type
);
setIdentity
(
processNoiseCov
,
1
);
measurementNoiseCov
.
create
(
MP
,
MP
,
type
);
setIdentity
(
measurementNoiseCov
,
1
);
measurementMatrix
.
create
(
MP
,
DP
,
type
);
measurementMatrix
.
setTo
(
Scalar
::
all
(
0
));
errorCovPre
.
create
(
DP
,
DP
,
type
);
errorCovPre
.
setTo
(
Scalar
::
all
(
0
));
errorCovPost
.
create
(
DP
,
DP
,
type
);
errorCovPost
.
setTo
(
Scalar
::
all
(
0
));
gain
.
create
(
DP
,
MP
,
type
);
gain
.
setTo
(
Scalar
::
all
(
0
));
if
(
CP
>
0
)
{
controlMatrix
.
create
(
DP
,
CP
,
type
);
controlMatrix
.
setTo
(
Scalar
::
all
(
0
));
}
else
controlMatrix
.
release
();
temp1
.
create
(
DP
,
DP
,
type
);
temp2
.
create
(
MP
,
DP
,
type
);
temp3
.
create
(
MP
,
MP
,
type
);
temp4
.
create
(
MP
,
DP
,
type
);
temp5
.
create
(
MP
,
1
,
type
);
}
CV_EXPORTS
const
oclMat
&
KalmanFilter
::
predict
(
const
oclMat
&
control
)
{
gemm
(
transitionMatrix
,
statePost
,
1
,
oclMat
(),
0
,
statePre
);
oclMat
temp
;
if
(
control
.
data
)
gemm
(
controlMatrix
,
control
,
1
,
statePre
,
1
,
statePre
);
gemm
(
transitionMatrix
,
errorCovPost
,
1
,
oclMat
(),
0
,
temp1
);
gemm
(
temp1
,
transitionMatrix
,
1
,
processNoiseCov
,
1
,
errorCovPre
,
GEMM_2_T
);
statePre
.
copyTo
(
statePost
);
return
statePre
;
}
CV_EXPORTS
const
oclMat
&
KalmanFilter
::
correct
(
const
oclMat
&
measurement
)
{
CV_Assert
(
measurement
.
empty
()
==
false
);
gemm
(
measurementMatrix
,
errorCovPre
,
1
,
oclMat
(),
0
,
temp2
);
gemm
(
temp2
,
measurementMatrix
,
1
,
measurementNoiseCov
,
1
,
temp3
,
GEMM_2_T
);
Mat
temp
;
solve
(
Mat
(
temp3
),
Mat
(
temp2
),
temp
,
DECOMP_SVD
);
temp4
.
upload
(
temp
);
gain
=
temp4
.
t
();
gemm
(
measurementMatrix
,
statePre
,
-
1
,
measurement
,
1
,
temp5
);
gemm
(
gain
,
temp5
,
1
,
statePre
,
1
,
statePost
);
gemm
(
gain
,
temp2
,
-
1
,
errorCovPre
,
1
,
errorCovPost
);
return
statePost
;
}
\ No newline at end of file
modules/ocl/src/opencl/arithm_setidentity.cl
0 → 100644
View file @
2d5a1dac
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//
IMPORTANT:
READ
BEFORE
DOWNLOADING,
COPYING,
INSTALLING
OR
USING.
//
//
By
downloading,
copying,
installing
or
using
the
software
you
agree
to
this
license.
//
If
you
do
not
agree
to
this
license,
do
not
download,
install,
//
copy
or
use
the
software.
//
//
//
License
Agreement
//
For
Open
Source
Computer
Vision
Library
//
//
Copyright
(
C
)
2010-2012,
Multicoreware,
Inc.,
all
rights
reserved.
//
Copyright
(
C
)
2010-2012,
Advanced
Micro
Devices,
Inc.,
all
rights
reserved.
//
Third
party
copyrights
are
property
of
their
respective
owners.
//
//
@Authors
//
Jin
Ma
jin@multicorewareinc.com
//
//
Redistribution
and
use
in
source
and
binary
forms,
with
or
without
modification,
//
are
permitted
provided
that
the
following
conditions
are
met:
//
//
*
Redistribution
's
of
source
code
must
retain
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer.
//
//
*
Redistribution
's
in
binary
form
must
reproduce
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer
in
the
documentation
//
and/or
other
oclMaterials
provided
with
the
distribution.
//
//
*
The
name
of
the
copyright
holders
may
not
be
used
to
endorse
or
promote
products
//
derived
from
this
software
without
specific
prior
written
permission.
//
//
This
software
is
provided
by
the
copyright
holders
and
contributors
as
is
and
//
any
express
or
implied
warranties,
including,
but
not
limited
to,
the
implied
//
warranties
of
merchantability
and
fitness
for
a
particular
purpose
are
disclaimed.
//
In
no
event
shall
the
Intel
Corporation
or
contributors
be
liable
for
any
direct,
//
indirect,
incidental,
special,
exemplary,
or
consequential
damages
//
(
including,
but
not
limited
to,
procurement
of
substitute
goods
or
services
;
//
loss
of
use,
data,
or
profits
; or business interruption) however caused
//
and
on
any
theory
of
liability,
whether
in
contract,
strict
liability,
//
or
tort
(
including
negligence
or
otherwise
)
arising
in
any
way
out
of
//
the
use
of
this
software,
even
if
advised
of
the
possibility
of
such
damage.
//
//M*/
#
if
defined
(
DOUBLE_SUPPORT
)
#
ifdef
cl_khr_fp64
#
pragma
OPENCL
EXTENSION
cl_khr_fp64:enable
#
elif
defined
(
cl_amd_fp64
)
#
pragma
OPENCL
EXTENSION
cl_amd_fp64:enable
#
endif
#
endif
#
if
defined
(
DOUBLE_SUPPORT
)
#
define
DATA_TYPE
double
#
else
#
define
DATA_TYPE
float
#
endif
__kernel
void
setIdentityKernel_F1
(
__global
float*
src,
int
src_row,
int
src_col,
int
src_step,
DATA_TYPE
scalar
)
{
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
if
(
x
<
src_col
&&
y
<
src_row
)
{
if
(
x
==
y
)
src[y
*
src_step
+
x]
=
scalar
;
else
src[y
*
src_step
+
x]
=
0
*
scalar
;
}
}
__kernel
void
setIdentityKernel_D1
(
__global
DATA_TYPE*
src,
int
src_row,
int
src_col,
int
src_step,
DATA_TYPE
scalar
)
{
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
if
(
x
<
src_col
&&
y
<
src_row
)
{
if
(
x
==
y
)
src[y
*
src_step
+
x]
=
scalar
;
else
src[y
*
src_step
+
x]
=
0
*
scalar
;
}
}
__kernel
void
setIdentityKernel_I1
(
__global
int*
src,
int
src_row,
int
src_col,
int
src_step,
int
scalar
)
{
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
if
(
x
<
src_col
&&
y
<
src_row
)
{
if
(
x
==
y
)
src[y
*
src_step
+
x]
=
scalar
;
else
src[y
*
src_step
+
x]
=
0
*
scalar
;
}
}
modules/ocl/test/test_kalman.cpp
0 → 100644
View file @
2d5a1dac
///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Jin Ma, jin@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#ifdef HAVE_OPENCL
using
namespace
cv
;
using
namespace
cv
::
ocl
;
using
namespace
cvtest
;
using
namespace
testing
;
using
namespace
std
;
//////////////////////////////////////////////////////////////////////////
PARAM_TEST_CASE
(
Kalman
,
int
,
int
)
{
int
size_
;
int
iteration
;
virtual
void
SetUp
()
{
size_
=
GET_PARAM
(
0
);
iteration
=
GET_PARAM
(
1
);
}
};
TEST_P
(
Kalman
,
Accuracy
)
{
const
int
Dim
=
size_
;
const
int
Steps
=
iteration
;
const
double
max_init
=
1
;
const
double
max_noise
=
0.1
;
cv
::
RNG
&
rng
=
TS
::
ptr
()
->
get_rng
();
Mat
sample_mat
(
Dim
,
1
,
CV_32F
),
temp_mat
;
oclMat
Sample
(
Dim
,
1
,
CV_32F
);
oclMat
Temp
(
Dim
,
1
,
CV_32F
);
Mat
Temp_cpu
(
Dim
,
1
,
CV_32F
);
Size
size
(
Sample
.
cols
,
Sample
.
rows
);
sample_mat
=
randomMat
(
rng
,
size
,
Sample
.
type
(),
-
max_init
,
max_init
,
false
);
Sample
.
upload
(
sample_mat
);
//ocl start
cv
::
ocl
::
KalmanFilter
kalman_filter_ocl
;
kalman_filter_ocl
.
init
(
Dim
,
Dim
);
cv
::
ocl
::
setIdentity
(
kalman_filter_ocl
.
errorCovPre
,
1
);
cv
::
ocl
::
setIdentity
(
kalman_filter_ocl
.
measurementMatrix
,
1
);
cv
::
ocl
::
setIdentity
(
kalman_filter_ocl
.
errorCovPost
,
1
);
kalman_filter_ocl
.
measurementNoiseCov
.
setTo
(
Scalar
::
all
(
0
));
kalman_filter_ocl
.
statePre
.
setTo
(
Scalar
::
all
(
0
));
kalman_filter_ocl
.
statePost
.
setTo
(
Scalar
::
all
(
0
));
kalman_filter_ocl
.
correct
(
Sample
);
//ocl end
//cpu start
cv
::
KalmanFilter
kalman_filter_cpu
;
kalman_filter_cpu
.
init
(
Dim
,
Dim
);
cv
::
setIdentity
(
kalman_filter_cpu
.
errorCovPre
,
1
);
cv
::
setIdentity
(
kalman_filter_cpu
.
measurementMatrix
,
1
);
cv
::
setIdentity
(
kalman_filter_cpu
.
errorCovPost
,
1
);
kalman_filter_cpu
.
measurementNoiseCov
.
setTo
(
Scalar
::
all
(
0
));
kalman_filter_cpu
.
statePre
.
setTo
(
Scalar
::
all
(
0
));
kalman_filter_cpu
.
statePost
.
setTo
(
Scalar
::
all
(
0
));
kalman_filter_cpu
.
correct
(
sample_mat
);
//cpu end
//test begin
for
(
int
i
=
0
;
i
<
Steps
;
i
++
)
{
kalman_filter_ocl
.
predict
();
kalman_filter_cpu
.
predict
();
cv
::
gemm
(
kalman_filter_cpu
.
transitionMatrix
,
sample_mat
,
1
,
cv
::
Mat
(),
0
,
Temp_cpu
);
Size
size1
(
Temp
.
cols
,
Temp
.
rows
);
Mat
temp
=
randomMat
(
rng
,
size1
,
Temp
.
type
(),
0
,
0xffff
,
false
);
cv
::
multiply
(
2
,
temp
,
temp
);
cv
::
subtract
(
temp
,
1
,
temp
);
cv
::
multiply
(
max_noise
,
temp
,
temp
);
cv
::
add
(
temp
,
Temp_cpu
,
Temp_cpu
);
Temp
.
upload
(
Temp_cpu
);
Temp
.
copyTo
(
Sample
);
Temp_cpu
.
copyTo
(
sample_mat
);
kalman_filter_ocl
.
correct
(
Temp
);
kalman_filter_cpu
.
correct
(
Temp_cpu
);
}
//test end
EXPECT_MAT_NEAR
(
kalman_filter_cpu
.
statePost
,
kalman_filter_ocl
.
statePost
,
0
);
}
INSTANTIATE_TEST_CASE_P
(
OCL_Video
,
Kalman
,
Combine
(
Values
(
3
,
7
),
Values
(
30
)));
#endif // HAVE_OPENCL
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment