Commit 25746371 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

removed optim module; moved its functionality to core and photo modules; moved…

removed optim module; moved its functionality to core and photo modules; moved drawing functions from core to imgproc. Removed FilterEngine etc. from public API
parent a602185f
......@@ -17,3 +17,4 @@ core. The Core Functionality
utility_and_system_functions_and_macros
opengl_interop
ipp_async_converters
optim
......@@ -506,96 +506,6 @@ CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev
//! shuffles the input array elements
CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0);
//! draws the line segment (pt1, pt2) in the image
CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
int thickness = 1, int lineType = LINE_8, int shift = 0);
//! draws an arrow from pt1 to pt2 in the image
CV_EXPORTS_W void arrowedLine(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
int thickness=1, int line_type=8, int shift=0, double tipLength=0.1);
//! draws the rectangle outline or a solid rectangle with the opposite corners pt1 and pt2 in the image
CV_EXPORTS_W void rectangle(InputOutputArray img, Point pt1, Point pt2,
const Scalar& color, int thickness = 1,
int lineType = LINE_8, int shift = 0);
//! draws the rectangle outline or a solid rectangle covering rec in the image
CV_EXPORTS void rectangle(CV_IN_OUT Mat& img, Rect rec,
const Scalar& color, int thickness = 1,
int lineType = LINE_8, int shift = 0);
//! draws the circle outline or a solid circle in the image
CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius,
const Scalar& color, int thickness = 1,
int lineType = LINE_8, int shift = 0);
//! draws an elliptic arc, ellipse sector or a rotated ellipse in the image
CV_EXPORTS_W void ellipse(InputOutputArray img, Point center, Size axes,
double angle, double startAngle, double endAngle,
const Scalar& color, int thickness = 1,
int lineType = LINE_8, int shift = 0);
//! draws a rotated ellipse in the image
CV_EXPORTS_W void ellipse(InputOutputArray img, const RotatedRect& box, const Scalar& color,
int thickness = 1, int lineType = LINE_8);
//! draws a filled convex polygon in the image
CV_EXPORTS void fillConvexPoly(Mat& img, const Point* pts, int npts,
const Scalar& color, int lineType = LINE_8,
int shift = 0);
CV_EXPORTS_W void fillConvexPoly(InputOutputArray img, InputArray points,
const Scalar& color, int lineType = LINE_8,
int shift = 0);
//! fills an area bounded by one or more polygons
CV_EXPORTS void fillPoly(Mat& img, const Point** pts,
const int* npts, int ncontours,
const Scalar& color, int lineType = LINE_8, int shift = 0,
Point offset = Point() );
CV_EXPORTS_W void fillPoly(InputOutputArray img, InputArrayOfArrays pts,
const Scalar& color, int lineType = LINE_8, int shift = 0,
Point offset = Point() );
//! draws one or more polygonal curves
CV_EXPORTS void polylines(Mat& img, const Point* const* pts, const int* npts,
int ncontours, bool isClosed, const Scalar& color,
int thickness = 1, int lineType = LINE_8, int shift = 0 );
CV_EXPORTS_W void polylines(InputOutputArray img, InputArrayOfArrays pts,
bool isClosed, const Scalar& color,
int thickness = 1, int lineType = LINE_8, int shift = 0 );
//! draws contours in the image
CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours,
int contourIdx, const Scalar& color,
int thickness = 1, int lineType = LINE_8,
InputArray hierarchy = noArray(),
int maxLevel = INT_MAX, Point offset = Point() );
//! clips the line segment by the rectangle Rect(0, 0, imgSize.width, imgSize.height)
CV_EXPORTS bool clipLine(Size imgSize, CV_IN_OUT Point& pt1, CV_IN_OUT Point& pt2);
//! clips the line segment by the rectangle imgRect
CV_EXPORTS_W bool clipLine(Rect imgRect, CV_OUT CV_IN_OUT Point& pt1, CV_OUT CV_IN_OUT Point& pt2);
//! converts elliptic arc to a polygonal curve
CV_EXPORTS_W void ellipse2Poly( Point center, Size axes, int angle,
int arcStart, int arcEnd, int delta,
CV_OUT std::vector<Point>& pts );
//! renders text string in the image
CV_EXPORTS_W void putText( InputOutputArray img, const String& text, Point org,
int fontFace, double fontScale, Scalar color,
int thickness = 1, int lineType = LINE_8,
bool bottomLeftOrigin = false );
//! returns bounding box of the text string
CV_EXPORTS_W Size getTextSize(const String& text, int fontFace,
double fontScale, int thickness,
CV_OUT int* baseLine);
/*!
Principal Component Analysis
......@@ -1319,5 +1229,7 @@ template<> struct ParamType<uchar>
#include "opencv2/core/operations.hpp"
#include "opencv2/core/cvstd.inl.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/optim.hpp"
#endif /*__OPENCV_CORE_HPP__*/
......@@ -1262,192 +1262,6 @@ CVAPI(int) cvNextGraphItem( CvGraphScanner* scanner );
/* Creates a copy of graph */
CVAPI(CvGraph*) cvCloneGraph( const CvGraph* graph, CvMemStorage* storage );
/****************************************************************************************\
* Drawing *
\****************************************************************************************/
/****************************************************************************************\
* Drawing functions work with images/matrices of arbitrary type. *
* For color images the channel order is BGR[A] *
* Antialiasing is supported only for 8-bit image now. *
* All the functions include parameter color that means rgb value (that may be *
* constructed with CV_RGB macro) for color images and brightness *
* for grayscale images. *
* If a drawn figure is partially or completely outside of the image, it is clipped.*
\****************************************************************************************/
#define CV_RGB( r, g, b ) cvScalar( (b), (g), (r), 0 )
#define CV_FILLED -1
#define CV_AA 16
/* Draws 4-connected, 8-connected or antialiased line segment connecting two points */
CVAPI(void) cvLine( CvArr* img, CvPoint pt1, CvPoint pt2,
CvScalar color, int thickness CV_DEFAULT(1),
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) );
/* Draws a rectangle given two opposite corners of the rectangle (pt1 & pt2),
if thickness<0 (e.g. thickness == CV_FILLED), the filled box is drawn */
CVAPI(void) cvRectangle( CvArr* img, CvPoint pt1, CvPoint pt2,
CvScalar color, int thickness CV_DEFAULT(1),
int line_type CV_DEFAULT(8),
int shift CV_DEFAULT(0));
/* Draws a rectangle specified by a CvRect structure */
CVAPI(void) cvRectangleR( CvArr* img, CvRect r,
CvScalar color, int thickness CV_DEFAULT(1),
int line_type CV_DEFAULT(8),
int shift CV_DEFAULT(0));
/* Draws a circle with specified center and radius.
Thickness works in the same way as with cvRectangle */
CVAPI(void) cvCircle( CvArr* img, CvPoint center, int radius,
CvScalar color, int thickness CV_DEFAULT(1),
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0));
/* Draws ellipse outline, filled ellipse, elliptic arc or filled elliptic sector,
depending on <thickness>, <start_angle> and <end_angle> parameters. The resultant figure
is rotated by <angle>. All the angles are in degrees */
CVAPI(void) cvEllipse( CvArr* img, CvPoint center, CvSize axes,
double angle, double start_angle, double end_angle,
CvScalar color, int thickness CV_DEFAULT(1),
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0));
CV_INLINE void cvEllipseBox( CvArr* img, CvBox2D box, CvScalar color,
int thickness CV_DEFAULT(1),
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) )
{
CvSize axes;
axes.width = cvRound(box.size.width*0.5);
axes.height = cvRound(box.size.height*0.5);
cvEllipse( img, cvPointFrom32f( box.center ), axes, box.angle,
0, 360, color, thickness, line_type, shift );
}
/* Fills convex or monotonous polygon. */
CVAPI(void) cvFillConvexPoly( CvArr* img, const CvPoint* pts, int npts, CvScalar color,
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0));
/* Fills an area bounded by one or more arbitrary polygons */
CVAPI(void) cvFillPoly( CvArr* img, CvPoint** pts, const int* npts,
int contours, CvScalar color,
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) );
/* Draws one or more polygonal curves */
CVAPI(void) cvPolyLine( CvArr* img, CvPoint** pts, const int* npts, int contours,
int is_closed, CvScalar color, int thickness CV_DEFAULT(1),
int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) );
#define cvDrawRect cvRectangle
#define cvDrawLine cvLine
#define cvDrawCircle cvCircle
#define cvDrawEllipse cvEllipse
#define cvDrawPolyLine cvPolyLine
/* Clips the line segment connecting *pt1 and *pt2
by the rectangular window
(0<=x<img_size.width, 0<=y<img_size.height). */
CVAPI(int) cvClipLine( CvSize img_size, CvPoint* pt1, CvPoint* pt2 );
/* Initializes line iterator. Initially, line_iterator->ptr will point
to pt1 (or pt2, see left_to_right description) location in the image.
Returns the number of pixels on the line between the ending points. */
CVAPI(int) cvInitLineIterator( const CvArr* image, CvPoint pt1, CvPoint pt2,
CvLineIterator* line_iterator,
int connectivity CV_DEFAULT(8),
int left_to_right CV_DEFAULT(0));
/* Moves iterator to the next line point */
#define CV_NEXT_LINE_POINT( line_iterator ) \
{ \
int _line_iterator_mask = (line_iterator).err < 0 ? -1 : 0; \
(line_iterator).err += (line_iterator).minus_delta + \
((line_iterator).plus_delta & _line_iterator_mask); \
(line_iterator).ptr += (line_iterator).minus_step + \
((line_iterator).plus_step & _line_iterator_mask); \
}
/* basic font types */
#define CV_FONT_HERSHEY_SIMPLEX 0
#define CV_FONT_HERSHEY_PLAIN 1
#define CV_FONT_HERSHEY_DUPLEX 2
#define CV_FONT_HERSHEY_COMPLEX 3
#define CV_FONT_HERSHEY_TRIPLEX 4
#define CV_FONT_HERSHEY_COMPLEX_SMALL 5
#define CV_FONT_HERSHEY_SCRIPT_SIMPLEX 6
#define CV_FONT_HERSHEY_SCRIPT_COMPLEX 7
/* font flags */
#define CV_FONT_ITALIC 16
#define CV_FONT_VECTOR0 CV_FONT_HERSHEY_SIMPLEX
/* Font structure */
typedef struct CvFont
{
const char* nameFont; //Qt:nameFont
CvScalar color; //Qt:ColorFont -> cvScalar(blue_component, green_component, red\_component[, alpha_component])
int font_face; //Qt: bool italic /* =CV_FONT_* */
const int* ascii; /* font data and metrics */
const int* greek;
const int* cyrillic;
float hscale, vscale;
float shear; /* slope coefficient: 0 - normal, >0 - italic */
int thickness; //Qt: weight /* letters thickness */
float dx; /* horizontal interval between letters */
int line_type; //Qt: PointSize
}
CvFont;
/* Initializes font structure used further in cvPutText */
CVAPI(void) cvInitFont( CvFont* font, int font_face,
double hscale, double vscale,
double shear CV_DEFAULT(0),
int thickness CV_DEFAULT(1),
int line_type CV_DEFAULT(8));
CV_INLINE CvFont cvFont( double scale, int thickness CV_DEFAULT(1) )
{
CvFont font;
cvInitFont( &font, CV_FONT_HERSHEY_PLAIN, scale, scale, 0, thickness, CV_AA );
return font;
}
/* Renders text stroke with specified font and color at specified location.
CvFont should be initialized with cvInitFont */
CVAPI(void) cvPutText( CvArr* img, const char* text, CvPoint org,
const CvFont* font, CvScalar color );
/* Calculates bounding box of text stroke (useful for alignment) */
CVAPI(void) cvGetTextSize( const char* text_string, const CvFont* font,
CvSize* text_size, int* baseline );
/* Unpacks color value, if arrtype is CV_8UC?, <color> is treated as
packed color value, otherwise the first channels (depending on arrtype)
of destination scalar are set to the same value = <color> */
CVAPI(CvScalar) cvColorToScalar( double packed_color, int arrtype );
/* Returns the polygon points which make up the given ellipse. The ellipse is define by
the box of size 'axes' rotated 'angle' around the 'center'. A partial sweep
of the ellipse arc can be done by spcifying arc_start and arc_end to be something
other than 0 and 360, respectively. The input array 'pts' must be large enough to
hold the result. The total number of points stored into 'pts' is returned by this
function. */
CVAPI(int) cvEllipse2Poly( CvPoint center, CvSize axes,
int angle, int arc_start, int arc_end, CvPoint * pts, int delta );
/* Draws contour outlines or filled interiors on the image */
CVAPI(void) cvDrawContours( CvArr *img, CvSeq* contour,
CvScalar external_color, CvScalar hole_color,
int max_level, int thickness CV_DEFAULT(1),
int line_type CV_DEFAULT(8),
CvPoint offset CV_DEFAULT(cvPoint(0,0)));
/* Does look-up transformation. Elements of the source array
(that should be 8uC1 or 8sC1) are used as indexes in lutarr 256-element table */
......
......@@ -44,9 +44,10 @@
#include "opencv2/core.hpp"
namespace cv{namespace optim
namespace cv
{
class CV_EXPORTS Solver : public Algorithm
class CV_EXPORTS MinProblemSolver : public Algorithm
{
public:
class CV_EXPORTS Function
......@@ -70,7 +71,7 @@ public:
};
//! downhill simplex class
class CV_EXPORTS DownhillSolver : public Solver
class CV_EXPORTS DownhillSolver : public MinProblemSolver
{
public:
//! returns row-vector, even if the column-vector was given
......@@ -78,20 +79,22 @@ public:
//!This should be called at least once before the first call to minimize() and step is assumed to be (something that
//! after getMat() will return) row-vector or column-vector. *It's dimensionality determines the dimensionality of a problem.*
virtual void setInitStep(InputArray step)=0;
};
// both minRange & minError are specified by termcrit.epsilon; In addition, user may specify the number of iterations that the algorithm does.
CV_EXPORTS_W Ptr<DownhillSolver> createDownhillSolver(const Ptr<Solver::Function>& f=Ptr<Solver::Function>(),
InputArray initStep=Mat_<double>(1,1,0.0),
TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5000,0.000001));
// both minRange & minError are specified by termcrit.epsilon;
// In addition, user may specify the number of iterations that the algorithm does.
static Ptr<DownhillSolver> create(const Ptr<MinProblemSolver::Function>& f=Ptr<MinProblemSolver::Function>(),
InputArray initStep=Mat_<double>(1,1,0.0),
TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5000,0.000001));
};
//! conjugate gradient method
class CV_EXPORTS ConjGradSolver : public Solver{
class CV_EXPORTS ConjGradSolver : public MinProblemSolver
{
public:
static Ptr<ConjGradSolver> create(const Ptr<MinProblemSolver::Function>& f=Ptr<ConjGradSolver::Function>(),
TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5000,0.000001));
};
CV_EXPORTS_W Ptr<ConjGradSolver> createConjGradSolver(const Ptr<Solver::Function>& f=Ptr<ConjGradSolver::Function>(),
TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5000,0.000001));
//!the return codes for solveLP() function
enum
{
......@@ -102,7 +105,7 @@ enum
};
CV_EXPORTS_W int solveLP(const Mat& Func, const Mat& Constr, Mat& z);
CV_EXPORTS_W void denoise_TVL1(const std::vector<Mat>& observations,Mat& result, double lambda=1.0, int niters=30);
}}// cv
}// cv
#endif
......@@ -40,10 +40,12 @@
//M*/
#include "precomp.hpp"
#undef ALEX_DEBUG
#include "debug.hpp"
namespace cv{namespace optim{
#define dprintf(x)
#define print_matrix(x)
namespace cv
{
#define SEC_METHOD_ITERATIONS 4
#define INITIAL_SEC_METHOD_SIGMA 0.1
......@@ -57,15 +59,15 @@ namespace cv{namespace optim{
void setTermCriteria(const TermCriteria& termcrit);
double minimize(InputOutputArray x);
protected:
Ptr<Solver::Function> _Function;
Ptr<MinProblemSolver::Function> _Function;
TermCriteria _termcrit;
Mat_<double> d,r,buf_x,r_old;
Mat_<double> minimizeOnTheLine_buf1,minimizeOnTheLine_buf2;
private:
static void minimizeOnTheLine(Ptr<Solver::Function> _f,Mat_<double>& x,const Mat_<double>& d,Mat_<double>& buf1,Mat_<double>& buf2);
static void minimizeOnTheLine(Ptr<MinProblemSolver::Function> _f,Mat_<double>& x,const Mat_<double>& d,Mat_<double>& buf1,Mat_<double>& buf2);
};
void ConjGradSolverImpl::minimizeOnTheLine(Ptr<Solver::Function> _f,Mat_<double>& x,const Mat_<double>& d,Mat_<double>& buf1,
void ConjGradSolverImpl::minimizeOnTheLine(Ptr<MinProblemSolver::Function> _f,Mat_<double>& x,const Mat_<double>& d,Mat_<double>& buf1,
Mat_<double>& buf2){
double sigma=INITIAL_SEC_METHOD_SIGMA;
buf1=0.0;
......@@ -160,7 +162,7 @@ namespace cv{namespace optim{
ConjGradSolverImpl::ConjGradSolverImpl(){
_Function=Ptr<Function>();
}
Ptr<Solver::Function> ConjGradSolverImpl::getFunction()const{
Ptr<MinProblemSolver::Function> ConjGradSolverImpl::getFunction()const{
return _Function;
}
void ConjGradSolverImpl::setFunction(const Ptr<Function>& f){
......@@ -175,10 +177,10 @@ namespace cv{namespace optim{
_termcrit=termcrit;
}
// both minRange & minError are specified by termcrit.epsilon; In addition, user may specify the number of iterations that the algorithm does.
Ptr<ConjGradSolver> createConjGradSolver(const Ptr<Solver::Function>& f, TermCriteria termcrit){
ConjGradSolver *CG=new ConjGradSolverImpl();
Ptr<ConjGradSolver> ConjGradSolver::create(const Ptr<MinProblemSolver::Function>& f, TermCriteria termcrit){
Ptr<ConjGradSolver> CG = makePtr<ConjGradSolverImpl>();
CG->setFunction(f);
CG->setTermCriteria(termcrit);
return Ptr<ConjGradSolver>(CG);
return CG;
}
}}
}
This diff is collapsed.
......@@ -39,8 +39,9 @@
//
//M*/
#include "precomp.hpp"
#include "debug.hpp"
#include "opencv2/core/core_c.h"
#define dprintf(x)
#define print_matrix(x)
/*
......@@ -83,13 +84,13 @@ Created by @SareeAlnaghy
using namespace std;
using namespace cv;
void test(Ptr<optim::DownhillSolver> solver, Ptr<optim::Solver::Function> ptr_F, Mat &P, Mat &step)
void test(Ptr<optim::DownhillSolver> MinProblemSolver, Ptr<optim::MinProblemSolver::Function> ptr_F, Mat &P, Mat &step)
{
try{
solver->setFunction(ptr_F);
solver->setInitStep(step);
double res = solver->minimize(P);
MinProblemSolver->setFunction(ptr_F);
MinProblemSolver->setInitStep(step);
double res = MinProblemSolver->minimize(P);
cout << "res " << res << endl;
}
......@@ -102,7 +103,7 @@ cerr << "Error:: " << e.what() << endl;
int main()
{
class DistanceToLines :public optim::Solver::Function {
class DistanceToLines :public optim::MinProblemSolver::Function {
public:
double calc(const double* x)const{
......@@ -114,10 +115,10 @@ return x[0] * x[0] + x[1] * x[1];
Mat P = (Mat_<double>(1, 2) << 1.0, 1.0);
Mat step = (Mat_<double>(2, 1) << -0.5, 0.5);
Ptr<optim::Solver::Function> ptr_F(new DistanceToLines());
Ptr<optim::DownhillSolver> solver = optim::createDownhillSolver();
Ptr<optim::MinProblemSolver::Function> ptr_F(new DistanceToLines());
Ptr<optim::DownhillSolver> MinProblemSolver = optim::createDownhillSolver();
test(solver, ptr_F, P, step);
test(MinProblemSolver, ptr_F, P, step);
system("pause");
return 0;
......@@ -131,11 +132,8 @@ multiple lines in three dimensions as not all lines intersect in three dimension
*/
namespace cv{namespace optim{
namespace cv
{
class DownhillSolverImpl : public DownhillSolver
{
......@@ -149,7 +147,7 @@ namespace cv{namespace optim{
void setTermCriteria(const TermCriteria& termcrit);
double minimize(InputOutputArray x);
protected:
Ptr<Solver::Function> _Function;
Ptr<MinProblemSolver::Function> _Function;
TermCriteria _termcrit;
Mat _step;
Mat_<double> buf_x;
......@@ -157,8 +155,8 @@ namespace cv{namespace optim{
private:
inline void createInitialSimplex(Mat_<double>& simplex,Mat& step);
inline double innerDownhillSimplex(cv::Mat_<double>& p,double MinRange,double MinError,int& nfunk,
const Ptr<Solver::Function>& f,int nmax);
inline double tryNewPoint(Mat_<double>& p,Mat_<double>& y,Mat_<double>& coord_sum,const Ptr<Solver::Function>& f,int ihi,
const Ptr<MinProblemSolver::Function>& f,int nmax);
inline double tryNewPoint(Mat_<double>& p,Mat_<double>& y,Mat_<double>& coord_sum,const Ptr<MinProblemSolver::Function>& f,int ihi,
double fac,Mat_<double>& ptry);
};
......@@ -166,7 +164,7 @@ namespace cv{namespace optim{
Mat_<double>& p,
Mat_<double>& y,
Mat_<double>& coord_sum,
const Ptr<Solver::Function>& f,
const Ptr<MinProblemSolver::Function>& f,
int ihi,
double fac,
Mat_<double>& ptry
......@@ -197,7 +195,7 @@ namespace cv{namespace optim{
}
/*
Performs the actual minimization of Solver::Function f (after the initialization was done)
Performs the actual minimization of MinProblemSolver::Function f (after the initialization was done)
The matrix p[ndim+1][1..ndim] represents ndim+1 vertices that
form a simplex - each row is an ndim vector.
......@@ -208,7 +206,7 @@ namespace cv{namespace optim{
double MinRange,
double MinError,
int& nfunk,
const Ptr<Solver::Function>& f,
const Ptr<MinProblemSolver::Function>& f,
int nmax
)
{
......@@ -373,7 +371,7 @@ namespace cv{namespace optim{
_Function=Ptr<Function>();
_step=Mat_<double>();
}
Ptr<Solver::Function> DownhillSolverImpl::getFunction()const{
Ptr<MinProblemSolver::Function> DownhillSolverImpl::getFunction()const{
return _Function;
}
void DownhillSolverImpl::setFunction(const Ptr<Function>& f){
......@@ -387,12 +385,12 @@ namespace cv{namespace optim{
_termcrit=termcrit;
}
// both minRange & minError are specified by termcrit.epsilon; In addition, user may specify the number of iterations that the algorithm does.
Ptr<DownhillSolver> createDownhillSolver(const Ptr<Solver::Function>& f, InputArray initStep, TermCriteria termcrit){
DownhillSolver *DS=new DownhillSolverImpl();
Ptr<DownhillSolver> DownhillSolver::create(const Ptr<MinProblemSolver::Function>& f, InputArray initStep, TermCriteria termcrit){
Ptr<DownhillSolver> DS = makePtr<DownhillSolverImpl>();
DS->setFunction(f);
DS->setInitStep(initStep);
DS->setTermCriteria(termcrit);
return Ptr<DownhillSolver>(DS);
return DS;
}
void DownhillSolverImpl::getInitStep(OutputArray step)const{
_step.copyTo(step);
......@@ -408,4 +406,4 @@ namespace cv{namespace optim{
transpose(m,_step);
}
}
}}
}
This diff is collapsed.
This diff is collapsed.
......@@ -42,9 +42,12 @@
#include <climits>
#include <algorithm>
#include <cstdarg>
#include <debug.hpp>
namespace cv{namespace optim{
#define dprintf(x)
#define print_matrix(x)
namespace cv{
using std::vector;
#ifdef ALEX_DEBUG
......@@ -355,4 +358,4 @@ static inline void swap_columns(Mat_<double>& A,int col1,int col2){
A(i,col2)=tmp;
}
}
}}
}
......@@ -2959,341 +2959,6 @@ double Mat::dot(InputArray _mat) const
return r;
}
/****************************************************************************************\
* PCA *
\****************************************************************************************/
PCA::PCA() {}
PCA::PCA(InputArray data, InputArray _mean, int flags, int maxComponents)
{
operator()(data, _mean, flags, maxComponents);
}
PCA::PCA(InputArray data, InputArray _mean, int flags, double retainedVariance)
{
operator()(data, _mean, flags, retainedVariance);
}
PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, int maxComponents)
{
Mat data = _data.getMat(), _mean = __mean.getMat();
int covar_flags = CV_COVAR_SCALE;
int i, len, in_count;
Size mean_sz;
CV_Assert( data.channels() == 1 );
if( flags & CV_PCA_DATA_AS_COL )
{
len = data.rows;
in_count = data.cols;
covar_flags |= CV_COVAR_COLS;
mean_sz = Size(1, len);
}
else
{
len = data.cols;
in_count = data.rows;
covar_flags |= CV_COVAR_ROWS;
mean_sz = Size(len, 1);
}
int count = std::min(len, in_count), out_count = count;
if( maxComponents > 0 )
out_count = std::min(count, maxComponents);
// "scrambled" way to compute PCA (when cols(A)>rows(A)):
// B = A'A; B*x=b*x; C = AA'; C*y=c*y -> AA'*y=c*y -> A'A*(A'*y)=c*(A'*y) -> c = b, x=A'*y
if( len <= in_count )
covar_flags |= CV_COVAR_NORMAL;
int ctype = std::max(CV_32F, data.depth());
mean.create( mean_sz, ctype );
Mat covar( count, count, ctype );
if( !_mean.empty() )
{
CV_Assert( _mean.size() == mean_sz );
_mean.convertTo(mean, ctype);
covar_flags |= CV_COVAR_USE_AVG;
}
calcCovarMatrix( data, covar, mean, covar_flags, ctype );
eigen( covar, eigenvalues, eigenvectors );
if( !(covar_flags & CV_COVAR_NORMAL) )
{
// CV_PCA_DATA_AS_ROW: cols(A)>rows(A). x=A'*y -> x'=y'*A
// CV_PCA_DATA_AS_COL: rows(A)>cols(A). x=A''*y -> x'=y'*A'
Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols);
if( data.type() != ctype || tmp_mean.data == mean.data )
{
data.convertTo( tmp_data, ctype );
subtract( tmp_data, tmp_mean, tmp_data );
}
else
{
subtract( data, tmp_mean, tmp_mean );
tmp_data = tmp_mean;
}
Mat evects1(count, len, ctype);
gemm( eigenvectors, tmp_data, 1, Mat(), 0, evects1,
(flags & CV_PCA_DATA_AS_COL) ? CV_GEMM_B_T : 0);
eigenvectors = evects1;
// normalize eigenvectors
for( i = 0; i < out_count; i++ )
{
Mat vec = eigenvectors.row(i);
normalize(vec, vec);
}
}
if( count > out_count )
{
// use clone() to physically copy the data and thus deallocate the original matrices
eigenvalues = eigenvalues.rowRange(0,out_count).clone();
eigenvectors = eigenvectors.rowRange(0,out_count).clone();
}
return *this;
}
void PCA::write(FileStorage& fs ) const
{
CV_Assert( fs.isOpened() );
fs << "name" << "PCA";
fs << "vectors" << eigenvectors;
fs << "values" << eigenvalues;
fs << "mean" << mean;
}
void PCA::read(const FileNode& fs)
{
CV_Assert( !fs.empty() );
String name = (String)fs["name"];
CV_Assert( name == "PCA" );
cv::read(fs["vectors"], eigenvectors);
cv::read(fs["values"], eigenvalues);
cv::read(fs["mean"], mean);
}
template <typename T>
int computeCumulativeEnergy(const Mat& eigenvalues, double retainedVariance)
{
CV_DbgAssert( eigenvalues.type() == DataType<T>::type );
Mat g(eigenvalues.size(), DataType<T>::type);
for(int ig = 0; ig < g.rows; ig++)
{
g.at<T>(ig, 0) = 0;
for(int im = 0; im <= ig; im++)
{
g.at<T>(ig,0) += eigenvalues.at<T>(im,0);
}
}
int L;
for(L = 0; L < eigenvalues.rows; L++)
{
double energy = g.at<T>(L, 0) / g.at<T>(g.rows - 1, 0);
if(energy > retainedVariance)
break;
}
L = std::max(2, L);
return L;
}
PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, double retainedVariance)
{
Mat data = _data.getMat(), _mean = __mean.getMat();
int covar_flags = CV_COVAR_SCALE;
int i, len, in_count;
Size mean_sz;
CV_Assert( data.channels() == 1 );
if( flags & CV_PCA_DATA_AS_COL )
{
len = data.rows;
in_count = data.cols;
covar_flags |= CV_COVAR_COLS;
mean_sz = Size(1, len);
}
else
{
len = data.cols;
in_count = data.rows;
covar_flags |= CV_COVAR_ROWS;
mean_sz = Size(len, 1);
}
CV_Assert( retainedVariance > 0 && retainedVariance <= 1 );
int count = std::min(len, in_count);
// "scrambled" way to compute PCA (when cols(A)>rows(A)):
// B = A'A; B*x=b*x; C = AA'; C*y=c*y -> AA'*y=c*y -> A'A*(A'*y)=c*(A'*y) -> c = b, x=A'*y
if( len <= in_count )
covar_flags |= CV_COVAR_NORMAL;
int ctype = std::max(CV_32F, data.depth());
mean.create( mean_sz, ctype );
Mat covar( count, count, ctype );
if( !_mean.empty() )
{
CV_Assert( _mean.size() == mean_sz );
_mean.convertTo(mean, ctype);
}
calcCovarMatrix( data, covar, mean, covar_flags, ctype );
eigen( covar, eigenvalues, eigenvectors );
if( !(covar_flags & CV_COVAR_NORMAL) )
{
// CV_PCA_DATA_AS_ROW: cols(A)>rows(A). x=A'*y -> x'=y'*A
// CV_PCA_DATA_AS_COL: rows(A)>cols(A). x=A''*y -> x'=y'*A'
Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols);
if( data.type() != ctype || tmp_mean.data == mean.data )
{
data.convertTo( tmp_data, ctype );
subtract( tmp_data, tmp_mean, tmp_data );
}
else
{
subtract( data, tmp_mean, tmp_mean );
tmp_data = tmp_mean;
}
Mat evects1(count, len, ctype);
gemm( eigenvectors, tmp_data, 1, Mat(), 0, evects1,
(flags & CV_PCA_DATA_AS_COL) ? CV_GEMM_B_T : 0);
eigenvectors = evects1;
// normalize all eigenvectors
for( i = 0; i < eigenvectors.rows; i++ )
{
Mat vec = eigenvectors.row(i);
normalize(vec, vec);
}
}
// compute the cumulative energy content for each eigenvector
int L;
if (ctype == CV_32F)
L = computeCumulativeEnergy<float>(eigenvalues, retainedVariance);
else
L = computeCumulativeEnergy<double>(eigenvalues, retainedVariance);
// use clone() to physically copy the data and thus deallocate the original matrices
eigenvalues = eigenvalues.rowRange(0,L).clone();
eigenvectors = eigenvectors.rowRange(0,L).clone();
return *this;
}
void PCA::project(InputArray _data, OutputArray result) const
{
Mat data = _data.getMat();
CV_Assert( !mean.empty() && !eigenvectors.empty() &&
((mean.rows == 1 && mean.cols == data.cols) || (mean.cols == 1 && mean.rows == data.rows)));
Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols);
int ctype = mean.type();
if( data.type() != ctype || tmp_mean.data == mean.data )
{
data.convertTo( tmp_data, ctype );
subtract( tmp_data, tmp_mean, tmp_data );
}
else
{
subtract( data, tmp_mean, tmp_mean );
tmp_data = tmp_mean;
}
if( mean.rows == 1 )
gemm( tmp_data, eigenvectors, 1, Mat(), 0, result, GEMM_2_T );
else
gemm( eigenvectors, tmp_data, 1, Mat(), 0, result, 0 );
}
Mat PCA::project(InputArray data) const
{
Mat result;
project(data, result);
return result;
}
void PCA::backProject(InputArray _data, OutputArray result) const
{
Mat data = _data.getMat();
CV_Assert( !mean.empty() && !eigenvectors.empty() &&
((mean.rows == 1 && eigenvectors.rows == data.cols) ||
(mean.cols == 1 && eigenvectors.rows == data.rows)));
Mat tmp_data, tmp_mean;
data.convertTo(tmp_data, mean.type());
if( mean.rows == 1 )
{
tmp_mean = repeat(mean, data.rows, 1);
gemm( tmp_data, eigenvectors, 1, tmp_mean, 1, result, 0 );
}
else
{
tmp_mean = repeat(mean, 1, data.cols);
gemm( eigenvectors, tmp_data, 1, tmp_mean, 1, result, GEMM_1_T );
}
}
Mat PCA::backProject(InputArray data) const
{
Mat result;
backProject(data, result);
return result;
}
}
void cv::PCACompute(InputArray data, InputOutputArray mean,
OutputArray eigenvectors, int maxComponents)
{
PCA pca;
pca(data, mean, 0, maxComponents);
pca.mean.copyTo(mean);
pca.eigenvectors.copyTo(eigenvectors);
}
void cv::PCACompute(InputArray data, InputOutputArray mean,
OutputArray eigenvectors, double retainedVariance)
{
PCA pca;
pca(data, mean, 0, retainedVariance);
pca.mean.copyTo(mean);
pca.eigenvectors.copyTo(eigenvectors);
}
void cv::PCAProject(InputArray data, InputArray mean,
InputArray eigenvectors, OutputArray result)
{
PCA pca;
pca.mean = mean.getMat();
pca.eigenvectors = eigenvectors.getMat();
pca.project(data, result);
}
void cv::PCABackProject(InputArray data, InputArray mean,
InputArray eigenvectors, OutputArray result)
{
PCA pca;
pca.mean = mean.getMat();
pca.eigenvectors = eigenvectors.getMat();
pca.backProject(data, result);
}
/****************************************************************************************\
......
This diff is collapsed.
This diff is collapsed.
......@@ -41,7 +41,7 @@
#include "test_precomp.hpp"
#include <cstdlib>
static void mytest(cv::Ptr<cv::optim::ConjGradSolver> solver,cv::Ptr<cv::optim::Solver::Function> ptr_F,cv::Mat& x,
static void mytest(cv::Ptr<cv::ConjGradSolver> solver,cv::Ptr<cv::MinProblemSolver::Function> ptr_F,cv::Mat& x,
cv::Mat& etalon_x,double etalon_res){
solver->setFunction(ptr_F);
//int ndim=MAX(step.cols,step.rows);
......@@ -58,7 +58,7 @@ static void mytest(cv::Ptr<cv::optim::ConjGradSolver> solver,cv::Ptr<cv::optim::
std::cout<<"--------------------------\n";
}
class SphereF:public cv::optim::Solver::Function{
class SphereF:public cv::MinProblemSolver::Function{
public:
double calc(const double* x)const{
return x[0]*x[0]+x[1]*x[1]+x[2]*x[2]+x[3]*x[3];
......@@ -69,7 +69,7 @@ public:
}
}
};
class RosenbrockF:public cv::optim::Solver::Function{
class RosenbrockF:public cv::MinProblemSolver::Function{
double calc(const double* x)const{
return 100*(x[1]-x[0]*x[0])*(x[1]-x[0]*x[0])+(1-x[0])*(1-x[0]);
}
......@@ -80,10 +80,10 @@ class RosenbrockF:public cv::optim::Solver::Function{
};
TEST(Optim_ConjGrad, regression_basic){
cv::Ptr<cv::optim::ConjGradSolver> solver=cv::optim::createConjGradSolver();
cv::Ptr<cv::ConjGradSolver> solver=cv::ConjGradSolver::create();
#if 1
{
cv::Ptr<cv::optim::Solver::Function> ptr_F(new SphereF());
cv::Ptr<cv::MinProblemSolver::Function> ptr_F(new SphereF());
cv::Mat x=(cv::Mat_<double>(4,1)<<50.0,10.0,1.0,-10.0),
etalon_x=(cv::Mat_<double>(1,4)<<0.0,0.0,0.0,0.0);
double etalon_res=0.0;
......@@ -92,7 +92,7 @@ TEST(Optim_ConjGrad, regression_basic){
#endif
#if 1
{
cv::Ptr<cv::optim::Solver::Function> ptr_F(new RosenbrockF());
cv::Ptr<cv::MinProblemSolver::Function> ptr_F(new RosenbrockF());
cv::Mat x=(cv::Mat_<double>(2,1)<<0.0,0.0),
etalon_x=(cv::Mat_<double>(2,1)<<1.0,1.0);
double etalon_res=0.0;
......
......@@ -43,7 +43,7 @@
#include <cmath>
#include <algorithm>
static void mytest(cv::Ptr<cv::optim::DownhillSolver> solver,cv::Ptr<cv::optim::Solver::Function> ptr_F,cv::Mat& x,cv::Mat& step,
static void mytest(cv::Ptr<cv::DownhillSolver> solver,cv::Ptr<cv::MinProblemSolver::Function> ptr_F,cv::Mat& x,cv::Mat& step,
cv::Mat& etalon_x,double etalon_res){
solver->setFunction(ptr_F);
int ndim=MAX(step.cols,step.rows);
......@@ -66,23 +66,23 @@ static void mytest(cv::Ptr<cv::optim::DownhillSolver> solver,cv::Ptr<cv::optim::
std::cout<<"--------------------------\n";
}
class SphereF:public cv::optim::Solver::Function{
class SphereF:public cv::MinProblemSolver::Function{
public:
double calc(const double* x)const{
return x[0]*x[0]+x[1]*x[1];
}
};
class RosenbrockF:public cv::optim::Solver::Function{
class RosenbrockF:public cv::MinProblemSolver::Function{
double calc(const double* x)const{
return 100*(x[1]-x[0]*x[0])*(x[1]-x[0]*x[0])+(1-x[0])*(1-x[0]);
}
};
TEST(Optim_Downhill, regression_basic){
cv::Ptr<cv::optim::DownhillSolver> solver=cv::optim::createDownhillSolver();
cv::Ptr<cv::DownhillSolver> solver=cv::DownhillSolver::create();
#if 1
{
cv::Ptr<cv::optim::Solver::Function> ptr_F(new SphereF());
cv::Ptr<cv::MinProblemSolver::Function> ptr_F = cv::makePtr<SphereF>();
cv::Mat x=(cv::Mat_<double>(1,2)<<1.0,1.0),
step=(cv::Mat_<double>(2,1)<<-0.5,-0.5),
etalon_x=(cv::Mat_<double>(1,2)<<-0.0,0.0);
......@@ -92,7 +92,7 @@ TEST(Optim_Downhill, regression_basic){
#endif
#if 1
{
cv::Ptr<cv::optim::Solver::Function> ptr_F(new RosenbrockF());
cv::Ptr<cv::MinProblemSolver::Function> ptr_F = cv::makePtr<RosenbrockF>();
cv::Mat x=(cv::Mat_<double>(2,1)<<0.0,0.0),
step=(cv::Mat_<double>(2,1)<<0.5,+0.5),
etalon_x=(cv::Mat_<double>(2,1)<<1.0,1.0);
......
......@@ -49,7 +49,7 @@ TEST(Optim_LpSolver, regression_basic){
A=(cv::Mat_<double>(3,1)<<3,1,2);
B=(cv::Mat_<double>(3,4)<<1,1,3,30,2,2,5,24,4,1,2,36);
std::cout<<"here A goes\n"<<A<<"\n";
cv::optim::solveLP(A,B,z);
cv::solveLP(A,B,z);
std::cout<<"here z goes\n"<<z<<"\n";
etalon_z=(cv::Mat_<double>(3,1)<<8,4,0);
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0);
......@@ -60,7 +60,7 @@ TEST(Optim_LpSolver, regression_basic){
A=(cv::Mat_<double>(1,2)<<18,12.5);
B=(cv::Mat_<double>(3,3)<<1,1,20,1,0,20,0,1,16);
std::cout<<"here A goes\n"<<A<<"\n";
cv::optim::solveLP(A,B,z);
cv::solveLP(A,B,z);
std::cout<<"here z goes\n"<<z<<"\n";
etalon_z=(cv::Mat_<double>(2,1)<<20,0);
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0);
......@@ -71,7 +71,7 @@ TEST(Optim_LpSolver, regression_basic){
A=(cv::Mat_<double>(1,2)<<5,-3);
B=(cv::Mat_<double>(2,3)<<1,-1,1,2,1,2);
std::cout<<"here A goes\n"<<A<<"\n";
cv::optim::solveLP(A,B,z);
cv::solveLP(A,B,z);
std::cout<<"here z goes\n"<<z<<"\n";
etalon_z=(cv::Mat_<double>(2,1)<<1,0);
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0);
......@@ -86,7 +86,7 @@ TEST(Optim_LpSolver, regression_init_unfeasible){
A=(cv::Mat_<double>(1,3)<<-1,-1,-1);
B=(cv::Mat_<double>(2,4)<<-2,-7.5,-3,-10000,-20,-5,-10,-30000);
std::cout<<"here A goes\n"<<A<<"\n";
cv::optim::solveLP(A,B,z);
cv::solveLP(A,B,z);
std::cout<<"here z goes\n"<<z<<"\n";
etalon_z=(cv::Mat_<double>(3,1)<<1250,1000,0);
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0);
......@@ -101,7 +101,7 @@ TEST(Optim_LpSolver, regression_absolutely_unfeasible){
A=(cv::Mat_<double>(1,1)<<1);
B=(cv::Mat_<double>(2,2)<<1,-1);
std::cout<<"here A goes\n"<<A<<"\n";
int res=cv::optim::solveLP(A,B,z);
int res=cv::solveLP(A,B,z);
ASSERT_EQ(res,-1);
#endif
}
......@@ -114,7 +114,7 @@ TEST(Optim_LpSolver, regression_multiple_solutions){
A=(cv::Mat_<double>(2,1)<<1,1);
B=(cv::Mat_<double>(1,3)<<1,1,1);
std::cout<<"here A goes\n"<<A<<"\n";
int res=cv::optim::solveLP(A,B,z);
int res=cv::solveLP(A,B,z);
printf("res=%d\n",res);
printf("scalar %g\n",z.dot(A));
std::cout<<"here z goes\n"<<z<<"\n";
......@@ -131,7 +131,7 @@ TEST(Optim_LpSolver, regression_cycling){
A=(cv::Mat_<double>(4,1)<<10,-57,-9,-24);
B=(cv::Mat_<double>(3,5)<<0.5,-5.5,-2.5,9,0,0.5,-1.5,-0.5,1,0,1,0,0,0,1);
std::cout<<"here A goes\n"<<A<<"\n";
int res=cv::optim::solveLP(A,B,z);
int res=cv::solveLP(A,B,z);
printf("res=%d\n",res);
printf("scalar %g\n",z.dot(A));
std::cout<<"here z goes\n"<<z<<"\n";
......
......@@ -3,28 +3,6 @@
using namespace cv;
using namespace std;
TEST(Core_Drawing, _914)
{
const int rows = 256;
const int cols = 256;
Mat img(rows, cols, CV_8UC1, Scalar(255));
line(img, Point(0, 10), Point(255, 10), Scalar(0), 2, 4);
line(img, Point(-5, 20), Point(260, 20), Scalar(0), 2, 4);
line(img, Point(10, 0), Point(10, 255), Scalar(0), 2, 4);
double x0 = 0.0/pow(2.0, -2.0);
double x1 = 255.0/pow(2.0, -2.0);
double y = 30.5/pow(2.0, -2.0);
line(img, Point(int(x0), int(y)), Point(int(x1), int(y)), Scalar(0), 2, 4, 2);
int pixelsDrawn = rows*cols - countNonZero(img);
ASSERT_EQ( (3*rows + cols)*3 - 3*9, pixelsDrawn);
}
TEST(Core_OutputArrayCreate, _1997)
{
struct local {
......
This diff is collapsed.
......@@ -10,6 +10,7 @@ imgproc. Image Processing
filtering
geometric_transformations
miscellaneous_transformations
drawing_functions
colormaps
histograms
structural_analysis_and_shape_descriptors
......
This diff is collapsed.
......@@ -1945,6 +1945,7 @@ static const int* getFontData(int fontFace)
return ascii;
}
extern const char* g_HersheyGlyphs[];
void putText( InputOutputArray _img, const String& text, Point org,
int fontFace, double fontScale, Scalar color,
......
This diff is collapsed.
This diff is collapsed.
......@@ -78,38 +78,6 @@ extern const float icv8x32fTab_cv[];
extern const float icv8x32fSqrTab[];
#define CV_8TO32F_SQR(x) icv8x32fSqrTab[(x)+128]
namespace cv
{
static inline Point normalizeAnchor( Point anchor, Size ksize )
{
if( anchor.x == -1 )
anchor.x = ksize.width/2;
if( anchor.y == -1 )
anchor.y = ksize.height/2;
CV_Assert( anchor.inside(Rect(0, 0, ksize.width, ksize.height)) );
return anchor;
}
void preprocess2DKernel( const Mat& kernel, std::vector<Point>& coords, std::vector<uchar>& coeffs );
void crossCorr( const Mat& src, const Mat& templ, Mat& dst,
Size corrsize, int ctype,
Point anchor=Point(0,0), double delta=0,
int borderType=BORDER_REFLECT_101 );
}
typedef struct CvPyramid
{
uchar **ptr;
CvSize *sz;
double *rate;
int *step;
uchar *state;
int level;
}
CvPyramid;
#define CV_COPY( dst, src, len, idx ) \
for( (idx) = 0; (idx) < (len); (idx)++) (dst)[idx] = (src)[idx]
......@@ -123,5 +91,6 @@ CvPyramid;
#define CV_CALC_MAX(a, b) if((a) < (b)) (a) = (b)
#include "_geom.h"
#include "filterengine.hpp"
#endif /*__OPENCV_CV_INTERNAL_H_*/
set(the_description "Generic optimization")
ocv_define_module(optim opencv_core)
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
#include "test_precomp.hpp"
CV_TEST_MAIN("cv")
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment