Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
26c48596
Commit
26c48596
authored
Jul 22, 2010
by
Vladislav Vinogradov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
reduced code convert_to by using templates, merged with copyTo
parent
a0b1107b
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
174 additions
and
280 deletions
+174
-280
matrix_operations.cu
modules/gpu/src/cuda/matrix_operations.cu
+147
-252
matrix_operations.cpp
modules/gpu/src/matrix_operations.cpp
+2
-4
convert_to.cpp
tests/gpu/src/convert_to.cpp
+25
-24
No files found.
modules/gpu/src/cuda/matrix_operations.cu
View file @
26c48596
...
...
@@ -53,9 +53,9 @@ __constant__ __align__(16) double scalar_d[4];
namespace mat_operators
{
//////////////////////////////////////////////////////////
// CopyTo
//////////////////////////////////////////////////////////
/////////////////
//////////////////////////////////////////////////////////
////////////////////////////////// CopyTo /////////////////////////////////
/////////////////
//////////////////////////////////////////////////////////
template<typename T>
__global__ void kernel_copy_to_with_mask(T * mat_src, T * mat_dst, const unsigned char * mask, int cols, int rows, int step_mat, int step_mask, int channels)
...
...
@@ -71,9 +71,10 @@ namespace mat_operators
}
}
//////////////////////////////////////////////////////////
// SetTo
//////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
////////////////////////////////// SetTo //////////////////////////////////
///////////////////////////////////////////////////////////////////////////
template<typename T>
__global__ void kernel_set_to_without_mask(T * mat, int cols, int rows, int step, int channels)
...
...
@@ -103,156 +104,94 @@ namespace mat_operators
}
//////////////////////////////////////////////////////////
// ConvertTo
//////////////////////////////////////////////////////////
/////////////////
//////////////////////////////////////////////////////////
//////////////////////////////// ConvertTo ////////////////////////////////
/////////////////
//////////////////////////////////////////////////////////
template <typename T, typename DT
, size_t src_elem_size, size_t dst_elem_size
>
struct C
onverter
template <typename T, typename DT>
struct C
alcTraits
{
__device__ static
void convert(uchar* srcmat, size_t src_step, uchar* dstmat, size_t dst_step, size_t width, size_t height
, double alpha, double beta)
__device__ static
DT calc(T src
, double alpha, double beta)
{
size_t x = threadIdx.x + blockIdx.x * blockDim.x;
size_t y = threadIdx.y + blockIdx.y * blockDim.y;
if (x < width && y < height)
{
const T* src = (const T*)(srcmat + src_step * y);
DT* dst = (DT*)(dstmat + dst_step * y);
dst[x] = (DT)__double2int_rn(alpha * src[x] + beta);
}
return (DT)__double2int_rn(alpha * src + beta);
}
__host__ static inline dim3 calcGrid(size_t width, size_t height, dim3 block)
};
template <typename T>
struct CalcTraits<T, float>
{
__device__ static float calc(T src, double alpha, double beta)
{
return
dim3(divUp(width, block.x), divUp(height, block.y)
);
return
(float)(alpha * src + beta
);
}
};
template <typename T, typename DT>
struct Converter<T, DT, 1, 1>
template <typename T>
struct CalcTraits<T, double>
{
__device__ static
void convert(uchar* srcmat, size_t src_step, uchar* dstmat, size_t dst_step, size_t width, size_t height
, double alpha, double beta)
__device__ static
double calc(T src
, double alpha, double beta)
{
size_t x = threadIdx.x + blockIdx.x * blockDim.x;
size_t y = threadIdx.y + blockIdx.y * blockDim.y;
if (y < height)
{
const T* src = (const T*)(srcmat + src_step * y);
DT* dst = (DT*)(dstmat + dst_step * y);
if ((x << 2) + 3 < width)
{
uchar4 src4b = ((const uchar4*)src)[x];
uchar4 dst4b;
const T* src1b = (const T*) &src4b.x;
DT* dst1b = (DT*) &dst4b.x;
dst1b[0] = (DT)__double2int_rn(alpha * src1b[0] + beta);
dst1b[1] = (DT)__double2int_rn(alpha * src1b[1] + beta);
dst1b[2] = (DT)__double2int_rn(alpha * src1b[2] + beta);
dst1b[3] = (DT)__double2int_rn(alpha * src1b[3] + beta);
((uchar4*)dst)[x] = dst4b;
}
else
{
if ((x << 2) + 0 < width)
dst[(x << 2) + 0] = (DT)__double2int_rn(alpha * src[(x << 2) + 0] + beta);
return alpha * src + beta;
}
};
if ((x << 2) + 1 < width)
dst[(x << 2) + 1] = (DT)__double2int_rn(alpha * src[(x << 2) + 1] + beta);
template <typename T, typename DT, size_t src_elem_size, size_t dst_elem_size>
struct ConverterTraits
{
enum {shift=1};
if ((x << 2) + 2 < width)
dst[(x << 2) + 2] = (DT)__double2int_rn(alpha * src[(x << 2) + 2] + beta);
}
}
}
__host__ static inline dim3 calcGrid(size_t width, size_t height, dim3 block)
{
return dim3(divUp(width, block.x << 2), divUp(height, block.y));
}
};/**/
typedef T read_type;
typedef DT write_type;
};
template <typename T, typename DT>
struct ConverterTraits<T, DT, 1, 1>
{
enum {shift=4};
typedef char4 read_type;
typedef char4 write_type;
};
template <typename T, typename DT>
struct Converter
<T, DT, 1, 2
>
struct Converter
Traits<T, DT, 2, 1
>
{
__device__ static void convert(uchar* srcmat, size_t src_step, uchar* dstmat, size_t dst_step, size_t width, size_t height, double alpha, double beta)
{
size_t x = threadIdx.x + blockIdx.x * blockDim.x;
size_t y = threadIdx.y + blockIdx.y * blockDim.y;
if (y < height)
{
const T* src = (const T*)(srcmat + src_step * y);
DT* dst = (DT*)(dstmat + dst_step * y);
if ((x << 1) + 1 < width)
{
uchar2 src2b = ((const uchar2*)src)[x];
ushort2 dst2s;
enum {shift=4};
const T* src1b = (const T*) &src2b;
DT* dst1s = (DT*) &dst2s;
dst1s[0] = (DT)__double2int_rn(alpha * src1b[0] + beta);
dst1s[1] = (DT)__double2int_rn(alpha * src1b[1] + beta);
typedef short4 read_type;
typedef char4 write_type;
};
template <typename T, typename DT>
struct ConverterTraits<T, DT, 4, 1>
{
enum {shift=4};
((ushort2*)(dst))[x] = dst2s;
}
else
{
if ((x << 1) < width)
dst[(x << 1)] = (DT)__double2int_rn(alpha * src[(x << 1)] + beta);
}
}
}
__host__ static inline dim3 calcGrid(size_t width, size_t height, dim3 block)
{
return dim3(divUp(width, block.x << 1), divUp(height, block.y));
}
};/**/
typedef int4 read_type;
typedef char4 write_type;
};
template <typename T, typename DT>
struct ConverterTraits<T, DT, 1, 2>
{
enum {shift=2};
typedef char2 read_type;
typedef short2 write_type;
};
template <typename T, typename DT>
struct Converter
<T, DT, 2, 1
>
struct Converter
Traits<T, DT, 2, 2
>
{
__device__ static void convert(uchar* srcmat, size_t src_step, uchar* dstmat, size_t dst_step, size_t width, size_t height, double alpha, double beta)
{
size_t x = threadIdx.x + blockIdx.x * blockDim.x;
size_t y = threadIdx.y + blockIdx.y * blockDim.y;
if (y < height)
{
const T* src = (const T*)(srcmat + src_step * y);
DT* dst = (DT*)(dstmat + dst_step * y);
if ((x << 2) + 3 < width)
{
ushort4 src4s = ((const ushort4*)src)[x];
uchar4 dst4b;
enum {shift=2};
const T* src1s = (const T*) &src4s.x;
DT* dst1b = (DT*) &dst4b.x;
dst1b[0] = (DT)__double2int_rn(alpha * src1s[0] + beta);
dst1b[1] = (DT)__double2int_rn(alpha * src1s[1] + beta);
dst1b[2] = (DT)__double2int_rn(alpha * src1s[2] + beta);
dst1b[3] = (DT)__double2int_rn(alpha * src1s[3] + beta);
typedef short2 read_type;
typedef short2 write_type;
};
template <typename T, typename DT>
struct ConverterTraits<T, DT, 4, 2>
{
enum {shift=2};
((uchar4*)(dst))[x] = dst4b;
}
else
{
if ((x << 2) + 0 < width)
dst[(x << 2) + 0] = (DT)__double2int_rn(alpha * src[(x << 2) + 0] + beta);
if ((x << 2) + 1 < width)
dst[(x << 2) + 1] = (DT)__double2int_rn(alpha * src[(x << 2) + 1] + beta);
if ((x << 2) + 2 < width)
dst[(x << 2) + 2] = (DT)__double2int_rn(alpha * src[(x << 2) + 2] + beta);
}
}
}
__host__ static inline dim3 calcGrid(size_t width, size_t height, dim3 block)
{
return dim3(divUp(width, block.x << 2), divUp(height, block.y));
}
};/**/
typedef int2 read_type;
typedef short2 write_type;
};
template <typename T, typename DT>
struct Converter
<T, DT, 2, 2>
struct Converter
{
__device__ static void convert(uchar* srcmat, size_t src_step, uchar* dstmat, size_t dst_step, size_t width, size_t height, double alpha, double beta)
{
...
...
@@ -262,77 +201,37 @@ namespace mat_operators
{
const T* src = (const T*)(srcmat + src_step * y);
DT* dst = (DT*)(dstmat + dst_step * y);
if ((x
<< 1) +
1 < width)
if ((x
* ConverterTraits<T, DT, sizeof(T), sizeof(DT)>::shift) + ConverterTraits<T, DT, sizeof(T), sizeof(DT)>::shift -
1 < width)
{
ushort2 src2s = ((const ushort2
*)src)[x];
ushort2 dst2s
;
typename ConverterTraits<T, DT, sizeof(T), sizeof(DT)>::read_type srcn_el = ((const typename ConverterTraits<T, DT, sizeof(T), sizeof(DT)>::read_type
*)src)[x];
typename ConverterTraits<T, DT, sizeof(T), sizeof(DT)>::write_type dstn_el
;
const T* src1s = (const T*) &src2s.x;
DT* dst1s = (DT*) &dst2s.x;
dst1s[0] = (DT)__double2int_rn(alpha * src1s[0] + beta);
dst1s[1] = (DT)__double2int_rn(alpha * src1s[1] + beta);
const T* src1_el = (const T*) &srcn_el;
DT* dst1_el = (DT*) &dstn_el;
((ushort2*)dst)[x] = dst2s;
for (int i = 0; i < ConverterTraits<T, DT, sizeof(T), sizeof(DT)>::shift; ++i)
dst1_el[i] = CalcTraits<T, DT>::calc(src1_el[i], alpha, beta);
((typename ConverterTraits<T, DT, sizeof(T), sizeof(DT)>::write_type*)dst)[x] = dstn_el;
}
else
{
if ((x << 1) < width)
dst[(x << 1)] = (DT)__double2int_rn(alpha * src[(x << 1)] + beta);
{
for (int i = 0; i < ConverterTraits<T, DT, sizeof(T), sizeof(DT)>::shift - 1; ++i)
if ((x * ConverterTraits<T, DT, sizeof(T), sizeof(DT)>::shift) + i < width)
dst[(x * ConverterTraits<T, DT, sizeof(T), sizeof(DT)>::shift) + i] = CalcTraits<T, DT>::calc(src[(x * ConverterTraits<T, DT, sizeof(T), sizeof(DT)>::shift) + i], alpha, beta);
}
}
}
__host__ static inline dim3 calcGrid(size_t width, size_t height, dim3 block)
{
return dim3(divUp(width, block.x << 1), divUp(height, block.y));
}
};/**/
template <typename T, size_t src_elem_size, size_t dst_elem_size>
struct Converter<T, float, src_elem_size, dst_elem_size>
{
__device__ static void convert(uchar* srcmat, size_t src_step, uchar* dstmat, size_t dst_step, size_t width, size_t height, double alpha, double beta)
{
size_t x = threadIdx.x + blockIdx.x * blockDim.x;
size_t y = threadIdx.y + blockIdx.y * blockDim.y;
if (x < width && y < height)
{
const T* src = (const T*)(srcmat + src_step * y);
float* dst = (float*)(dstmat + dst_step * y);
dst[x] = (float)(alpha * src[x] + beta);
}
}
__host__ static inline dim3 calcGrid(size_t width, size_t height, dim3 block)
{
return dim3(divUp(width, block.x), divUp(height, block.y));
}
};
template <typename T, size_t src_elem_size, size_t dst_elem_size>
struct Converter<T, double, src_elem_size, dst_elem_size>
{
__device__ static void convert(uchar* srcmat, size_t src_step, uchar* dstmat, size_t dst_step, size_t width, size_t height, double alpha, double beta)
{
size_t x = threadIdx.x + blockIdx.x * blockDim.x;
size_t y = threadIdx.y + blockIdx.y * blockDim.y;
if (x < width && y < height)
{
const T* src = (const T*)(srcmat + src_step * y);
double* dst = (double*)(dstmat + dst_step * y);
dst[x] = (double)(alpha * src[x] + beta);
}
}
__host__ static inline dim3 calcGrid(size_t width, size_t height, dim3 block)
{
return dim3(divUp(width, block.x), divUp(height, block.y));
return dim3(divUp(width, block.x * ConverterTraits<T, DT, sizeof(T), sizeof(DT)>::shift), divUp(height, block.y));
}
};
template <typename T, typename DT>
template <typename T, typename DT>
__global__ static void kernel_convert_to(uchar* srcmat, size_t src_step, uchar* dstmat, size_t dst_step, size_t width, size_t height, double alpha, double beta)
{
Converter<T, DT
, sizeof(T), sizeof(DT)
>::convert(srcmat, src_step, dstmat, dst_step, width, height, alpha, beta);
Converter<T, DT>::convert(srcmat, src_step, dstmat, dst_step, width, height, alpha, beta);
}
} // namespace mat_operators
...
...
@@ -344,9 +243,9 @@ namespace cv
namespace impl
{
//////////////////////////////////////////////////////////////
// CopyTo
//////////////////////////////////////////////////////////////
/////////////
//////////////////////////////////////////////////////////////
////////////////////////////////// CopyTo /////////////////////////////////
/////////////
//////////////////////////////////////////////////////////////
typedef void (*CopyToFunc)(const DevMem2D& mat_src, const DevMem2D& mat_dst, const DevMem2D& mask, int channels);
...
...
@@ -382,9 +281,9 @@ namespace cv
}
//////////////////////////////////////////////////////////////
// SetTo
//////////////////////////////////////////////////////////////
/////////////
//////////////////////////////////////////////////////////////
////////////////////////////////// SetTo //////////////////////////////////
/////////////
//////////////////////////////////////////////////////////////
typedef void (*SetToFunc_with_mask)(const DevMem2D& mat, const DevMem2D& mask, int channels);
typedef void (*SetToFunc_without_mask)(const DevMem2D& mat, int channels);
...
...
@@ -464,59 +363,55 @@ namespace cv
func(mat, mask, channels);
}
//////////////////////////////////////////////////////////////
// ConvertTo
//////////////////////////////////////////////////////////////
typedef void (*CvtFunc)(const DevMem2D& src, DevMem2D& dst, size_t width, size_t height, double alpha, double beta);
//#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 130)
template<typename T, typename DT>
void cvt_(const DevMem2D& src, DevMem2D& dst, size_t width, size_t height, double alpha, double beta)
{
dim3 block(32, 8);
dim3 grid = ::mat_operators::Converter<T, DT, sizeof(T), sizeof(DT)>::calcGrid(width, height, block);
::mat_operators::kernel_convert_to<T, DT><<<grid, block>>>(src.ptr, src.step, dst.ptr, dst.step, width, height, alpha, beta);
cudaSafeCall( cudaThreadSynchronize() );
}
//#endif
extern "C" void convert_to(const DevMem2D& src, int sdepth, DevMem2D dst, int ddepth, size_t width, size_t height, double alpha, double beta)
{
static CvtFunc tab[8][8] =
{
{cvt_<uchar, uchar>, cvt_<uchar, schar>, cvt_<uchar, ushort>, cvt_<uchar, short>,
cvt_<uchar, int>, cvt_<uchar, float>, cvt_<uchar, double>, 0},
{cvt_<schar, uchar>, cvt_<schar, schar>, cvt_<schar, ushort>, cvt_<schar, short>,
cvt_<schar, int>, cvt_<schar, float>, cvt_<schar, double>, 0},
{cvt_<ushort, uchar>, cvt_<ushort, schar>, cvt_<ushort, ushort>, cvt_<ushort, short>,
cvt_<ushort, int>, cvt_<ushort, float>, cvt_<ushort, double>, 0},
{cvt_<short, uchar>, cvt_<short, schar>, cvt_<short, ushort>, cvt_<short, short>,
cvt_<short, int>, cvt_<short, float>, cvt_<short, double>, 0},
{cvt_<int, uchar>, cvt_<int, schar>, cvt_<int, ushort>,
cvt_<int, short>, cvt_<int, int>, cvt_<int, float>, cvt_<int, double>, 0},
{cvt_<float, uchar>, cvt_<float, schar>, cvt_<float, ushort>,
cvt_<float, short>, cvt_<float, int>, cvt_<float, float>, cvt_<float, double>, 0},
{cvt_<double, uchar>, cvt_<double, schar>, cvt_<double, ushort>,
cvt_<double, short>, cvt_<double, int>, cvt_<double, float>, cvt_<double, double>, 0},
{0,0,0,0,0,0,0,0}
};
CvtFunc func = tab[sdepth][ddepth];
if (func == 0)
error("Operation \'ConvertTo\' doesn't supported on your GPU model", __FILE__, __LINE__);
func(src, dst, width, height, alpha, beta);
}
}
}
}
///////////////////////////////////////////////////////////////////////////
//////////////////////////////// ConvertTo ////////////////////////////////
///////////////////////////////////////////////////////////////////////////
typedef void (*CvtFunc)(const DevMem2D& src, DevMem2D& dst, size_t width, size_t height, double alpha, double beta);
template<typename T, typename DT>
void cvt_(const DevMem2D& src, DevMem2D& dst, size_t width, size_t height, double alpha, double beta)
{
dim3 block(32, 8);
dim3 grid = ::mat_operators::Converter<T, DT>::calcGrid(width, height, block);
::mat_operators::kernel_convert_to<T, DT><<<grid, block>>>(src.ptr, src.step, dst.ptr, dst.step, width, height, alpha, beta);
cudaSafeCall( cudaThreadSynchronize() );
}
extern "C" void convert_to(const DevMem2D& src, int sdepth, DevMem2D dst, int ddepth, size_t width, size_t height, double alpha, double beta)
{
static CvtFunc tab[8][8] =
{
{cvt_<uchar, uchar>, cvt_<uchar, schar>, cvt_<uchar, ushort>, cvt_<uchar, short>,
cvt_<uchar, int>, cvt_<uchar, float>, cvt_<uchar, double>, 0},
{cvt_<schar, uchar>, cvt_<schar, schar>, cvt_<schar, ushort>, cvt_<schar, short>,
cvt_<schar, int>, cvt_<schar, float>, cvt_<schar, double>, 0},
{cvt_<ushort, uchar>, cvt_<ushort, schar>, cvt_<ushort, ushort>, cvt_<ushort, short>,
cvt_<ushort, int>, cvt_<ushort, float>, cvt_<ushort, double>, 0},
{cvt_<short, uchar>, cvt_<short, schar>, cvt_<short, ushort>, cvt_<short, short>,
cvt_<short, int>, cvt_<short, float>, cvt_<short, double>, 0},
{cvt_<int, uchar>, cvt_<int, schar>, cvt_<int, ushort>,
cvt_<int, short>, cvt_<int, int>, cvt_<int, float>, cvt_<int, double>, 0},
{cvt_<float, uchar>, cvt_<float, schar>, cvt_<float, ushort>,
cvt_<float, short>, cvt_<float, int>, cvt_<float, float>, cvt_<float, double>, 0},
{cvt_<double, uchar>, cvt_<double, schar>, cvt_<double, ushort>,
cvt_<double, short>, cvt_<double, int>, cvt_<double, float>, cvt_<double, double>, 0},
{0,0,0,0,0,0,0,0}
};
CvtFunc func = tab[sdepth][ddepth];
if (func == 0)
cv::gpu::error("Operation \'ConvertTo\' doesn't supported on your GPU model", __FILE__, __LINE__);
func(src, dst, width, height, alpha, beta);
}
} // namespace impl
} // namespace gpu
} // namespace cv
modules/gpu/src/matrix_operations.cpp
View file @
26c48596
...
...
@@ -114,8 +114,6 @@ void cv::gpu::GpuMat::copyTo( GpuMat& mat, const GpuMat& mask ) const
void
cv
::
gpu
::
GpuMat
::
convertTo
(
GpuMat
&
dst
,
int
rtype
,
double
alpha
,
double
beta
)
const
{
//CV_Assert(!"Not implemented");
bool
noScale
=
fabs
(
alpha
-
1
)
<
std
::
numeric_limits
<
double
>::
epsilon
()
&&
fabs
(
beta
)
<
std
::
numeric_limits
<
double
>::
epsilon
();
if
(
rtype
<
0
)
...
...
@@ -124,11 +122,11 @@ void cv::gpu::GpuMat::convertTo( GpuMat& dst, int rtype, double alpha, double be
rtype
=
CV_MAKETYPE
(
CV_MAT_DEPTH
(
rtype
),
channels
());
int
sdepth
=
depth
(),
ddepth
=
CV_MAT_DEPTH
(
rtype
);
/*
if( sdepth == ddepth && noScale )
if
(
sdepth
==
ddepth
&&
noScale
)
{
copyTo
(
dst
);
return
;
}
*/
}
GpuMat
temp
;
const
GpuMat
*
psrc
=
this
;
...
...
tests/gpu/src/convert_to.cpp
View file @
26c48596
...
...
@@ -26,7 +26,7 @@ void CV_GpuMatOpConvertTo::run( int /* start_from */)
{
const
Size
img_size
(
67
,
35
);
const
int
types
[]
=
{
CV_8U
,
CV_8S
,
CV_16U
,
CV_16S
,
CV_32S
,
CV_32F
,
CV_64F
/**/
};
const
int
types
[]
=
{
CV_8U
,
CV_8S
,
CV_16U
,
CV_16S
,
CV_32S
,
CV_32F
,
CV_64F
};
const
int
types_num
=
sizeof
(
types
)
/
sizeof
(
int
);
const
char
*
types_str
[]
=
{
"CV_8U"
,
"CV_8S"
,
"CV_16U"
,
"CV_16S"
,
"CV_32S"
,
"CV_32F"
,
"CV_64F"
};
...
...
@@ -39,9 +39,6 @@ void CV_GpuMatOpConvertTo::run( int /* start_from */)
{
for
(
int
c
=
1
;
c
<
2
&&
passed
;
++
c
)
{
//if (i == j)
// continue;
const
int
src_type
=
CV_MAKETYPE
(
types
[
i
],
c
);
const
int
dst_type
=
types
[
j
];
const
double
alpha
=
(
double
)
rand
()
/
RAND_MAX
*
10.0
;
...
...
@@ -53,30 +50,34 @@ void CV_GpuMatOpConvertTo::run( int /* start_from */)
Mat
cpumatdst
;
GpuMat
gpumatdst
;
//double cput = (double)getTickCount();
cpumatsrc
.
convertTo
(
cpumatdst
,
dst_type
,
alpha
,
beta
);
//cput = ((double)getTickCount() - cput) / getTickFrequency();
//TickMeter tm;
//tm.start();
//for(int i = 0; i < 50; ++i)
cpumatsrc
.
convertTo
(
cpumatdst
,
dst_type
,
alpha
,
beta
);
//tm.stop();
//cout << "SRC_TYPE=" << types_str[i] << "C" << c << " DST_TYPE=" << types_str[j] << endl << "\tCPU FPS = " << 50.0/tm.getTimeSec() << endl;
//double gput = (double)getTickCount();
gpumatsrc
.
convertTo
(
gpumatdst
,
dst_type
,
alpha
,
beta
);
//gput = ((double)getTickCount() - gput) / getTickFrequency();
//tm.reset();
/*cout << "convertTo time: " << endl;
cout << "CPU time: " << cput << endl;
cout << "GPU time: " << gput << endl;/**/
try
{
//tm.start();
//for(int i = 0; i < 50; ++i)
gpumatsrc
.
convertTo
(
gpumatdst
,
dst_type
,
alpha
,
beta
);
//tm.stop();
//cout << "\tGPU FPS = " << 50.0/tm.getTimeSec() << endl;
}
catch
(
cv
::
Exception
&
e
)
{
cout
<<
"ERROR: "
<<
e
.
err
<<
endl
;
passed
=
false
;
break
;
}
double
r
=
norm
(
cpumatdst
,
gpumatdst
,
NORM_
L1
);
double
r
=
norm
(
cpumatdst
,
gpumatdst
,
NORM_
INF
);
if
(
r
>
1
)
{
/*namedWindow("CPU");
imshow("CPU", cpumatdst);
namedWindow("GPU");
imshow("GPU", gpumatdst);
waitKey();/**/
cout
<<
"Failed:"
<<
endl
;
cout
<<
"
\t
r = "
<<
r
<<
endl
;
cout
<<
"
\t
SRC_TYPE="
<<
types_str
[
i
]
<<
"C"
<<
c
<<
" DST_TYPE="
<<
types_str
[
j
]
<<
endl
;
/**/
{
cout
<<
"FAILED: "
<<
"SRC_TYPE="
<<
types_str
[
i
]
<<
"C"
<<
c
<<
" DST_TYPE="
<<
types_str
[
j
]
<<
" NORM = "
<<
r
<<
endl
;
passed
=
false
;
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment