Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
24930839
Commit
24930839
authored
Jan 23, 2018
by
Li Peng
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
mvn, batch_norm and relu layer fusion
Signed-off-by:
Li Peng
<
peng.li@intel.com
>
parent
e15928b4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
75 additions
and
13 deletions
+75
-13
dnn.cpp
modules/dnn/src/dnn.cpp
+2
-1
batch_norm_layer.cpp
modules/dnn/src/layers/batch_norm_layer.cpp
+6
-3
mvn_layer.cpp
modules/dnn/src/layers/mvn_layer.cpp
+49
-9
mvn.cl
modules/dnn/src/opencl/mvn.cl
+18
-0
No files found.
modules/dnn/src/dnn.cpp
View file @
24930839
...
...
@@ -1190,7 +1190,8 @@ struct Net::Impl
// TODO: OpenCL target support more fusion styles.
if
(
preferableTarget
==
DNN_TARGET_OPENCL
&&
(
!
cv
::
ocl
::
useOpenCL
()
||
ld
.
layerInstance
->
type
.
compare
(
"Convolution"
))
)
(
!
cv
::
ocl
::
useOpenCL
()
||
(
ld
.
layerInstance
->
type
!=
"Convolution"
&&
ld
.
layerInstance
->
type
!=
"MVN"
))
)
continue
;
Ptr
<
Layer
>&
currLayer
=
ld
.
layerInstance
;
...
...
modules/dnn/src/layers/batch_norm_layer.cpp
View file @
24930839
...
...
@@ -81,9 +81,6 @@ public:
dstWeightsData
[
i
]
=
w
;
dstBiasData
[
i
]
=
(
hasBias
?
biasData
[
i
]
:
0.0
f
)
-
w
*
meanData
[
i
]
*
varMeanScale
;
}
umat_weight
=
weights_
.
getUMat
(
ACCESS_READ
);
umat_bias
=
bias_
.
getUMat
(
ACCESS_READ
);
}
void
getScaleShift
(
Mat
&
scale
,
Mat
&
shift
)
const
...
...
@@ -119,6 +116,12 @@ public:
CV_Assert
(
blobs
.
size
()
>=
2
);
CV_Assert
(
inputs
.
size
()
==
1
);
if
(
umat_weight
.
empty
())
{
umat_weight
=
weights_
.
getUMat
(
ACCESS_READ
);
umat_bias
=
bias_
.
getUMat
(
ACCESS_READ
);
}
UMat
&
inpBlob
=
inputs
[
0
];
CV_Assert
(
inpBlob
.
dims
==
2
||
inpBlob
.
dims
==
4
);
int
groups
=
inpBlob
.
size
[
0
];
...
...
modules/dnn/src/layers/mvn_layer.cpp
View file @
24930839
...
...
@@ -60,6 +60,36 @@ public:
normVariance
=
params
.
get
<
bool
>
(
"normalize_variance"
,
true
);
acrossChannels
=
params
.
get
<
bool
>
(
"across_channels"
,
false
);
eps
=
params
.
get
<
double
>
(
"eps"
,
1e-9
);
fuse_batch_norm
=
false
;
fuse_relu
=
false
;
relu_slope
=
0.
f
;
}
Ptr
<
BatchNormLayer
>
bnorm
;
Mat
scale
,
shift
;
UMat
bnorm_weight
,
bnorm_bias
;
bool
fuse_batch_norm
;
bool
setBatchNorm
(
const
Ptr
<
BatchNormLayer
>&
layer
)
{
bnorm
=
layer
;
fuse_batch_norm
=
!
bnorm
.
empty
()
&&
(
preferableTarget
==
DNN_TARGET_OPENCL
);
return
fuse_batch_norm
;
}
Ptr
<
ReLULayer
>
activ_relu
;
float
relu_slope
;
bool
fuse_relu
;
bool
setActivation
(
const
Ptr
<
ActivationLayer
>&
layer
)
{
if
(
!
layer
.
empty
()
&&
preferableTarget
==
DNN_TARGET_OPENCL
)
{
activ_relu
=
layer
.
dynamicCast
<
ReLULayer
>
();
if
(
!
activ_relu
.
empty
()
)
relu_slope
=
activ_relu
->
negativeSlope
;
}
fuse_relu
=
!
activ_relu
.
empty
();
return
fuse_relu
;
}
#ifdef HAVE_OPENCL
...
...
@@ -71,19 +101,24 @@ public:
inputs_
.
getUMatVector
(
inputs
);
outputs_
.
getUMatVector
(
outputs
);
if
(
fuse_batch_norm
&&
scale
.
empty
())
{
bnorm
->
getScaleShift
(
scale
,
shift
);
bnorm_weight
=
scale
.
getUMat
(
ACCESS_READ
);
bnorm_bias
=
shift
.
getUMat
(
ACCESS_READ
);
}
for
(
size_t
inpIdx
=
0
;
inpIdx
<
inputs
.
size
();
inpIdx
++
)
{
UMat
&
inp
Blob
=
inputs
[
inpIdx
];
UMat
&
out
Blob
=
outputs
[
inpIdx
];
UMat
&
inp
Mat
=
inputs
[
inpIdx
];
UMat
&
out
Mat
=
outputs
[
inpIdx
];
int
splitDim
=
(
acrossChannels
)
?
1
:
2
;
int
i
,
newRows
=
1
;
for
(
i
=
0
;
i
<
splitDim
;
i
++
)
newRows
*=
inp
Blob
.
size
[
i
];
newRows
*=
inp
Mat
.
size
[
i
];
MatShape
s
=
shape
(
newRows
,
inpBlob
.
total
()
/
newRows
);
UMat
&
inpMat
=
inpBlob
;
UMat
&
outMat
=
outBlob
;
MatShape
s
=
shape
(
newRows
,
inpMat
.
total
()
/
newRows
);
UMat
oneMat
=
UMat
::
ones
(
s
[
1
],
1
,
CV_32F
);
UMat
meanMat
=
UMat
(
s
[
0
],
1
,
CV_32F
);
UMat
devMat
=
UMat
(
s
[
0
],
1
,
CV_32F
);
...
...
@@ -121,8 +156,9 @@ public:
}
String
kname
=
format
(
"mvn%d"
,
number
);
if
(
normVariance
)
buildopt
+=
"-DNORM_VARIANCE"
;
buildopt
+=
format
(
"%s %s %s "
,
(
normVariance
)
?
"-DNORM_VARIANCE"
:
""
,
(
fuse_batch_norm
)
?
"-DFUSE_BATCH_NORM"
:
""
,
(
fuse_relu
)
?
"-DFUSE_RELU"
:
""
);
ocl
::
Kernel
kernel1
(
kname
.
c_str
(),
ocl
::
dnn
::
mvn_oclsrc
,
buildopt
);
if
(
kernel1
.
empty
())
return
false
;
...
...
@@ -132,7 +168,11 @@ public:
kernel1
.
set
(
3
,
(
float
)
eps
);
kernel1
.
set
(
4
,
ocl
::
KernelArg
::
PtrReadOnly
(
meanMat
));
kernel1
.
set
(
5
,
ocl
::
KernelArg
::
PtrReadOnly
(
devMat
));
kernel1
.
set
(
6
,
ocl
::
KernelArg
::
PtrWriteOnly
(
outMat
));
kernel1
.
set
(
6
,
ocl
::
KernelArg
::
PtrReadOnly
(
bnorm_weight
));
kernel1
.
set
(
7
,
ocl
::
KernelArg
::
PtrReadOnly
(
bnorm_bias
));
kernel1
.
set
(
8
,
(
int
)
inpMat
.
size
[
1
]);
kernel1
.
set
(
9
,
(
float
)
relu_slope
);
kernel1
.
set
(
10
,
ocl
::
KernelArg
::
PtrWriteOnly
(
outMat
));
ret
=
kernel1
.
run
(
2
,
global
,
NULL
,
false
);
if
(
!
ret
)
return
false
;
...
...
modules/dnn/src/opencl/mvn.cl
View file @
24930839
...
...
@@ -89,6 +89,10 @@ __kernel void MVN(__global const Dtype* src,
const Dtype eps,
__global const Dtype* mean,
__global const Dtype* dev,
__global const Dtype* bnorm_weight,
__global const Dtype* bnorm_bias,
const int channels,
const float relu_slope,
__global Dtype* dst)
{
int x = get_global_id(0);
...
...
@@ -106,7 +110,21 @@ __kernel void MVN(__global const Dtype* src,
#
else
alpha
=
1
;
#
endif
Dtype
w
=
1.f,
b
=
0.f
;
#
ifdef
FUSE_BATCH_NORM
w
=
bnorm_weight[x
%
channels]
;
b
=
bnorm_bias[x
%
channels]
;
#
endif
vec_type
src_vec
=
load
(
src,
index
)
-
(
vec_type
)
mean_val
;
vec_type
dst_vec
=
src_vec
*
alpha
;
dst_vec
=
dst_vec
*
w
+
(
vec_type
)
b
;
#
ifdef
FUSE_RELU
vec_type
new_val
=
dst_vec
*
relu_slope
;
dst_vec
=
select
(
new_val,
dst_vec,
dst_vec
>
(
vec_type
)
0.f
)
;
#
endif
store
(
dst_vec,
dst,
index
)
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment