Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
2aeb32d2
Commit
2aeb32d2
authored
Mar 22, 2020
by
YashasSamaga
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fix segfaults, support bias in untrainable mode, support batches in untrainable mode
parent
4cdb4652
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
113 additions
and
30 deletions
+113
-30
scale_shift.hpp
modules/dnn/src/cuda4dnn/primitives/scale_shift.hpp
+70
-22
scale_layer.cpp
modules/dnn/src/layers/scale_layer.cpp
+41
-6
test_darknet_importer.cpp
modules/dnn/test/test_darknet_importer.cpp
+2
-2
No files found.
modules/dnn/src/cuda4dnn/primitives/scale_shift.hpp
View file @
2aeb32d2
...
...
@@ -19,25 +19,51 @@
namespace
cv
{
namespace
dnn
{
namespace
cuda4dnn
{
struct
ScaleShiftConfiguration
{
enum
class
OpMode
{
NONE
,
TRAINABLE
,
/* use a pretrained blob */
UNTRAINABLE
/* use another input */
};
OpMode
scaleMode
;
OpMode
shiftMode
;
std
::
size_t
axis
;
};
template
<
class
T
>
class
ScaleShiftOp
final
:
public
CUDABackendNode
{
public
:
using
wrapper_type
=
GetCUDABackendWrapperType
<
T
>
;
ScaleShiftOp
(
csl
::
Stream
stream_
,
std
::
size_t
axis
,
const
cv
::
Mat
&
weights
,
const
cv
::
Mat
&
bias
)
:
stream
(
std
::
move
(
stream_
)),
axis
{
axis
}
ScaleShiftOp
(
csl
::
Stream
stream_
,
const
ScaleShiftConfiguration
&
config
,
const
cv
::
Mat
&
weights
,
const
cv
::
Mat
&
bias
)
:
stream
(
std
::
move
(
stream_
)),
axis
{
config
.
axis
}
{
if
(
!
weights
.
empty
())
scaleMode
=
config
.
scaleMode
;
if
(
scaleMode
==
ScaleShiftConfiguration
::
OpMode
::
TRAINABLE
)
{
CV_Assert
(
!
weights
.
empty
());
weightsTensor
=
csl
::
makeTensorHeader
<
T
>
(
weights
);
csl
::
copyMatToTensor
<
T
>
(
weights
,
weightsTensor
,
stream
);
}
if
(
!
bias
.
empty
())
shiftMode
=
config
.
shiftMode
;
if
(
shiftMode
==
ScaleShiftConfiguration
::
OpMode
::
TRAINABLE
)
{
CV_Assert
(
!
bias
.
empty
());
biasTensor
=
csl
::
makeTensorHeader
<
T
>
(
bias
);
csl
::
copyMatToTensor
<
T
>
(
bias
,
biasTensor
,
stream
);
}
CV_Assert
(
scaleMode
!=
ScaleShiftConfiguration
::
OpMode
::
NONE
||
shiftMode
!=
ScaleShiftConfiguration
::
OpMode
::
NONE
);
if
(
scaleMode
==
ScaleShiftConfiguration
::
OpMode
::
UNTRAINABLE
&&
shiftMode
==
ScaleShiftConfiguration
::
OpMode
::
UNTRAINABLE
)
{
CV_Error
(
cv
::
Error
::
StsNotImplemented
,
"scale and shift both in untrainable mode is not supported"
);
}
}
void
forward
(
...
...
@@ -53,40 +79,60 @@ namespace cv { namespace dnn { namespace cuda4dnn {
auto
output_wrapper
=
outputs
[
0
].
dynamicCast
<
wrapper_type
>
();
auto
output
=
output_wrapper
->
getSpan
();
/* number of batches in the weights/bias
* trainable mode: same for all batches
* untrainable mode: could be different for different batch samples
*/
std
::
size_t
parameter_batch_size
=
1
;
csl
::
TensorView
<
T
>
weights
;
if
(
weightsTensor
.
empty
()
&&
biasTensor
.
empty
())
if
(
scaleMode
==
ScaleShiftConfiguration
::
OpMode
::
TRAINABLE
)
{
CV_Assert
(
!
weightsTensor
.
empty
());
weights
=
csl
::
TensorView
<
T
>
(
weightsTensor
);
}
else
if
(
scaleMode
==
ScaleShiftConfiguration
::
OpMode
::
UNTRAINABLE
)
{
CV_Assert
(
inputs
.
size
()
==
2
);
/* no explicit scale/shift values provided; use the second input as weights */
auto
wrapper
=
inputs
[
1
].
dynamicCast
<
wrapper_type
>
();
weights
=
wrapper
->
getView
();
parameter_batch_size
=
weights
.
get_axis_size
(
0
);
CV_Assert
(
parameter_batch_size
==
input
.
get_axis_size
(
0
));
}
else
if
(
!
weightsTensor
.
empty
())
csl
::
TensorView
<
T
>
bias
;
if
(
shiftMode
==
ScaleShiftConfiguration
::
OpMode
::
TRAINABLE
)
{
weights
=
csl
::
TensorSpan
<
T
>
(
weightsTensor
);
CV_Assert
(
!
biasTensor
.
empty
());
bias
=
csl
::
TensorView
<
T
>
(
biasTensor
);
}
else
if
(
shiftMode
==
ScaleShiftConfiguration
::
OpMode
::
UNTRAINABLE
)
{
CV_Assert
(
inputs
.
size
()
==
2
);
auto
wrapper
=
inputs
[
1
].
dynamicCast
<
wrapper_type
>
();
bias
=
wrapper
->
getView
();
csl
::
TensorView
<
T
>
bias
;
if
(
!
biasTensor
.
empty
())
bias
=
csl
::
TensorSpan
<
T
>
(
biasTensor
);
parameter_batch_size
=
bias
.
get_axis_size
(
0
)
;
CV_Assert
(
parameter_batch_size
==
input
.
get_axis_size
(
0
));
}
const
auto
numParams
=
!
weights
.
empty
()
?
weights
.
size
()
:
bias
.
size
();
CV_Assert
(
numParams
!=
0
);
if
(
!
weightsTensor
.
empty
()
&&
!
biasTensor
.
empty
())
CV_Assert
(
!
weights
.
empty
()
||
!
bias
.
empty
());
if
(
!
weights
.
empty
()
&&
!
bias
.
empty
())
{
CV_CheckEQ
(
weights
.
size
(),
bias
.
size
(),
"
weights and bias size are not equal
"
);
CV_CheckEQ
(
weights
.
size
(),
bias
.
size
(),
"
different broadcasting options for weights and bias is not supported
"
);
}
/* the weights/bias might require broadcasting to scale/shift */
const
auto
num_parameters
=
!
weights
.
empty
()
?
weights
.
size
()
:
bias
.
size
();
const
auto
mid_size
=
num_parameters
/
parameter_batch_size
;
/* the scale shift operation might require broadcasting */
const
int
end_axis
=
[
&
]
{
for
(
int
endAxis
=
axis
+
1
;
endAxis
<=
input
.
rank
();
endAxis
++
)
{
std
::
size_t
size
=
input
.
size_range
(
axis
,
endAxis
);
if
(
size
==
numParams
)
for
(
int
endAxis
=
axis
+
1
;
endAxis
<=
input
.
rank
();
endAxis
++
)
{
if
(
input
.
size_range
(
axis
,
endAxis
)
==
mid_size
)
return
endAxis
;
}
CV_Assert
(
0
/*
invalid weights matrix
*/
);
CV_Assert
(
0
/*
failed to find a broadcast config
*/
);
}();
std
::
size_t
inner_size
=
input
.
size_range
(
end_axis
,
input
.
rank
());
...
...
@@ -103,6 +149,8 @@ namespace cv { namespace dnn { namespace cuda4dnn {
csl
::
Stream
stream
;
csl
::
Tensor
<
T
>
weightsTensor
,
biasTensor
;
std
::
size_t
axis
;
ScaleShiftConfiguration
::
OpMode
scaleMode
,
shiftMode
;
};
}}}
/* namespace cv::dnn::cuda4dnn */
...
...
modules/dnn/src/layers/scale_layer.cpp
View file @
2aeb32d2
...
...
@@ -159,14 +159,49 @@ public:
CV_Assert
(
!
blobs
.
empty
()
||
inputs
.
size
()
==
2
);
cv
::
Mat
weightsMat
=
hasWeights
?
blobs
[
0
]
:
Mat
();
auto
weightsMat
=
Mat
(),
biasMat
=
Mat
();
/* if the weights are provided, bias will be in blobs[1]; otherwise, it will be in blobs[0]
* in either case, it is at the end of the blobs vector => bias = blobs.back()
*/
cv
::
Mat
biasMat
=
hasBias
?
blobs
.
back
()
:
Mat
();
cuda4dnn
::
ScaleShiftConfiguration
config
;
if
(
hasWeights
)
{
if
(
blobs
.
empty
())
{
config
.
scaleMode
=
cuda4dnn
::
ScaleShiftConfiguration
::
OpMode
::
UNTRAINABLE
;
}
else
{
weightsMat
=
blobs
[
0
];
config
.
scaleMode
=
cuda4dnn
::
ScaleShiftConfiguration
::
OpMode
::
TRAINABLE
;
}
}
else
{
config
.
scaleMode
=
cuda4dnn
::
ScaleShiftConfiguration
::
OpMode
::
NONE
;
}
if
(
hasBias
)
{
if
(
blobs
.
empty
())
{
config
.
shiftMode
=
cuda4dnn
::
ScaleShiftConfiguration
::
OpMode
::
UNTRAINABLE
;
}
else
{
/* if the weights are provided, bias will be in blobs[1]; otherwise, it will be in blobs[0]
* in either case, it is at the end of the blobs vector => bias = blobs.back()
*/
biasMat
=
blobs
.
back
();
config
.
shiftMode
=
cuda4dnn
::
ScaleShiftConfiguration
::
OpMode
::
TRAINABLE
;
}
}
else
{
config
.
shiftMode
=
cuda4dnn
::
ScaleShiftConfiguration
::
OpMode
::
NONE
;
}
config
.
axis
=
axis
;
return
make_cuda_node
<
cuda4dnn
::
ScaleShiftOp
>
(
preferableTarget
,
std
::
move
(
context
->
stream
),
axis
,
weightsMat
,
biasMat
);
return
make_cuda_node
<
cuda4dnn
::
ScaleShiftOp
>
(
preferableTarget
,
std
::
move
(
context
->
stream
),
config
,
weightsMat
,
biasMat
);
}
#endif
...
...
modules/dnn/test/test_darknet_importer.cpp
View file @
2aeb32d2
...
...
@@ -580,8 +580,8 @@ TEST_P(Test_Darknet_layers, convolutional)
TEST_P
(
Test_Darknet_layers
,
scale_channels
)
{
// TODO: test fails for batches due to a bug/missing feature in ScaleLayer
testDarknetLayer
(
"scale_channels"
,
false
,
false
);
bool
testBatches
=
backend
==
DNN_BACKEND_CUDA
;
testDarknetLayer
(
"scale_channels"
,
false
,
testBatches
);
}
TEST_P
(
Test_Darknet_layers
,
connected
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment