Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
26aef8c7
Commit
26aef8c7
authored
Dec 26, 2011
by
Alexander Shishkov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added skipped file
parent
c11551a5
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
604 additions
and
748 deletions
+604
-748
epnp.cpp
modules/calib3d/src/epnp.cpp
+604
-748
No files found.
modules/calib3d/src/epnp.cpp
View file @
26aef8c7
#include <iostream>
using
namespace
std
;
#include "precomp.hpp"
#include "epnp.h"
namespace
cv
{
double
ePnP
(
InputArray
_opoints
,
InputArray
_ipoints
,
InputArray
_cameraMatrix
,
InputArray
_distCoeffs
,
OutputArray
_rvec
,
OutputArray
_tvec
)
{
Mat
opoints
=
_opoints
.
getMat
(),
ipoints
=
_ipoints
.
getMat
();
int
npoints
=
std
::
max
(
opoints
.
checkVector
(
3
,
CV_32F
),
opoints
.
checkVector
(
3
,
CV_64F
));
CV_Assert
(
npoints
>=
0
&&
npoints
==
std
::
max
(
ipoints
.
checkVector
(
2
,
CV_32F
),
ipoints
.
checkVector
(
2
,
CV_64F
))
);
Mat
cameraMatrix
=
_cameraMatrix
.
getMat
(),
distCoeffs
=
_distCoeffs
.
getMat
();
Mat
undistortedPoints
;
undistortPoints
(
ipoints
,
undistortedPoints
,
cameraMatrix
,
distCoeffs
);
epnp
PnP
;
PnP
.
set_internal_parameters
(
cameraMatrix
.
at
<
double
>
(
0
,
2
),
cameraMatrix
.
at
<
double
>
(
1
,
2
),
cameraMatrix
.
at
<
double
>
(
0
,
0
),
cameraMatrix
.
at
<
double
>
(
1
,
1
));
PnP
.
set_maximum_number_of_correspondences
(
npoints
);
PnP
.
reset_correspondences
();
for
(
int
i
=
0
;
i
<
npoints
;
i
++
)
{
PnP
.
add_correspondence
(
opoints
.
at
<
Point3d
>
(
0
,
i
).
x
,
opoints
.
at
<
Point3d
>
(
0
,
i
).
y
,
opoints
.
at
<
Point3d
>
(
0
,
i
).
z
,
undistortedPoints
.
at
<
Point2d
>
(
0
,
i
).
x
*
cameraMatrix
.
at
<
double
>
(
0
,
0
)
+
cameraMatrix
.
at
<
double
>
(
0
,
2
),
undistortedPoints
.
at
<
Point2d
>
(
0
,
i
).
y
*
cameraMatrix
.
at
<
double
>
(
1
,
1
)
+
cameraMatrix
.
at
<
double
>
(
1
,
2
));
}
double
R_est
[
3
][
3
],
t_est
[
3
];
double
error
=
PnP
.
compute_pose
(
R_est
,
t_est
);
_tvec
.
create
(
3
,
1
,
CV_64F
);
_rvec
.
create
(
3
,
1
,
CV_64F
);
Mat
t
=
Mat
(
3
,
1
,
CV_64FC1
,
t_est
);
Mat
tvec
=
_tvec
.
getMat
();
t
.
copyTo
(
tvec
);
Mat
R
=
Mat
(
3
,
3
,
CV_64FC1
,
R_est
);
Mat
rvec
=
_rvec
.
getMat
();
Rodrigues
(
R
,
rvec
);
return
error
;
}
}
epnp
::
epnp
(
void
)
{
maximum_number_of_correspondences
=
0
;
number_of_correspondences
=
0
;
pws
=
0
;
us
=
0
;
alphas
=
0
;
pcs
=
0
;
}
epnp
::~
epnp
()
{
delete
[]
pws
;
delete
[]
us
;
delete
[]
alphas
;
delete
[]
pcs
;
}
void
epnp
::
set_internal_parameters
(
double
uc
,
double
vc
,
double
fu
,
double
fv
)
{
this
->
uc
=
uc
;
this
->
vc
=
vc
;
this
->
fu
=
fu
;
this
->
fv
=
fv
;
}
void
epnp
::
set_maximum_number_of_correspondences
(
int
n
)
{
if
(
maximum_number_of_correspondences
<
n
)
{
if
(
pws
!=
0
)
delete
[]
pws
;
if
(
us
!=
0
)
delete
[]
us
;
if
(
alphas
!=
0
)
delete
[]
alphas
;
if
(
pcs
!=
0
)
delete
[]
pcs
;
maximum_number_of_correspondences
=
n
;
pws
=
new
double
[
3
*
maximum_number_of_correspondences
];
us
=
new
double
[
2
*
maximum_number_of_correspondences
];
alphas
=
new
double
[
4
*
maximum_number_of_correspondences
];
pcs
=
new
double
[
3
*
maximum_number_of_correspondences
];
}
}
void
epnp
::
reset_correspondences
(
void
)
{
number_of_correspondences
=
0
;
}
void
epnp
::
add_correspondence
(
double
X
,
double
Y
,
double
Z
,
double
u
,
double
v
)
{
pws
[
3
*
number_of_correspondences
]
=
X
;
pws
[
3
*
number_of_correspondences
+
1
]
=
Y
;
pws
[
3
*
number_of_correspondences
+
2
]
=
Z
;
us
[
2
*
number_of_correspondences
]
=
u
;
us
[
2
*
number_of_correspondences
+
1
]
=
v
;
number_of_correspondences
++
;
}
void
epnp
::
choose_control_points
(
void
)
{
// Take C0 as the reference points centroid:
cws
[
0
][
0
]
=
cws
[
0
][
1
]
=
cws
[
0
][
2
]
=
0
;
for
(
int
i
=
0
;
i
<
number_of_correspondences
;
i
++
)
for
(
int
j
=
0
;
j
<
3
;
j
++
)
cws
[
0
][
j
]
+=
pws
[
3
*
i
+
j
];
for
(
int
j
=
0
;
j
<
3
;
j
++
)
cws
[
0
][
j
]
/=
number_of_correspondences
;
// Take C1, C2, and C3 from PCA on the reference points:
CvMat
*
PW0
=
cvCreateMat
(
number_of_correspondences
,
3
,
CV_64F
);
double
pw0tpw0
[
3
*
3
],
dc
[
3
],
uct
[
3
*
3
];
CvMat
PW0tPW0
=
cvMat
(
3
,
3
,
CV_64F
,
pw0tpw0
);
CvMat
DC
=
cvMat
(
3
,
1
,
CV_64F
,
dc
);
CvMat
UCt
=
cvMat
(
3
,
3
,
CV_64F
,
uct
);
for
(
int
i
=
0
;
i
<
number_of_correspondences
;
i
++
)
for
(
int
j
=
0
;
j
<
3
;
j
++
)
PW0
->
data
.
db
[
3
*
i
+
j
]
=
pws
[
3
*
i
+
j
]
-
cws
[
0
][
j
];
cvMulTransposed
(
PW0
,
&
PW0tPW0
,
1
);
cvSVD
(
&
PW0tPW0
,
&
DC
,
&
UCt
,
0
,
CV_SVD_MODIFY_A
|
CV_SVD_U_T
);
cvReleaseMat
(
&
PW0
);
for
(
int
i
=
1
;
i
<
4
;
i
++
)
{
double
k
=
sqrt
(
dc
[
i
-
1
]
/
number_of_correspondences
);
for
(
int
j
=
0
;
j
<
3
;
j
++
)
cws
[
i
][
j
]
=
cws
[
0
][
j
]
+
k
*
uct
[
3
*
(
i
-
1
)
+
j
];
}
}
void
epnp
::
compute_barycentric_coordinates
(
void
)
{
double
cc
[
3
*
3
],
cc_inv
[
3
*
3
];
CvMat
CC
=
cvMat
(
3
,
3
,
CV_64F
,
cc
);
CvMat
CC_inv
=
cvMat
(
3
,
3
,
CV_64F
,
cc_inv
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
for
(
int
j
=
1
;
j
<
4
;
j
++
)
cc
[
3
*
i
+
j
-
1
]
=
cws
[
j
][
i
]
-
cws
[
0
][
i
];
cvInvert
(
&
CC
,
&
CC_inv
,
CV_SVD
);
double
*
ci
=
cc_inv
;
for
(
int
i
=
0
;
i
<
number_of_correspondences
;
i
++
)
{
double
*
pi
=
pws
+
3
*
i
;
double
*
a
=
alphas
+
4
*
i
;
for
(
int
j
=
0
;
j
<
3
;
j
++
)
a
[
1
+
j
]
=
ci
[
3
*
j
]
*
(
pi
[
0
]
-
cws
[
0
][
0
])
+
ci
[
3
*
j
+
1
]
*
(
pi
[
1
]
-
cws
[
0
][
1
])
+
ci
[
3
*
j
+
2
]
*
(
pi
[
2
]
-
cws
[
0
][
2
]);
a
[
0
]
=
1.0
f
-
a
[
1
]
-
a
[
2
]
-
a
[
3
];
}
}
void
epnp
::
fill_M
(
CvMat
*
M
,
const
int
row
,
const
double
*
as
,
const
double
u
,
const
double
v
)
{
double
*
M1
=
M
->
data
.
db
+
row
*
12
;
double
*
M2
=
M1
+
12
;
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
M1
[
3
*
i
]
=
as
[
i
]
*
fu
;
M1
[
3
*
i
+
1
]
=
0.0
;
M1
[
3
*
i
+
2
]
=
as
[
i
]
*
(
uc
-
u
);
M2
[
3
*
i
]
=
0.0
;
M2
[
3
*
i
+
1
]
=
as
[
i
]
*
fv
;
M2
[
3
*
i
+
2
]
=
as
[
i
]
*
(
vc
-
v
);
}
}
void
epnp
::
compute_ccs
(
const
double
*
betas
,
const
double
*
ut
)
{
for
(
int
i
=
0
;
i
<
4
;
i
++
)
ccs
[
i
][
0
]
=
ccs
[
i
][
1
]
=
ccs
[
i
][
2
]
=
0.0
f
;
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
const
double
*
v
=
ut
+
12
*
(
11
-
i
);
for
(
int
j
=
0
;
j
<
4
;
j
++
)
for
(
int
k
=
0
;
k
<
3
;
k
++
)
ccs
[
j
][
k
]
+=
betas
[
i
]
*
v
[
3
*
j
+
k
];
}
}
void
epnp
::
compute_pcs
(
void
)
{
for
(
int
i
=
0
;
i
<
number_of_correspondences
;
i
++
)
{
double
*
a
=
alphas
+
4
*
i
;
double
*
pc
=
pcs
+
3
*
i
;
for
(
int
j
=
0
;
j
<
3
;
j
++
)
pc
[
j
]
=
a
[
0
]
*
ccs
[
0
][
j
]
+
a
[
1
]
*
ccs
[
1
][
j
]
+
a
[
2
]
*
ccs
[
2
][
j
]
+
a
[
3
]
*
ccs
[
3
][
j
];
}
}
double
epnp
::
compute_pose
(
double
R
[
3
][
3
],
double
t
[
3
])
{
choose_control_points
();
compute_barycentric_coordinates
();
CvMat
*
M
=
cvCreateMat
(
2
*
number_of_correspondences
,
12
,
CV_64F
);
for
(
int
i
=
0
;
i
<
number_of_correspondences
;
i
++
)
fill_M
(
M
,
2
*
i
,
alphas
+
4
*
i
,
us
[
2
*
i
],
us
[
2
*
i
+
1
]);
double
mtm
[
12
*
12
],
d
[
12
],
ut
[
12
*
12
];
CvMat
MtM
=
cvMat
(
12
,
12
,
CV_64F
,
mtm
);
CvMat
D
=
cvMat
(
12
,
1
,
CV_64F
,
d
);
CvMat
Ut
=
cvMat
(
12
,
12
,
CV_64F
,
ut
);
cvMulTransposed
(
M
,
&
MtM
,
1
);
cvSVD
(
&
MtM
,
&
D
,
&
Ut
,
0
,
CV_SVD_MODIFY_A
|
CV_SVD_U_T
);
cvReleaseMat
(
&
M
);
double
l_6x10
[
6
*
10
],
rho
[
6
];
CvMat
L_6x10
=
cvMat
(
6
,
10
,
CV_64F
,
l_6x10
);
CvMat
Rho
=
cvMat
(
6
,
1
,
CV_64F
,
rho
);
compute_L_6x10
(
ut
,
l_6x10
);
compute_rho
(
rho
);
double
Betas
[
4
][
4
],
rep_errors
[
4
];
double
Rs
[
4
][
3
][
3
],
ts
[
4
][
3
];
find_betas_approx_1
(
&
L_6x10
,
&
Rho
,
Betas
[
1
]);
gauss_newton
(
&
L_6x10
,
&
Rho
,
Betas
[
1
]);
rep_errors
[
1
]
=
compute_R_and_t
(
ut
,
Betas
[
1
],
Rs
[
1
],
ts
[
1
]);
find_betas_approx_2
(
&
L_6x10
,
&
Rho
,
Betas
[
2
]);
gauss_newton
(
&
L_6x10
,
&
Rho
,
Betas
[
2
]);
rep_errors
[
2
]
=
compute_R_and_t
(
ut
,
Betas
[
2
],
Rs
[
2
],
ts
[
2
]);
find_betas_approx_3
(
&
L_6x10
,
&
Rho
,
Betas
[
3
]);
gauss_newton
(
&
L_6x10
,
&
Rho
,
Betas
[
3
]);
rep_errors
[
3
]
=
compute_R_and_t
(
ut
,
Betas
[
3
],
Rs
[
3
],
ts
[
3
]);
int
N
=
1
;
if
(
rep_errors
[
2
]
<
rep_errors
[
1
])
N
=
2
;
if
(
rep_errors
[
3
]
<
rep_errors
[
N
])
N
=
3
;
copy_R_and_t
(
Rs
[
N
],
ts
[
N
],
R
,
t
);
return
rep_errors
[
N
];
}
void
epnp
::
copy_R_and_t
(
const
double
R_src
[
3
][
3
],
const
double
t_src
[
3
],
double
R_dst
[
3
][
3
],
double
t_dst
[
3
])
{
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
for
(
int
j
=
0
;
j
<
3
;
j
++
)
R_dst
[
i
][
j
]
=
R_src
[
i
][
j
];
t_dst
[
i
]
=
t_src
[
i
];
}
}
double
epnp
::
dist2
(
const
double
*
p1
,
const
double
*
p2
)
{
return
(
p1
[
0
]
-
p2
[
0
])
*
(
p1
[
0
]
-
p2
[
0
])
+
(
p1
[
1
]
-
p2
[
1
])
*
(
p1
[
1
]
-
p2
[
1
])
+
(
p1
[
2
]
-
p2
[
2
])
*
(
p1
[
2
]
-
p2
[
2
]);
}
double
epnp
::
dot
(
const
double
*
v1
,
const
double
*
v2
)
{
return
v1
[
0
]
*
v2
[
0
]
+
v1
[
1
]
*
v2
[
1
]
+
v1
[
2
]
*
v2
[
2
];
}
double
epnp
::
reprojection_error
(
const
double
R
[
3
][
3
],
const
double
t
[
3
])
{
double
sum2
=
0.0
;
for
(
int
i
=
0
;
i
<
number_of_correspondences
;
i
++
)
{
double
*
pw
=
pws
+
3
*
i
;
double
Xc
=
dot
(
R
[
0
],
pw
)
+
t
[
0
];
double
Yc
=
dot
(
R
[
1
],
pw
)
+
t
[
1
];
double
inv_Zc
=
1.0
/
(
dot
(
R
[
2
],
pw
)
+
t
[
2
]);
double
ue
=
uc
+
fu
*
Xc
*
inv_Zc
;
double
ve
=
vc
+
fv
*
Yc
*
inv_Zc
;
double
u
=
us
[
2
*
i
],
v
=
us
[
2
*
i
+
1
];
sum2
+=
sqrt
(
(
u
-
ue
)
*
(
u
-
ue
)
+
(
v
-
ve
)
*
(
v
-
ve
)
);
}
return
sum2
/
number_of_correspondences
;
}
void
epnp
::
estimate_R_and_t
(
double
R
[
3
][
3
],
double
t
[
3
])
{
double
pc0
[
3
],
pw0
[
3
];
pc0
[
0
]
=
pc0
[
1
]
=
pc0
[
2
]
=
0.0
;
pw0
[
0
]
=
pw0
[
1
]
=
pw0
[
2
]
=
0.0
;
for
(
int
i
=
0
;
i
<
number_of_correspondences
;
i
++
)
{
const
double
*
pc
=
pcs
+
3
*
i
;
const
double
*
pw
=
pws
+
3
*
i
;
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
pc0
[
j
]
+=
pc
[
j
];
pw0
[
j
]
+=
pw
[
j
];
}
}
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
pc0
[
j
]
/=
number_of_correspondences
;
pw0
[
j
]
/=
number_of_correspondences
;
}
double
abt
[
3
*
3
],
abt_d
[
3
],
abt_u
[
3
*
3
],
abt_v
[
3
*
3
];
CvMat
ABt
=
cvMat
(
3
,
3
,
CV_64F
,
abt
);
CvMat
ABt_D
=
cvMat
(
3
,
1
,
CV_64F
,
abt_d
);
CvMat
ABt_U
=
cvMat
(
3
,
3
,
CV_64F
,
abt_u
);
CvMat
ABt_V
=
cvMat
(
3
,
3
,
CV_64F
,
abt_v
);
cvSetZero
(
&
ABt
);
for
(
int
i
=
0
;
i
<
number_of_correspondences
;
i
++
)
{
double
*
pc
=
pcs
+
3
*
i
;
double
*
pw
=
pws
+
3
*
i
;
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
abt
[
3
*
j
]
+=
(
pc
[
j
]
-
pc0
[
j
])
*
(
pw
[
0
]
-
pw0
[
0
]);
abt
[
3
*
j
+
1
]
+=
(
pc
[
j
]
-
pc0
[
j
])
*
(
pw
[
1
]
-
pw0
[
1
]);
abt
[
3
*
j
+
2
]
+=
(
pc
[
j
]
-
pc0
[
j
])
*
(
pw
[
2
]
-
pw0
[
2
]);
}
}
cvSVD
(
&
ABt
,
&
ABt_D
,
&
ABt_U
,
&
ABt_V
,
CV_SVD_MODIFY_A
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
for
(
int
j
=
0
;
j
<
3
;
j
++
)
R
[
i
][
j
]
=
dot
(
abt_u
+
3
*
i
,
abt_v
+
3
*
j
);
const
double
det
=
R
[
0
][
0
]
*
R
[
1
][
1
]
*
R
[
2
][
2
]
+
R
[
0
][
1
]
*
R
[
1
][
2
]
*
R
[
2
][
0
]
+
R
[
0
][
2
]
*
R
[
1
][
0
]
*
R
[
2
][
1
]
-
R
[
0
][
2
]
*
R
[
1
][
1
]
*
R
[
2
][
0
]
-
R
[
0
][
1
]
*
R
[
1
][
0
]
*
R
[
2
][
2
]
-
R
[
0
][
0
]
*
R
[
1
][
2
]
*
R
[
2
][
1
];
if
(
det
<
0
)
{
R
[
2
][
0
]
=
-
R
[
2
][
0
];
R
[
2
][
1
]
=
-
R
[
2
][
1
];
R
[
2
][
2
]
=
-
R
[
2
][
2
];
}
t
[
0
]
=
pc0
[
0
]
-
dot
(
R
[
0
],
pw0
);
t
[
1
]
=
pc0
[
1
]
-
dot
(
R
[
1
],
pw0
);
t
[
2
]
=
pc0
[
2
]
-
dot
(
R
[
2
],
pw0
);
}
void
epnp
::
print_pose
(
const
double
R
[
3
][
3
],
const
double
t
[
3
])
{
cout
<<
R
[
0
][
0
]
<<
" "
<<
R
[
0
][
1
]
<<
" "
<<
R
[
0
][
2
]
<<
" "
<<
t
[
0
]
<<
endl
;
cout
<<
R
[
1
][
0
]
<<
" "
<<
R
[
1
][
1
]
<<
" "
<<
R
[
1
][
2
]
<<
" "
<<
t
[
1
]
<<
endl
;
cout
<<
R
[
2
][
0
]
<<
" "
<<
R
[
2
][
1
]
<<
" "
<<
R
[
2
][
2
]
<<
" "
<<
t
[
2
]
<<
endl
;
}
void
epnp
::
solve_for_sign
(
void
)
{
if
(
pcs
[
2
]
<
0.0
)
{
for
(
int
i
=
0
;
i
<
4
;
i
++
)
for
(
int
j
=
0
;
j
<
3
;
j
++
)
ccs
[
i
][
j
]
=
-
ccs
[
i
][
j
];
for
(
int
i
=
0
;
i
<
number_of_correspondences
;
i
++
)
{
pcs
[
3
*
i
]
=
-
pcs
[
3
*
i
];
pcs
[
3
*
i
+
1
]
=
-
pcs
[
3
*
i
+
1
];
pcs
[
3
*
i
+
2
]
=
-
pcs
[
3
*
i
+
2
];
}
}
}
double
epnp
::
compute_R_and_t
(
const
double
*
ut
,
const
double
*
betas
,
double
R
[
3
][
3
],
double
t
[
3
])
{
compute_ccs
(
betas
,
ut
);
compute_pcs
();
solve_for_sign
();
estimate_R_and_t
(
R
,
t
);
return
reprojection_error
(
R
,
t
);
}
// betas10 = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
// betas_approx_1 = [B11 B12 B13 B14]
void
epnp
::
find_betas_approx_1
(
const
CvMat
*
L_6x10
,
const
CvMat
*
Rho
,
double
*
betas
)
{
double
l_6x4
[
6
*
4
],
b4
[
4
];
CvMat
L_6x4
=
cvMat
(
6
,
4
,
CV_64F
,
l_6x4
);
CvMat
B4
=
cvMat
(
4
,
1
,
CV_64F
,
b4
);
for
(
int
i
=
0
;
i
<
6
;
i
++
)
{
cvmSet
(
&
L_6x4
,
i
,
0
,
cvmGet
(
L_6x10
,
i
,
0
));
cvmSet
(
&
L_6x4
,
i
,
1
,
cvmGet
(
L_6x10
,
i
,
1
));
cvmSet
(
&
L_6x4
,
i
,
2
,
cvmGet
(
L_6x10
,
i
,
3
));
cvmSet
(
&
L_6x4
,
i
,
3
,
cvmGet
(
L_6x10
,
i
,
6
));
}
cvSolve
(
&
L_6x4
,
Rho
,
&
B4
,
CV_SVD
);
if
(
b4
[
0
]
<
0
)
{
betas
[
0
]
=
sqrt
(
-
b4
[
0
]);
betas
[
1
]
=
-
b4
[
1
]
/
betas
[
0
];
betas
[
2
]
=
-
b4
[
2
]
/
betas
[
0
];
betas
[
3
]
=
-
b4
[
3
]
/
betas
[
0
];
}
else
{
betas
[
0
]
=
sqrt
(
b4
[
0
]);
betas
[
1
]
=
b4
[
1
]
/
betas
[
0
];
betas
[
2
]
=
b4
[
2
]
/
betas
[
0
];
betas
[
3
]
=
b4
[
3
]
/
betas
[
0
];
}
}
// betas10 = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
// betas_approx_2 = [B11 B12 B22 ]
void
epnp
::
find_betas_approx_2
(
const
CvMat
*
L_6x10
,
const
CvMat
*
Rho
,
double
*
betas
)
{
double
l_6x3
[
6
*
3
],
b3
[
3
];
CvMat
L_6x3
=
cvMat
(
6
,
3
,
CV_64F
,
l_6x3
);
CvMat
B3
=
cvMat
(
3
,
1
,
CV_64F
,
b3
);
for
(
int
i
=
0
;
i
<
6
;
i
++
)
{
cvmSet
(
&
L_6x3
,
i
,
0
,
cvmGet
(
L_6x10
,
i
,
0
));
cvmSet
(
&
L_6x3
,
i
,
1
,
cvmGet
(
L_6x10
,
i
,
1
));
cvmSet
(
&
L_6x3
,
i
,
2
,
cvmGet
(
L_6x10
,
i
,
2
));
}
cvSolve
(
&
L_6x3
,
Rho
,
&
B3
,
CV_SVD
);
if
(
b3
[
0
]
<
0
)
{
betas
[
0
]
=
sqrt
(
-
b3
[
0
]);
betas
[
1
]
=
(
b3
[
2
]
<
0
)
?
sqrt
(
-
b3
[
2
])
:
0.0
;
}
else
{
betas
[
0
]
=
sqrt
(
b3
[
0
]);
betas
[
1
]
=
(
b3
[
2
]
>
0
)
?
sqrt
(
b3
[
2
])
:
0.0
;
}
if
(
b3
[
1
]
<
0
)
betas
[
0
]
=
-
betas
[
0
];
betas
[
2
]
=
0.0
;
betas
[
3
]
=
0.0
;
}
// betas10 = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
// betas_approx_3 = [B11 B12 B22 B13 B23 ]
void
epnp
::
find_betas_approx_3
(
const
CvMat
*
L_6x10
,
const
CvMat
*
Rho
,
double
*
betas
)
{
double
l_6x5
[
6
*
5
],
b5
[
5
];
CvMat
L_6x5
=
cvMat
(
6
,
5
,
CV_64F
,
l_6x5
);
CvMat
B5
=
cvMat
(
5
,
1
,
CV_64F
,
b5
);
for
(
int
i
=
0
;
i
<
6
;
i
++
)
{
cvmSet
(
&
L_6x5
,
i
,
0
,
cvmGet
(
L_6x10
,
i
,
0
));
cvmSet
(
&
L_6x5
,
i
,
1
,
cvmGet
(
L_6x10
,
i
,
1
));
cvmSet
(
&
L_6x5
,
i
,
2
,
cvmGet
(
L_6x10
,
i
,
2
));
cvmSet
(
&
L_6x5
,
i
,
3
,
cvmGet
(
L_6x10
,
i
,
3
));
cvmSet
(
&
L_6x5
,
i
,
4
,
cvmGet
(
L_6x10
,
i
,
4
));
}
cvSolve
(
&
L_6x5
,
Rho
,
&
B5
,
CV_SVD
);
if
(
b5
[
0
]
<
0
)
{
betas
[
0
]
=
sqrt
(
-
b5
[
0
]);
betas
[
1
]
=
(
b5
[
2
]
<
0
)
?
sqrt
(
-
b5
[
2
])
:
0.0
;
}
else
{
betas
[
0
]
=
sqrt
(
b5
[
0
]);
betas
[
1
]
=
(
b5
[
2
]
>
0
)
?
sqrt
(
b5
[
2
])
:
0.0
;
}
if
(
b5
[
1
]
<
0
)
betas
[
0
]
=
-
betas
[
0
];
betas
[
2
]
=
b5
[
3
]
/
betas
[
0
];
betas
[
3
]
=
0.0
;
}
void
epnp
::
compute_L_6x10
(
const
double
*
ut
,
double
*
l_6x10
)
{
const
double
*
v
[
4
];
v
[
0
]
=
ut
+
12
*
11
;
v
[
1
]
=
ut
+
12
*
10
;
v
[
2
]
=
ut
+
12
*
9
;
v
[
3
]
=
ut
+
12
*
8
;
double
dv
[
4
][
6
][
3
];
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
int
a
=
0
,
b
=
1
;
for
(
int
j
=
0
;
j
<
6
;
j
++
)
{
dv
[
i
][
j
][
0
]
=
v
[
i
][
3
*
a
]
-
v
[
i
][
3
*
b
];
dv
[
i
][
j
][
1
]
=
v
[
i
][
3
*
a
+
1
]
-
v
[
i
][
3
*
b
+
1
];
dv
[
i
][
j
][
2
]
=
v
[
i
][
3
*
a
+
2
]
-
v
[
i
][
3
*
b
+
2
];
b
++
;
if
(
b
>
3
)
{
a
++
;
b
=
a
+
1
;
}
}
}
for
(
int
i
=
0
;
i
<
6
;
i
++
)
{
double
*
row
=
l_6x10
+
10
*
i
;
row
[
0
]
=
dot
(
dv
[
0
][
i
],
dv
[
0
][
i
]);
row
[
1
]
=
2.0
f
*
dot
(
dv
[
0
][
i
],
dv
[
1
][
i
]);
row
[
2
]
=
dot
(
dv
[
1
][
i
],
dv
[
1
][
i
]);
row
[
3
]
=
2.0
f
*
dot
(
dv
[
0
][
i
],
dv
[
2
][
i
]);
row
[
4
]
=
2.0
f
*
dot
(
dv
[
1
][
i
],
dv
[
2
][
i
]);
row
[
5
]
=
dot
(
dv
[
2
][
i
],
dv
[
2
][
i
]);
row
[
6
]
=
2.0
f
*
dot
(
dv
[
0
][
i
],
dv
[
3
][
i
]);
row
[
7
]
=
2.0
f
*
dot
(
dv
[
1
][
i
],
dv
[
3
][
i
]);
row
[
8
]
=
2.0
f
*
dot
(
dv
[
2
][
i
],
dv
[
3
][
i
]);
row
[
9
]
=
dot
(
dv
[
3
][
i
],
dv
[
3
][
i
]);
}
}
void
epnp
::
compute_rho
(
double
*
rho
)
{
rho
[
0
]
=
dist2
(
cws
[
0
],
cws
[
1
]);
rho
[
1
]
=
dist2
(
cws
[
0
],
cws
[
2
]);
rho
[
2
]
=
dist2
(
cws
[
0
],
cws
[
3
]);
rho
[
3
]
=
dist2
(
cws
[
1
],
cws
[
2
]);
rho
[
4
]
=
dist2
(
cws
[
1
],
cws
[
3
]);
rho
[
5
]
=
dist2
(
cws
[
2
],
cws
[
3
]);
}
void
epnp
::
compute_A_and_b_gauss_newton
(
const
double
*
l_6x10
,
const
double
*
rho
,
double
betas
[
4
],
CvMat
*
A
,
CvMat
*
b
)
{
for
(
int
i
=
0
;
i
<
6
;
i
++
)
{
const
double
*
rowL
=
l_6x10
+
i
*
10
;
double
*
rowA
=
A
->
data
.
db
+
i
*
4
;
rowA
[
0
]
=
2
*
rowL
[
0
]
*
betas
[
0
]
+
rowL
[
1
]
*
betas
[
1
]
+
rowL
[
3
]
*
betas
[
2
]
+
rowL
[
6
]
*
betas
[
3
];
rowA
[
1
]
=
rowL
[
1
]
*
betas
[
0
]
+
2
*
rowL
[
2
]
*
betas
[
1
]
+
rowL
[
4
]
*
betas
[
2
]
+
rowL
[
7
]
*
betas
[
3
];
rowA
[
2
]
=
rowL
[
3
]
*
betas
[
0
]
+
rowL
[
4
]
*
betas
[
1
]
+
2
*
rowL
[
5
]
*
betas
[
2
]
+
rowL
[
8
]
*
betas
[
3
];
rowA
[
3
]
=
rowL
[
6
]
*
betas
[
0
]
+
rowL
[
7
]
*
betas
[
1
]
+
rowL
[
8
]
*
betas
[
2
]
+
2
*
rowL
[
9
]
*
betas
[
3
];
cvmSet
(
b
,
i
,
0
,
rho
[
i
]
-
(
rowL
[
0
]
*
betas
[
0
]
*
betas
[
0
]
+
rowL
[
1
]
*
betas
[
0
]
*
betas
[
1
]
+
rowL
[
2
]
*
betas
[
1
]
*
betas
[
1
]
+
rowL
[
3
]
*
betas
[
0
]
*
betas
[
2
]
+
rowL
[
4
]
*
betas
[
1
]
*
betas
[
2
]
+
rowL
[
5
]
*
betas
[
2
]
*
betas
[
2
]
+
rowL
[
6
]
*
betas
[
0
]
*
betas
[
3
]
+
rowL
[
7
]
*
betas
[
1
]
*
betas
[
3
]
+
rowL
[
8
]
*
betas
[
2
]
*
betas
[
3
]
+
rowL
[
9
]
*
betas
[
3
]
*
betas
[
3
]
));
}
}
void
epnp
::
gauss_newton
(
const
CvMat
*
L_6x10
,
const
CvMat
*
Rho
,
double
betas
[
4
])
{
const
int
iterations_number
=
5
;
double
a
[
6
*
4
],
b
[
6
],
x
[
4
];
CvMat
A
=
cvMat
(
6
,
4
,
CV_64F
,
a
);
CvMat
B
=
cvMat
(
6
,
1
,
CV_64F
,
b
);
CvMat
X
=
cvMat
(
4
,
1
,
CV_64F
,
x
);
for
(
int
k
=
0
;
k
<
iterations_number
;
k
++
)
{
compute_A_and_b_gauss_newton
(
L_6x10
->
data
.
db
,
Rho
->
data
.
db
,
betas
,
&
A
,
&
B
);
qr_solve
(
&
A
,
&
B
,
&
X
);
for
(
int
i
=
0
;
i
<
4
;
i
++
)
betas
[
i
]
+=
x
[
i
];
}
}
void
epnp
::
qr_solve
(
CvMat
*
A
,
CvMat
*
b
,
CvMat
*
X
)
{
static
int
max_nr
=
0
;
static
double
*
A1
,
*
A2
;
const
int
nr
=
A
->
rows
;
const
int
nc
=
A
->
cols
;
if
(
max_nr
!=
0
&&
max_nr
<
nr
)
{
delete
[]
A1
;
delete
[]
A2
;
}
if
(
max_nr
<
nr
)
{
max_nr
=
nr
;
A1
=
new
double
[
nr
];
A2
=
new
double
[
nr
];
}
double
*
pA
=
A
->
data
.
db
,
*
ppAkk
=
pA
;
for
(
int
k
=
0
;
k
<
nc
;
k
++
)
{
double
*
ppAik
=
ppAkk
,
eta
=
fabs
(
*
ppAik
);
for
(
int
i
=
k
+
1
;
i
<
nr
;
i
++
)
{
double
elt
=
fabs
(
*
ppAik
);
if
(
eta
<
elt
)
eta
=
elt
;
ppAik
+=
nc
;
}
if
(
eta
==
0
)
{
A1
[
k
]
=
A2
[
k
]
=
0.0
;
cerr
<<
"God damnit, A is singular, this shouldn't happen."
<<
endl
;
return
;
}
else
{
double
*
ppAik
=
ppAkk
,
sum
=
0.0
,
inv_eta
=
1.
/
eta
;
for
(
int
i
=
k
;
i
<
nr
;
i
++
)
{
*
ppAik
*=
inv_eta
;
sum
+=
*
ppAik
*
*
ppAik
;
ppAik
+=
nc
;
}
double
sigma
=
sqrt
(
sum
);
if
(
*
ppAkk
<
0
)
sigma
=
-
sigma
;
*
ppAkk
+=
sigma
;
A1
[
k
]
=
sigma
*
*
ppAkk
;
A2
[
k
]
=
-
eta
*
sigma
;
for
(
int
j
=
k
+
1
;
j
<
nc
;
j
++
)
{
double
*
ppAik
=
ppAkk
,
sum
=
0
;
for
(
int
i
=
k
;
i
<
nr
;
i
++
)
{
sum
+=
*
ppAik
*
ppAik
[
j
-
k
];
ppAik
+=
nc
;
}
double
tau
=
sum
/
A1
[
k
];
ppAik
=
ppAkk
;
for
(
int
i
=
k
;
i
<
nr
;
i
++
)
{
ppAik
[
j
-
k
]
-=
tau
*
*
ppAik
;
ppAik
+=
nc
;
}
}
}
ppAkk
+=
nc
+
1
;
}
// b <- Qt b
double
*
ppAjj
=
pA
,
*
pb
=
b
->
data
.
db
;
for
(
int
j
=
0
;
j
<
nc
;
j
++
)
{
double
*
ppAij
=
ppAjj
,
tau
=
0
;
for
(
int
i
=
j
;
i
<
nr
;
i
++
)
{
tau
+=
*
ppAij
*
pb
[
i
];
ppAij
+=
nc
;
}
tau
/=
A1
[
j
];
ppAij
=
ppAjj
;
for
(
int
i
=
j
;
i
<
nr
;
i
++
)
{
pb
[
i
]
-=
tau
*
*
ppAij
;
ppAij
+=
nc
;
}
ppAjj
+=
nc
+
1
;
}
// X = R-1 b
double
*
pX
=
X
->
data
.
db
;
pX
[
nc
-
1
]
=
pb
[
nc
-
1
]
/
A2
[
nc
-
1
];
for
(
int
i
=
nc
-
2
;
i
>=
0
;
i
--
)
{
double
*
ppAij
=
pA
+
i
*
nc
+
(
i
+
1
),
sum
=
0
;
for
(
int
j
=
i
+
1
;
j
<
nc
;
j
++
)
{
sum
+=
*
ppAij
*
pX
[
j
];
ppAij
++
;
}
pX
[
i
]
=
(
pb
[
i
]
-
sum
)
/
A2
[
i
];
}
}
void
epnp
::
relative_error
(
double
&
rot_err
,
double
&
transl_err
,
const
double
Rtrue
[
3
][
3
],
const
double
ttrue
[
3
],
const
double
Rest
[
3
][
3
],
const
double
test
[
3
])
{
double
qtrue
[
4
],
qest
[
4
];
mat_to_quat
(
Rtrue
,
qtrue
);
mat_to_quat
(
Rest
,
qest
);
double
rot_err1
=
sqrt
((
qtrue
[
0
]
-
qest
[
0
])
*
(
qtrue
[
0
]
-
qest
[
0
])
+
(
qtrue
[
1
]
-
qest
[
1
])
*
(
qtrue
[
1
]
-
qest
[
1
])
+
(
qtrue
[
2
]
-
qest
[
2
])
*
(
qtrue
[
2
]
-
qest
[
2
])
+
(
qtrue
[
3
]
-
qest
[
3
])
*
(
qtrue
[
3
]
-
qest
[
3
])
)
/
sqrt
(
qtrue
[
0
]
*
qtrue
[
0
]
+
qtrue
[
1
]
*
qtrue
[
1
]
+
qtrue
[
2
]
*
qtrue
[
2
]
+
qtrue
[
3
]
*
qtrue
[
3
]);
double
rot_err2
=
sqrt
((
qtrue
[
0
]
+
qest
[
0
])
*
(
qtrue
[
0
]
+
qest
[
0
])
+
(
qtrue
[
1
]
+
qest
[
1
])
*
(
qtrue
[
1
]
+
qest
[
1
])
+
(
qtrue
[
2
]
+
qest
[
2
])
*
(
qtrue
[
2
]
+
qest
[
2
])
+
(
qtrue
[
3
]
+
qest
[
3
])
*
(
qtrue
[
3
]
+
qest
[
3
])
)
/
sqrt
(
qtrue
[
0
]
*
qtrue
[
0
]
+
qtrue
[
1
]
*
qtrue
[
1
]
+
qtrue
[
2
]
*
qtrue
[
2
]
+
qtrue
[
3
]
*
qtrue
[
3
]);
rot_err
=
min
(
rot_err1
,
rot_err2
);
transl_err
=
sqrt
((
ttrue
[
0
]
-
test
[
0
])
*
(
ttrue
[
0
]
-
test
[
0
])
+
(
ttrue
[
1
]
-
test
[
1
])
*
(
ttrue
[
1
]
-
test
[
1
])
+
(
ttrue
[
2
]
-
test
[
2
])
*
(
ttrue
[
2
]
-
test
[
2
]))
/
sqrt
(
ttrue
[
0
]
*
ttrue
[
0
]
+
ttrue
[
1
]
*
ttrue
[
1
]
+
ttrue
[
2
]
*
ttrue
[
2
]);
}
void
epnp
::
mat_to_quat
(
const
double
R
[
3
][
3
],
double
q
[
4
])
{
double
tr
=
R
[
0
][
0
]
+
R
[
1
][
1
]
+
R
[
2
][
2
];
double
n4
;
if
(
tr
>
0.0
f
)
{
q
[
0
]
=
R
[
1
][
2
]
-
R
[
2
][
1
];
q
[
1
]
=
R
[
2
][
0
]
-
R
[
0
][
2
];
q
[
2
]
=
R
[
0
][
1
]
-
R
[
1
][
0
];
q
[
3
]
=
tr
+
1.0
f
;
n4
=
q
[
3
];
}
else
if
(
(
R
[
0
][
0
]
>
R
[
1
][
1
])
&&
(
R
[
0
][
0
]
>
R
[
2
][
2
])
)
{
q
[
0
]
=
1.0
f
+
R
[
0
][
0
]
-
R
[
1
][
1
]
-
R
[
2
][
2
];
q
[
1
]
=
R
[
1
][
0
]
+
R
[
0
][
1
];
q
[
2
]
=
R
[
2
][
0
]
+
R
[
0
][
2
];
q
[
3
]
=
R
[
1
][
2
]
-
R
[
2
][
1
];
n4
=
q
[
0
];
}
else
if
(
R
[
1
][
1
]
>
R
[
2
][
2
])
{
q
[
0
]
=
R
[
1
][
0
]
+
R
[
0
][
1
];
q
[
1
]
=
1.0
f
+
R
[
1
][
1
]
-
R
[
0
][
0
]
-
R
[
2
][
2
];
q
[
2
]
=
R
[
2
][
1
]
+
R
[
1
][
2
];
q
[
3
]
=
R
[
2
][
0
]
-
R
[
0
][
2
];
n4
=
q
[
1
];
}
else
{
q
[
0
]
=
R
[
2
][
0
]
+
R
[
0
][
2
];
q
[
1
]
=
R
[
2
][
1
]
+
R
[
1
][
2
];
q
[
2
]
=
1.0
f
+
R
[
2
][
2
]
-
R
[
0
][
0
]
-
R
[
1
][
1
];
q
[
3
]
=
R
[
0
][
1
]
-
R
[
1
][
0
];
n4
=
q
[
2
];
}
double
scale
=
0.5
f
/
double
(
sqrt
(
n4
));
q
[
0
]
*=
scale
;
q
[
1
]
*=
scale
;
q
[
2
]
*=
scale
;
q
[
3
]
*=
scale
;
}
#include <iostream>
using
namespace
std
;
#include "precomp.hpp"
#include "epnp.h"
epnp
::
epnp
(
const
cv
::
Mat
&
cameraMatrix
,
const
cv
::
Mat
&
opoints
,
const
cv
::
Mat
&
ipoints
)
{
if
(
cameraMatrix
.
depth
()
==
CV_32F
)
init_camera_parameters
<
float
>
(
cameraMatrix
);
else
init_camera_parameters
<
double
>
(
cameraMatrix
);
number_of_correspondences
=
std
::
max
(
opoints
.
checkVector
(
3
,
CV_32F
),
opoints
.
checkVector
(
3
,
CV_64F
));
pws
.
resize
(
3
*
number_of_correspondences
);
us
.
resize
(
2
*
number_of_correspondences
);
if
(
opoints
.
depth
()
==
ipoints
.
depth
())
{
if
(
opoints
.
depth
()
==
CV_32F
)
init_points
<
cv
::
Point3f
,
cv
::
Point2f
>
(
opoints
,
ipoints
);
else
init_points
<
cv
::
Point3d
,
cv
::
Point2d
>
(
opoints
,
ipoints
);
}
else
if
(
opoints
.
depth
()
==
CV_32F
)
init_points
<
cv
::
Point3f
,
cv
::
Point2d
>
(
opoints
,
ipoints
);
else
init_points
<
cv
::
Point3d
,
cv
::
Point2f
>
(
opoints
,
ipoints
);
alphas
.
resize
(
4
*
number_of_correspondences
);
pcs
.
resize
(
3
*
number_of_correspondences
);
}
epnp
::~
epnp
()
{
}
void
epnp
::
choose_control_points
(
void
)
{
// Take C0 as the reference points centroid:
cws
[
0
][
0
]
=
cws
[
0
][
1
]
=
cws
[
0
][
2
]
=
0
;
for
(
int
i
=
0
;
i
<
number_of_correspondences
;
i
++
)
for
(
int
j
=
0
;
j
<
3
;
j
++
)
cws
[
0
][
j
]
+=
pws
[
3
*
i
+
j
];
for
(
int
j
=
0
;
j
<
3
;
j
++
)
cws
[
0
][
j
]
/=
number_of_correspondences
;
// Take C1, C2, and C3 from PCA on the reference points:
CvMat
*
PW0
=
cvCreateMat
(
number_of_correspondences
,
3
,
CV_64F
);
double
pw0tpw0
[
3
*
3
],
dc
[
3
],
uct
[
3
*
3
];
CvMat
PW0tPW0
=
cvMat
(
3
,
3
,
CV_64F
,
pw0tpw0
);
CvMat
DC
=
cvMat
(
3
,
1
,
CV_64F
,
dc
);
CvMat
UCt
=
cvMat
(
3
,
3
,
CV_64F
,
uct
);
for
(
int
i
=
0
;
i
<
number_of_correspondences
;
i
++
)
for
(
int
j
=
0
;
j
<
3
;
j
++
)
PW0
->
data
.
db
[
3
*
i
+
j
]
=
pws
[
3
*
i
+
j
]
-
cws
[
0
][
j
];
cvMulTransposed
(
PW0
,
&
PW0tPW0
,
1
);
cvSVD
(
&
PW0tPW0
,
&
DC
,
&
UCt
,
0
,
CV_SVD_MODIFY_A
|
CV_SVD_U_T
);
cvReleaseMat
(
&
PW0
);
for
(
int
i
=
1
;
i
<
4
;
i
++
)
{
double
k
=
sqrt
(
dc
[
i
-
1
]
/
number_of_correspondences
);
for
(
int
j
=
0
;
j
<
3
;
j
++
)
cws
[
i
][
j
]
=
cws
[
0
][
j
]
+
k
*
uct
[
3
*
(
i
-
1
)
+
j
];
}
}
void
epnp
::
compute_barycentric_coordinates
(
void
)
{
double
cc
[
3
*
3
],
cc_inv
[
3
*
3
];
CvMat
CC
=
cvMat
(
3
,
3
,
CV_64F
,
cc
);
CvMat
CC_inv
=
cvMat
(
3
,
3
,
CV_64F
,
cc_inv
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
for
(
int
j
=
1
;
j
<
4
;
j
++
)
cc
[
3
*
i
+
j
-
1
]
=
cws
[
j
][
i
]
-
cws
[
0
][
i
];
cvInvert
(
&
CC
,
&
CC_inv
,
CV_SVD
);
double
*
ci
=
cc_inv
;
for
(
int
i
=
0
;
i
<
number_of_correspondences
;
i
++
)
{
double
*
pi
=
pws
.
data
()
+
3
*
i
;
double
*
a
=
alphas
.
data
()
+
4
*
i
;
for
(
int
j
=
0
;
j
<
3
;
j
++
)
a
[
1
+
j
]
=
ci
[
3
*
j
]
*
(
pi
[
0
]
-
cws
[
0
][
0
])
+
ci
[
3
*
j
+
1
]
*
(
pi
[
1
]
-
cws
[
0
][
1
])
+
ci
[
3
*
j
+
2
]
*
(
pi
[
2
]
-
cws
[
0
][
2
]);
a
[
0
]
=
1.0
f
-
a
[
1
]
-
a
[
2
]
-
a
[
3
];
}
}
void
epnp
::
fill_M
(
CvMat
*
M
,
const
int
row
,
const
double
*
as
,
const
double
u
,
const
double
v
)
{
double
*
M1
=
M
->
data
.
db
+
row
*
12
;
double
*
M2
=
M1
+
12
;
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
M1
[
3
*
i
]
=
as
[
i
]
*
fu
;
M1
[
3
*
i
+
1
]
=
0.0
;
M1
[
3
*
i
+
2
]
=
as
[
i
]
*
(
uc
-
u
);
M2
[
3
*
i
]
=
0.0
;
M2
[
3
*
i
+
1
]
=
as
[
i
]
*
fv
;
M2
[
3
*
i
+
2
]
=
as
[
i
]
*
(
vc
-
v
);
}
}
void
epnp
::
compute_ccs
(
const
double
*
betas
,
const
double
*
ut
)
{
for
(
int
i
=
0
;
i
<
4
;
i
++
)
ccs
[
i
][
0
]
=
ccs
[
i
][
1
]
=
ccs
[
i
][
2
]
=
0.0
f
;
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
const
double
*
v
=
ut
+
12
*
(
11
-
i
);
for
(
int
j
=
0
;
j
<
4
;
j
++
)
for
(
int
k
=
0
;
k
<
3
;
k
++
)
ccs
[
j
][
k
]
+=
betas
[
i
]
*
v
[
3
*
j
+
k
];
}
}
void
epnp
::
compute_pcs
(
void
)
{
for
(
int
i
=
0
;
i
<
number_of_correspondences
;
i
++
)
{
double
*
a
=
alphas
.
data
()
+
4
*
i
;
double
*
pc
=
pcs
.
data
()
+
3
*
i
;
for
(
int
j
=
0
;
j
<
3
;
j
++
)
pc
[
j
]
=
a
[
0
]
*
ccs
[
0
][
j
]
+
a
[
1
]
*
ccs
[
1
][
j
]
+
a
[
2
]
*
ccs
[
2
][
j
]
+
a
[
3
]
*
ccs
[
3
][
j
];
}
}
void
epnp
::
compute_pose
(
cv
::
Mat
&
R
,
cv
::
Mat
&
t
)
{
choose_control_points
();
compute_barycentric_coordinates
();
CvMat
*
M
=
cvCreateMat
(
2
*
number_of_correspondences
,
12
,
CV_64F
);
for
(
int
i
=
0
;
i
<
number_of_correspondences
;
i
++
)
fill_M
(
M
,
2
*
i
,
alphas
.
data
()
+
4
*
i
,
us
[
2
*
i
],
us
[
2
*
i
+
1
]);
double
mtm
[
12
*
12
],
d
[
12
],
ut
[
12
*
12
];
CvMat
MtM
=
cvMat
(
12
,
12
,
CV_64F
,
mtm
);
CvMat
D
=
cvMat
(
12
,
1
,
CV_64F
,
d
);
CvMat
Ut
=
cvMat
(
12
,
12
,
CV_64F
,
ut
);
cvMulTransposed
(
M
,
&
MtM
,
1
);
cvSVD
(
&
MtM
,
&
D
,
&
Ut
,
0
,
CV_SVD_MODIFY_A
|
CV_SVD_U_T
);
cvReleaseMat
(
&
M
);
double
l_6x10
[
6
*
10
],
rho
[
6
];
CvMat
L_6x10
=
cvMat
(
6
,
10
,
CV_64F
,
l_6x10
);
CvMat
Rho
=
cvMat
(
6
,
1
,
CV_64F
,
rho
);
compute_L_6x10
(
ut
,
l_6x10
);
compute_rho
(
rho
);
double
Betas
[
4
][
4
],
rep_errors
[
4
];
double
Rs
[
4
][
3
][
3
],
ts
[
4
][
3
];
find_betas_approx_1
(
&
L_6x10
,
&
Rho
,
Betas
[
1
]);
gauss_newton
(
&
L_6x10
,
&
Rho
,
Betas
[
1
]);
rep_errors
[
1
]
=
compute_R_and_t
(
ut
,
Betas
[
1
],
Rs
[
1
],
ts
[
1
]);
find_betas_approx_2
(
&
L_6x10
,
&
Rho
,
Betas
[
2
]);
gauss_newton
(
&
L_6x10
,
&
Rho
,
Betas
[
2
]);
rep_errors
[
2
]
=
compute_R_and_t
(
ut
,
Betas
[
2
],
Rs
[
2
],
ts
[
2
]);
find_betas_approx_3
(
&
L_6x10
,
&
Rho
,
Betas
[
3
]);
gauss_newton
(
&
L_6x10
,
&
Rho
,
Betas
[
3
]);
rep_errors
[
3
]
=
compute_R_and_t
(
ut
,
Betas
[
3
],
Rs
[
3
],
ts
[
3
]);
int
N
=
1
;
if
(
rep_errors
[
2
]
<
rep_errors
[
1
])
N
=
2
;
if
(
rep_errors
[
3
]
<
rep_errors
[
N
])
N
=
3
;
cv
::
Mat
(
3
,
1
,
CV_64F
,
ts
[
N
]).
copyTo
(
t
);
cv
::
Mat
(
3
,
3
,
CV_64F
,
Rs
[
N
]).
copyTo
(
R
);
}
void
epnp
::
copy_R_and_t
(
const
double
R_src
[
3
][
3
],
const
double
t_src
[
3
],
double
R_dst
[
3
][
3
],
double
t_dst
[
3
])
{
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
for
(
int
j
=
0
;
j
<
3
;
j
++
)
R_dst
[
i
][
j
]
=
R_src
[
i
][
j
];
t_dst
[
i
]
=
t_src
[
i
];
}
}
double
epnp
::
dist2
(
const
double
*
p1
,
const
double
*
p2
)
{
return
(
p1
[
0
]
-
p2
[
0
])
*
(
p1
[
0
]
-
p2
[
0
])
+
(
p1
[
1
]
-
p2
[
1
])
*
(
p1
[
1
]
-
p2
[
1
])
+
(
p1
[
2
]
-
p2
[
2
])
*
(
p1
[
2
]
-
p2
[
2
]);
}
double
epnp
::
dot
(
const
double
*
v1
,
const
double
*
v2
)
{
return
v1
[
0
]
*
v2
[
0
]
+
v1
[
1
]
*
v2
[
1
]
+
v1
[
2
]
*
v2
[
2
];
}
void
epnp
::
estimate_R_and_t
(
double
R
[
3
][
3
],
double
t
[
3
])
{
double
pc0
[
3
],
pw0
[
3
];
pc0
[
0
]
=
pc0
[
1
]
=
pc0
[
2
]
=
0.0
;
pw0
[
0
]
=
pw0
[
1
]
=
pw0
[
2
]
=
0.0
;
for
(
int
i
=
0
;
i
<
number_of_correspondences
;
i
++
)
{
const
double
*
pc
=
&
pcs
[
3
*
i
];
const
double
*
pw
=
&
pws
[
3
*
i
];
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
pc0
[
j
]
+=
pc
[
j
];
pw0
[
j
]
+=
pw
[
j
];
}
}
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
pc0
[
j
]
/=
number_of_correspondences
;
pw0
[
j
]
/=
number_of_correspondences
;
}
double
abt
[
3
*
3
],
abt_d
[
3
],
abt_u
[
3
*
3
],
abt_v
[
3
*
3
];
CvMat
ABt
=
cvMat
(
3
,
3
,
CV_64F
,
abt
);
CvMat
ABt_D
=
cvMat
(
3
,
1
,
CV_64F
,
abt_d
);
CvMat
ABt_U
=
cvMat
(
3
,
3
,
CV_64F
,
abt_u
);
CvMat
ABt_V
=
cvMat
(
3
,
3
,
CV_64F
,
abt_v
);
cvSetZero
(
&
ABt
);
for
(
int
i
=
0
;
i
<
number_of_correspondences
;
i
++
)
{
double
*
pc
=
&
pcs
[
3
*
i
];
double
*
pw
=
&
pws
[
3
*
i
];
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
abt
[
3
*
j
]
+=
(
pc
[
j
]
-
pc0
[
j
])
*
(
pw
[
0
]
-
pw0
[
0
]);
abt
[
3
*
j
+
1
]
+=
(
pc
[
j
]
-
pc0
[
j
])
*
(
pw
[
1
]
-
pw0
[
1
]);
abt
[
3
*
j
+
2
]
+=
(
pc
[
j
]
-
pc0
[
j
])
*
(
pw
[
2
]
-
pw0
[
2
]);
}
}
cvSVD
(
&
ABt
,
&
ABt_D
,
&
ABt_U
,
&
ABt_V
,
CV_SVD_MODIFY_A
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
for
(
int
j
=
0
;
j
<
3
;
j
++
)
R
[
i
][
j
]
=
dot
(
abt_u
+
3
*
i
,
abt_v
+
3
*
j
);
const
double
det
=
R
[
0
][
0
]
*
R
[
1
][
1
]
*
R
[
2
][
2
]
+
R
[
0
][
1
]
*
R
[
1
][
2
]
*
R
[
2
][
0
]
+
R
[
0
][
2
]
*
R
[
1
][
0
]
*
R
[
2
][
1
]
-
R
[
0
][
2
]
*
R
[
1
][
1
]
*
R
[
2
][
0
]
-
R
[
0
][
1
]
*
R
[
1
][
0
]
*
R
[
2
][
2
]
-
R
[
0
][
0
]
*
R
[
1
][
2
]
*
R
[
2
][
1
];
if
(
det
<
0
)
{
R
[
2
][
0
]
=
-
R
[
2
][
0
];
R
[
2
][
1
]
=
-
R
[
2
][
1
];
R
[
2
][
2
]
=
-
R
[
2
][
2
];
}
t
[
0
]
=
pc0
[
0
]
-
dot
(
R
[
0
],
pw0
);
t
[
1
]
=
pc0
[
1
]
-
dot
(
R
[
1
],
pw0
);
t
[
2
]
=
pc0
[
2
]
-
dot
(
R
[
2
],
pw0
);
}
void
epnp
::
solve_for_sign
(
void
)
{
if
(
pcs
[
2
]
<
0.0
)
{
for
(
int
i
=
0
;
i
<
4
;
i
++
)
for
(
int
j
=
0
;
j
<
3
;
j
++
)
ccs
[
i
][
j
]
=
-
ccs
[
i
][
j
];
for
(
int
i
=
0
;
i
<
number_of_correspondences
;
i
++
)
{
pcs
[
3
*
i
]
=
-
pcs
[
3
*
i
];
pcs
[
3
*
i
+
1
]
=
-
pcs
[
3
*
i
+
1
];
pcs
[
3
*
i
+
2
]
=
-
pcs
[
3
*
i
+
2
];
}
}
}
double
epnp
::
compute_R_and_t
(
const
double
*
ut
,
const
double
*
betas
,
double
R
[
3
][
3
],
double
t
[
3
])
{
compute_ccs
(
betas
,
ut
);
compute_pcs
();
solve_for_sign
();
estimate_R_and_t
(
R
,
t
);
return
reprojection_error
(
R
,
t
);
}
double
epnp
::
reprojection_error
(
const
double
R
[
3
][
3
],
const
double
t
[
3
])
{
double
sum2
=
0.0
;
for
(
int
i
=
0
;
i
<
number_of_correspondences
;
i
++
)
{
double
*
pw
=
&
pws
[
3
*
i
];
double
Xc
=
dot
(
R
[
0
],
pw
)
+
t
[
0
];
double
Yc
=
dot
(
R
[
1
],
pw
)
+
t
[
1
];
double
inv_Zc
=
1.0
/
(
dot
(
R
[
2
],
pw
)
+
t
[
2
]);
double
ue
=
uc
+
fu
*
Xc
*
inv_Zc
;
double
ve
=
vc
+
fv
*
Yc
*
inv_Zc
;
double
u
=
us
[
2
*
i
],
v
=
us
[
2
*
i
+
1
];
sum2
+=
sqrt
(
(
u
-
ue
)
*
(
u
-
ue
)
+
(
v
-
ve
)
*
(
v
-
ve
)
);
}
return
sum2
/
number_of_correspondences
;
}
// betas10 = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
// betas_approx_1 = [B11 B12 B13 B14]
void
epnp
::
find_betas_approx_1
(
const
CvMat
*
L_6x10
,
const
CvMat
*
Rho
,
double
*
betas
)
{
double
l_6x4
[
6
*
4
],
b4
[
4
];
CvMat
L_6x4
=
cvMat
(
6
,
4
,
CV_64F
,
l_6x4
);
CvMat
B4
=
cvMat
(
4
,
1
,
CV_64F
,
b4
);
for
(
int
i
=
0
;
i
<
6
;
i
++
)
{
cvmSet
(
&
L_6x4
,
i
,
0
,
cvmGet
(
L_6x10
,
i
,
0
));
cvmSet
(
&
L_6x4
,
i
,
1
,
cvmGet
(
L_6x10
,
i
,
1
));
cvmSet
(
&
L_6x4
,
i
,
2
,
cvmGet
(
L_6x10
,
i
,
3
));
cvmSet
(
&
L_6x4
,
i
,
3
,
cvmGet
(
L_6x10
,
i
,
6
));
}
cvSolve
(
&
L_6x4
,
Rho
,
&
B4
,
CV_SVD
);
if
(
b4
[
0
]
<
0
)
{
betas
[
0
]
=
sqrt
(
-
b4
[
0
]);
betas
[
1
]
=
-
b4
[
1
]
/
betas
[
0
];
betas
[
2
]
=
-
b4
[
2
]
/
betas
[
0
];
betas
[
3
]
=
-
b4
[
3
]
/
betas
[
0
];
}
else
{
betas
[
0
]
=
sqrt
(
b4
[
0
]);
betas
[
1
]
=
b4
[
1
]
/
betas
[
0
];
betas
[
2
]
=
b4
[
2
]
/
betas
[
0
];
betas
[
3
]
=
b4
[
3
]
/
betas
[
0
];
}
}
// betas10 = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
// betas_approx_2 = [B11 B12 B22 ]
void
epnp
::
find_betas_approx_2
(
const
CvMat
*
L_6x10
,
const
CvMat
*
Rho
,
double
*
betas
)
{
double
l_6x3
[
6
*
3
],
b3
[
3
];
CvMat
L_6x3
=
cvMat
(
6
,
3
,
CV_64F
,
l_6x3
);
CvMat
B3
=
cvMat
(
3
,
1
,
CV_64F
,
b3
);
for
(
int
i
=
0
;
i
<
6
;
i
++
)
{
cvmSet
(
&
L_6x3
,
i
,
0
,
cvmGet
(
L_6x10
,
i
,
0
));
cvmSet
(
&
L_6x3
,
i
,
1
,
cvmGet
(
L_6x10
,
i
,
1
));
cvmSet
(
&
L_6x3
,
i
,
2
,
cvmGet
(
L_6x10
,
i
,
2
));
}
cvSolve
(
&
L_6x3
,
Rho
,
&
B3
,
CV_SVD
);
if
(
b3
[
0
]
<
0
)
{
betas
[
0
]
=
sqrt
(
-
b3
[
0
]);
betas
[
1
]
=
(
b3
[
2
]
<
0
)
?
sqrt
(
-
b3
[
2
])
:
0.0
;
}
else
{
betas
[
0
]
=
sqrt
(
b3
[
0
]);
betas
[
1
]
=
(
b3
[
2
]
>
0
)
?
sqrt
(
b3
[
2
])
:
0.0
;
}
if
(
b3
[
1
]
<
0
)
betas
[
0
]
=
-
betas
[
0
];
betas
[
2
]
=
0.0
;
betas
[
3
]
=
0.0
;
}
// betas10 = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
// betas_approx_3 = [B11 B12 B22 B13 B23 ]
void
epnp
::
find_betas_approx_3
(
const
CvMat
*
L_6x10
,
const
CvMat
*
Rho
,
double
*
betas
)
{
double
l_6x5
[
6
*
5
],
b5
[
5
];
CvMat
L_6x5
=
cvMat
(
6
,
5
,
CV_64F
,
l_6x5
);
CvMat
B5
=
cvMat
(
5
,
1
,
CV_64F
,
b5
);
for
(
int
i
=
0
;
i
<
6
;
i
++
)
{
cvmSet
(
&
L_6x5
,
i
,
0
,
cvmGet
(
L_6x10
,
i
,
0
));
cvmSet
(
&
L_6x5
,
i
,
1
,
cvmGet
(
L_6x10
,
i
,
1
));
cvmSet
(
&
L_6x5
,
i
,
2
,
cvmGet
(
L_6x10
,
i
,
2
));
cvmSet
(
&
L_6x5
,
i
,
3
,
cvmGet
(
L_6x10
,
i
,
3
));
cvmSet
(
&
L_6x5
,
i
,
4
,
cvmGet
(
L_6x10
,
i
,
4
));
}
cvSolve
(
&
L_6x5
,
Rho
,
&
B5
,
CV_SVD
);
if
(
b5
[
0
]
<
0
)
{
betas
[
0
]
=
sqrt
(
-
b5
[
0
]);
betas
[
1
]
=
(
b5
[
2
]
<
0
)
?
sqrt
(
-
b5
[
2
])
:
0.0
;
}
else
{
betas
[
0
]
=
sqrt
(
b5
[
0
]);
betas
[
1
]
=
(
b5
[
2
]
>
0
)
?
sqrt
(
b5
[
2
])
:
0.0
;
}
if
(
b5
[
1
]
<
0
)
betas
[
0
]
=
-
betas
[
0
];
betas
[
2
]
=
b5
[
3
]
/
betas
[
0
];
betas
[
3
]
=
0.0
;
}
void
epnp
::
compute_L_6x10
(
const
double
*
ut
,
double
*
l_6x10
)
{
const
double
*
v
[
4
];
v
[
0
]
=
ut
+
12
*
11
;
v
[
1
]
=
ut
+
12
*
10
;
v
[
2
]
=
ut
+
12
*
9
;
v
[
3
]
=
ut
+
12
*
8
;
double
dv
[
4
][
6
][
3
];
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
int
a
=
0
,
b
=
1
;
for
(
int
j
=
0
;
j
<
6
;
j
++
)
{
dv
[
i
][
j
][
0
]
=
v
[
i
][
3
*
a
]
-
v
[
i
][
3
*
b
];
dv
[
i
][
j
][
1
]
=
v
[
i
][
3
*
a
+
1
]
-
v
[
i
][
3
*
b
+
1
];
dv
[
i
][
j
][
2
]
=
v
[
i
][
3
*
a
+
2
]
-
v
[
i
][
3
*
b
+
2
];
b
++
;
if
(
b
>
3
)
{
a
++
;
b
=
a
+
1
;
}
}
}
for
(
int
i
=
0
;
i
<
6
;
i
++
)
{
double
*
row
=
l_6x10
+
10
*
i
;
row
[
0
]
=
dot
(
dv
[
0
][
i
],
dv
[
0
][
i
]);
row
[
1
]
=
2.0
f
*
dot
(
dv
[
0
][
i
],
dv
[
1
][
i
]);
row
[
2
]
=
dot
(
dv
[
1
][
i
],
dv
[
1
][
i
]);
row
[
3
]
=
2.0
f
*
dot
(
dv
[
0
][
i
],
dv
[
2
][
i
]);
row
[
4
]
=
2.0
f
*
dot
(
dv
[
1
][
i
],
dv
[
2
][
i
]);
row
[
5
]
=
dot
(
dv
[
2
][
i
],
dv
[
2
][
i
]);
row
[
6
]
=
2.0
f
*
dot
(
dv
[
0
][
i
],
dv
[
3
][
i
]);
row
[
7
]
=
2.0
f
*
dot
(
dv
[
1
][
i
],
dv
[
3
][
i
]);
row
[
8
]
=
2.0
f
*
dot
(
dv
[
2
][
i
],
dv
[
3
][
i
]);
row
[
9
]
=
dot
(
dv
[
3
][
i
],
dv
[
3
][
i
]);
}
}
void
epnp
::
compute_rho
(
double
*
rho
)
{
rho
[
0
]
=
dist2
(
cws
[
0
],
cws
[
1
]);
rho
[
1
]
=
dist2
(
cws
[
0
],
cws
[
2
]);
rho
[
2
]
=
dist2
(
cws
[
0
],
cws
[
3
]);
rho
[
3
]
=
dist2
(
cws
[
1
],
cws
[
2
]);
rho
[
4
]
=
dist2
(
cws
[
1
],
cws
[
3
]);
rho
[
5
]
=
dist2
(
cws
[
2
],
cws
[
3
]);
}
void
epnp
::
compute_A_and_b_gauss_newton
(
const
double
*
l_6x10
,
const
double
*
rho
,
const
double
betas
[
4
],
CvMat
*
A
,
CvMat
*
b
)
{
for
(
int
i
=
0
;
i
<
6
;
i
++
)
{
const
double
*
rowL
=
l_6x10
+
i
*
10
;
double
*
rowA
=
A
->
data
.
db
+
i
*
4
;
rowA
[
0
]
=
2
*
rowL
[
0
]
*
betas
[
0
]
+
rowL
[
1
]
*
betas
[
1
]
+
rowL
[
3
]
*
betas
[
2
]
+
rowL
[
6
]
*
betas
[
3
];
rowA
[
1
]
=
rowL
[
1
]
*
betas
[
0
]
+
2
*
rowL
[
2
]
*
betas
[
1
]
+
rowL
[
4
]
*
betas
[
2
]
+
rowL
[
7
]
*
betas
[
3
];
rowA
[
2
]
=
rowL
[
3
]
*
betas
[
0
]
+
rowL
[
4
]
*
betas
[
1
]
+
2
*
rowL
[
5
]
*
betas
[
2
]
+
rowL
[
8
]
*
betas
[
3
];
rowA
[
3
]
=
rowL
[
6
]
*
betas
[
0
]
+
rowL
[
7
]
*
betas
[
1
]
+
rowL
[
8
]
*
betas
[
2
]
+
2
*
rowL
[
9
]
*
betas
[
3
];
cvmSet
(
b
,
i
,
0
,
rho
[
i
]
-
(
rowL
[
0
]
*
betas
[
0
]
*
betas
[
0
]
+
rowL
[
1
]
*
betas
[
0
]
*
betas
[
1
]
+
rowL
[
2
]
*
betas
[
1
]
*
betas
[
1
]
+
rowL
[
3
]
*
betas
[
0
]
*
betas
[
2
]
+
rowL
[
4
]
*
betas
[
1
]
*
betas
[
2
]
+
rowL
[
5
]
*
betas
[
2
]
*
betas
[
2
]
+
rowL
[
6
]
*
betas
[
0
]
*
betas
[
3
]
+
rowL
[
7
]
*
betas
[
1
]
*
betas
[
3
]
+
rowL
[
8
]
*
betas
[
2
]
*
betas
[
3
]
+
rowL
[
9
]
*
betas
[
3
]
*
betas
[
3
]
));
}
}
void
epnp
::
gauss_newton
(
const
CvMat
*
L_6x10
,
const
CvMat
*
Rho
,
double
betas
[
4
])
{
const
int
iterations_number
=
5
;
double
a
[
6
*
4
],
b
[
6
],
x
[
4
];
CvMat
A
=
cvMat
(
6
,
4
,
CV_64F
,
a
);
CvMat
B
=
cvMat
(
6
,
1
,
CV_64F
,
b
);
CvMat
X
=
cvMat
(
4
,
1
,
CV_64F
,
x
);
for
(
int
k
=
0
;
k
<
iterations_number
;
k
++
)
{
compute_A_and_b_gauss_newton
(
L_6x10
->
data
.
db
,
Rho
->
data
.
db
,
betas
,
&
A
,
&
B
);
qr_solve
(
&
A
,
&
B
,
&
X
);
for
(
int
i
=
0
;
i
<
4
;
i
++
)
betas
[
i
]
+=
x
[
i
];
}
}
void
epnp
::
qr_solve
(
CvMat
*
A
,
CvMat
*
b
,
CvMat
*
X
)
{
static
int
max_nr
=
0
;
static
double
*
A1
,
*
A2
;
const
int
nr
=
A
->
rows
;
const
int
nc
=
A
->
cols
;
if
(
max_nr
!=
0
&&
max_nr
<
nr
)
{
delete
[]
A1
;
delete
[]
A2
;
}
if
(
max_nr
<
nr
)
{
max_nr
=
nr
;
A1
=
new
double
[
nr
];
A2
=
new
double
[
nr
];
}
double
*
pA
=
A
->
data
.
db
,
*
ppAkk
=
pA
;
for
(
int
k
=
0
;
k
<
nc
;
k
++
)
{
double
*
ppAik
=
ppAkk
,
eta
=
fabs
(
*
ppAik
);
for
(
int
i
=
k
+
1
;
i
<
nr
;
i
++
)
{
double
elt
=
fabs
(
*
ppAik
);
if
(
eta
<
elt
)
eta
=
elt
;
ppAik
+=
nc
;
}
if
(
eta
==
0
)
{
A1
[
k
]
=
A2
[
k
]
=
0.0
;
//cerr << "God damnit, A is singular, this shouldn't happen." << endl;
return
;
}
else
{
double
*
ppAik
=
ppAkk
,
sum
=
0.0
,
inv_eta
=
1.
/
eta
;
for
(
int
i
=
k
;
i
<
nr
;
i
++
)
{
*
ppAik
*=
inv_eta
;
sum
+=
*
ppAik
*
*
ppAik
;
ppAik
+=
nc
;
}
double
sigma
=
sqrt
(
sum
);
if
(
*
ppAkk
<
0
)
sigma
=
-
sigma
;
*
ppAkk
+=
sigma
;
A1
[
k
]
=
sigma
*
*
ppAkk
;
A2
[
k
]
=
-
eta
*
sigma
;
for
(
int
j
=
k
+
1
;
j
<
nc
;
j
++
)
{
double
*
ppAik
=
ppAkk
,
sum
=
0
;
for
(
int
i
=
k
;
i
<
nr
;
i
++
)
{
sum
+=
*
ppAik
*
ppAik
[
j
-
k
];
ppAik
+=
nc
;
}
double
tau
=
sum
/
A1
[
k
];
ppAik
=
ppAkk
;
for
(
int
i
=
k
;
i
<
nr
;
i
++
)
{
ppAik
[
j
-
k
]
-=
tau
*
*
ppAik
;
ppAik
+=
nc
;
}
}
}
ppAkk
+=
nc
+
1
;
}
// b <- Qt b
double
*
ppAjj
=
pA
,
*
pb
=
b
->
data
.
db
;
for
(
int
j
=
0
;
j
<
nc
;
j
++
)
{
double
*
ppAij
=
ppAjj
,
tau
=
0
;
for
(
int
i
=
j
;
i
<
nr
;
i
++
)
{
tau
+=
*
ppAij
*
pb
[
i
];
ppAij
+=
nc
;
}
tau
/=
A1
[
j
];
ppAij
=
ppAjj
;
for
(
int
i
=
j
;
i
<
nr
;
i
++
)
{
pb
[
i
]
-=
tau
*
*
ppAij
;
ppAij
+=
nc
;
}
ppAjj
+=
nc
+
1
;
}
// X = R-1 b
double
*
pX
=
X
->
data
.
db
;
pX
[
nc
-
1
]
=
pb
[
nc
-
1
]
/
A2
[
nc
-
1
];
for
(
int
i
=
nc
-
2
;
i
>=
0
;
i
--
)
{
double
*
ppAij
=
pA
+
i
*
nc
+
(
i
+
1
),
sum
=
0
;
for
(
int
j
=
i
+
1
;
j
<
nc
;
j
++
)
{
sum
+=
*
ppAij
*
pX
[
j
];
ppAij
++
;
}
pX
[
i
]
=
(
pb
[
i
]
-
sum
)
/
A2
[
i
];
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment