Commit 2922738b authored by insoow's avatar insoow Committed by Alexander Alekhin

Merge pull request #8104 from insoow:master

Gemm kernels for Intel GPU (#8104)

* Fix an issue with Kernel object reset release when consecutive Kernel::run calls

Kernel::run launch OCL gpu kernels and set a event callback function
to decreate the ref count of UMat or remove UMat when the lauched workloads
are completed. However, for some OCL kernels requires multiple call of
Kernel::run function with some kernel parameter changes (e.g., input
and output buffer offset) to get the final computation result.
In the case, the current implementation requires unnecessary
synchronization and cleanupMat.

This fix requires the user to specify whether there will be more work or not.
If there is no remaining computation, the Kernel::run will reset the
kernel object
Signed-off-by: 's avatarWoo, Insoo <insoo.woo@intel.com>

* GEMM kernel optimization for Intel GEN

The optimized kernels uses cl_intel_subgroups extension for better
performance.

Note: This optimized kernels will be part of ISAAC in a code generation
way under MIT license.
Signed-off-by: 's avatarWoo, Insoo <insoo.woo@intel.com>

* Fix API compatibility error

This patch fixes a OCV API compatibility error. The error was reported
due to the interface changes of Kernel::run. To resolve the issue,
An overloaded function of Kernel::run is added. It take a flag indicating
whether there are more work to be done with the kernel object without
releasing resources related to it.
Signed-off-by: 's avatarWoo, Insoo <insoo.woo@intel.com>

* Renaming intel_gpu_gemm.cpp to intel_gpu_gemm.inl.hpp
Signed-off-by: 's avatarWoo, Insoo <insoo.woo@intel.com>

* Revert "Fix API compatibility error"

This reverts commit 2ef427db91b6c4aec170f691c5d2e6c47d6520d7.

Conflicts:
	modules/core/src/intel_gpu_gemm.inl.hpp

* Revert "Fix an issue with Kernel object reset release when consecutive Kernel::run calls"

This reverts commit cc7f9f54695dc293598addce9b9d7e345225bede.

* Fix the case of uninitialization D

When C is null and beta is non-zero, D is used without initialization.
This resloves the issue
Signed-off-by: 's avatarWoo, Insoo <insoo.woo@intel.com>

* fix potential output error due to 0 * nan
Signed-off-by: 's avatarWoo, Insoo <insoo.woo@intel.com>

* whitespace fix, eliminate non-ASCII symbols

* fix build warning
parent cea0e943
......@@ -160,6 +160,8 @@ public:
uint imagePitchAlignment() const;
uint imageBaseAddressAlignment() const;
bool intelSubgroupsSupport() const;
size_t image2DMaxWidth() const;
size_t image2DMaxHeight() const;
......
/*
* Copyright 2015-2017 Philippe Tillet
* Copyright (c) 2017, Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifdef HAVE_OPENCL
#include <sstream>
#include "precomp.hpp"
#include "opencl_kernels_core.hpp"
#include "opencv2/core/opencl/runtime/opencl_clamdblas.hpp"
#include "opencv2/core/opencl/runtime/opencl_core.hpp"
namespace cv
{
static bool intel_gpu_gemm(
UMat A, Size sizeA,
UMat B, Size sizeB,
UMat D, Size sizeD,
double alpha, double beta,
bool atrans, bool btrans)
{
CV_UNUSED(sizeB);
int M = sizeD.height, N = sizeD.width, K = ((atrans)? sizeA.height : sizeA.width);
std::string kernelName;
bool ret = true;
size_t lx = 8, ly = 4;
size_t dx = 4, dy = 8;
if(!atrans && !btrans)
{
if (M % 32 == 0 && N % 32 == 0 && K % 16 == 0)
{
kernelName = "intelblas_gemm_buffer_NN_sp";
}
else
{
kernelName = "intelblas_gemm_buffer_NN";
}
}
else if(atrans && !btrans)
{
kernelName = "intelblas_gemm_buffer_TN";
}
else if(!atrans && btrans)
{
kernelName = "intelblas_gemm_buffer_NT";
ly = 16;
dx = 1;
}
else
{
kernelName = "intelblas_gemm_buffer_TT";
}
const size_t gx = (size_t)(N + dx - 1) / dx;
const size_t gy = (size_t)(M + dy - 1) / dy;
size_t local[] = {lx, ly, 1};
size_t global[] = {(gx + lx - 1) / lx * lx, (gy + ly - 1) / ly * ly, 1};
int stride = (M * N < 1024 * 1024) ? 10000000 : 256;
ocl::Queue q;
String errmsg;
const ocl::Program program = ocl::Context::getDefault().getProg(ocl::core::intel_gemm_oclsrc, "", errmsg);
if(!atrans && btrans)
{
ocl::Kernel k(kernelName.c_str(), program);
if (k.empty())
{
return false;
}
k.args(ocl::KernelArg::PtrReadOnly(A),
(int) (A.offset / sizeof(float)),
ocl::KernelArg::PtrReadOnly(B),
(int) (B.offset / sizeof(float)),
ocl::KernelArg::PtrWriteOnly(D),
(int) (D.offset / sizeof(float)),
M, N, K,
(float)alpha,
(float)beta,
(int)(A.step / sizeof(float)),
(int)(B.step / sizeof(float)),
(int)(D.step / sizeof(float)),
(int) 0, // 14 start_index
stride);
ret = k.run(2, global, local, false, q);
}
else
{
for(int start_index = 0; start_index < K; start_index += stride)
{
ocl::Kernel k(kernelName.c_str(), program);
k.args(ocl::KernelArg::PtrReadOnly(A),
(int) (A.offset / sizeof(float)),
ocl::KernelArg::PtrReadOnly(B),
(int) (B.offset / sizeof(float)),
ocl::KernelArg::PtrWriteOnly(D),
(int) (D.offset / sizeof(float)),
M, N, K,
(float)alpha,
(float)beta,
(int)(A.step / sizeof(float)),
(int)(B.step / sizeof(float)),
(int)(D.step / sizeof(float)),
(int) start_index, // 14 start_index
stride);
ret = k.run(2, global, local, false, q);
if (!ret) return ret;
}
}
return ret;
}
} // namespace cv
#endif
......@@ -41,9 +41,12 @@
//
//M*/
#include <sstream>
#include "precomp.hpp"
#include "opencl_kernels_core.hpp"
#include "opencv2/core/opencl/runtime/opencl_clamdblas.hpp"
#include "opencv2/core/opencl/runtime/opencl_core.hpp"
#include "intel_gpu_gemm.inl.hpp"
namespace cv
{
......@@ -787,7 +790,6 @@ static bool ocl_gemm_amdblas( InputArray matA, InputArray matB, double alpha,
#endif
#ifdef HAVE_OPENCL
static bool ocl_gemm( InputArray matA, InputArray matB, double alpha,
InputArray matC, double beta, OutputArray matD, int flags )
{
......@@ -806,62 +808,88 @@ static bool ocl_gemm( InputArray matA, InputArray matB, double alpha,
Size sizeA = matA.size(), sizeB = matB.size(), sizeC = haveC ? matC.size() : Size(0, 0);
bool atrans = (flags & GEMM_1_T) != 0, btrans = (flags & GEMM_2_T) != 0, ctrans = (flags & GEMM_3_T) != 0;
if (atrans)
sizeA = Size(sizeA.height, sizeA.width);
if (btrans)
sizeB = Size(sizeB.height, sizeB.width);
if (haveC && ctrans)
sizeC = Size(sizeC.height, sizeC.width);
Size sizeD(sizeB.width, sizeA.height);
CV_Assert( !haveC || matC.type() == type );
CV_Assert( sizeA.width == sizeB.height && (!haveC || sizeC == sizeD) );
int max_wg_size = (int)dev.maxWorkGroupSize();
int block_size = (max_wg_size / (32*cn) < 32) ? (max_wg_size / (16*cn) < 16) ? (max_wg_size / (8*cn) < 8) ? 1 : 8 : 16 : 32;
Size sizeD(((btrans)? sizeB.height : sizeB.width),
((atrans)? sizeA.width : sizeA.height));
matD.create(sizeD, type);
UMat A = matA.getUMat(), B = matB.getUMat(), D = matD.getUMat();
if (atrans)
A = A.t();
if (btrans)
B = B.t();
if (!dev.intelSubgroupsSupport() || (depth == CV_64F) || cn != 1)
{
String opts;
if (haveC)
ctrans ? transpose(matC, D) : matC.copyTo(D);
if (atrans)
sizeA = Size(sizeA.height, sizeA.width);
if (btrans)
sizeB = Size(sizeB.height, sizeB.width);
if (haveC && ctrans)
sizeC = Size(sizeC.height, sizeC.width);
CV_Assert( sizeA.width == sizeB.height && (!haveC || sizeC == sizeD) );
int max_wg_size = (int)dev.maxWorkGroupSize();
int block_size = (max_wg_size / (32*cn) < 32) ? (max_wg_size / (16*cn) < 16) ? (max_wg_size / (8*cn) < 8) ? 1 : 8 : 16 : 32;
int vectorWidths[] = { 4, 4, 2, 2, 1, 4, cn, -1 };
int kercn = ocl::checkOptimalVectorWidth(vectorWidths, B, D);
if (atrans)
A = A.t();
String opts = format("-D T=%s -D T1=%s -D WT=%s -D cn=%d -D kercn=%d -D LOCAL_SIZE=%d %s %s %s",
if (btrans)
B = B.t();
if (haveC)
ctrans ? transpose(matC, D) : matC.copyTo(D);
int vectorWidths[] = { 4, 4, 2, 2, 1, 4, cn, -1 };
int kercn = ocl::checkOptimalVectorWidth(vectorWidths, B, D);
opts += format(" -D T=%s -D T1=%s -D WT=%s -D cn=%d -D kercn=%d -D LOCAL_SIZE=%d %s %s %s",
ocl::typeToStr(type), ocl::typeToStr(depth), ocl::typeToStr(CV_MAKETYPE(depth, kercn)),
cn, kercn, block_size,
(sizeA.width % block_size !=0) ? "-D NO_MULT" : "",
haveC ? "-D HAVE_C" : "",
doubleSupport ? " -D DOUBLE_SUPPORT" : "");
ocl::Kernel k("gemm", cv::ocl::core::gemm_oclsrc, opts);
if (k.empty())
return false;
ocl::Kernel k("gemm", cv::ocl::core::gemm_oclsrc, opts);
if (k.empty())
return false;
if (depth == CV_64F)
k.args(ocl::KernelArg::ReadOnlyNoSize(A),
ocl::KernelArg::ReadOnlyNoSize(B, cn, kercn),
ocl::KernelArg::ReadWrite(D, cn, kercn),
sizeA.width, alpha, beta);
else
k.args(ocl::KernelArg::ReadOnlyNoSize(A),
ocl::KernelArg::ReadOnlyNoSize(B, cn, kercn),
ocl::KernelArg::ReadWrite(D, cn, kercn),
sizeA.width, (float)alpha, (float)beta);
size_t globalsize[2] = { (size_t)sizeD.width * cn / kercn, (size_t)sizeD.height};
size_t localsize[2] = { (size_t)block_size, (size_t)block_size};
if (depth == CV_64F)
k.args(ocl::KernelArg::ReadOnlyNoSize(A),
ocl::KernelArg::ReadOnlyNoSize(B, cn, kercn),
ocl::KernelArg::ReadWrite(D, cn, kercn),
sizeA.width, alpha, beta);
return k.run(2, globalsize, block_size!=1 ? localsize : NULL, false);
}
else
k.args(ocl::KernelArg::ReadOnlyNoSize(A),
ocl::KernelArg::ReadOnlyNoSize(B, cn, kercn),
ocl::KernelArg::ReadWrite(D, cn, kercn),
sizeA.width, (float)alpha, (float)beta);
size_t globalsize[2] = { (size_t)sizeD.width * cn / kercn, (size_t)sizeD.height};
size_t localsize[2] = { (size_t)block_size, (size_t)block_size};
return k.run(2, globalsize, block_size!=1 ? localsize : NULL, false);
{
if (haveC && beta != 0.0)
{
ctrans ? transpose(matC, D) : matC.copyTo(D);
}
else
{
beta = 0.0;
}
return intel_gpu_gemm(A, sizeA,
B, sizeB,
D, sizeD,
alpha,
beta,
atrans, btrans);
}
}
#endif
......
......@@ -1812,6 +1812,8 @@ struct Device::Impl
String deviceVersion_ = getStrProp(CL_DEVICE_VERSION);
parseDeviceVersion(deviceVersion_, deviceVersionMajor_, deviceVersionMinor_);
intelSubgroupsSupport_ = isExtensionSupported("cl_intel_subgroups");
vendorName_ = getStrProp(CL_DEVICE_VENDOR);
if (vendorName_ == "Advanced Micro Devices, Inc." ||
vendorName_ == "AMD")
......@@ -1851,6 +1853,18 @@ struct Device::Impl
sz < sizeof(buf) ? String(buf) : String();
}
bool isExtensionSupported(const String& extensionName) const
{
bool ret = false;
size_t pos = getStrProp(CL_DEVICE_EXTENSIONS).find(extensionName);
if (pos != String::npos)
{
ret = true;
}
return ret;
}
IMPLEMENT_REFCOUNTABLE();
cl_device_id handle;
......@@ -1866,6 +1880,7 @@ struct Device::Impl
String driverVersion_;
String vendorName_;
int vendorID_;
bool intelSubgroupsSupport_;
};
......@@ -2072,6 +2087,9 @@ size_t Device::imageMaxArraySize() const
{ CV_REQUIRE_OPENCL_1_2_ERROR; }
#endif
bool Device::intelSubgroupsSupport() const
{ return p ? p->intelSubgroupsSupport_ : false; }
int Device::maxClockFrequency() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_CLOCK_FREQUENCY) : 0; }
......
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment