Commit 24930839 authored by Li Peng's avatar Li Peng

mvn, batch_norm and relu layer fusion

Signed-off-by: 's avatarLi Peng <peng.li@intel.com>
parent e15928b4
......@@ -1190,7 +1190,8 @@ struct Net::Impl
// TODO: OpenCL target support more fusion styles.
if ( preferableTarget == DNN_TARGET_OPENCL &&
(!cv::ocl::useOpenCL() || ld.layerInstance->type.compare("Convolution")) )
(!cv::ocl::useOpenCL() || (ld.layerInstance->type != "Convolution" &&
ld.layerInstance->type != "MVN")) )
continue;
Ptr<Layer>& currLayer = ld.layerInstance;
......
......@@ -81,9 +81,6 @@ public:
dstWeightsData[i] = w;
dstBiasData[i] = (hasBias ? biasData[i] : 0.0f) - w * meanData[i] * varMeanScale;
}
umat_weight = weights_.getUMat(ACCESS_READ);
umat_bias = bias_.getUMat(ACCESS_READ);
}
void getScaleShift(Mat& scale, Mat& shift) const
......@@ -119,6 +116,12 @@ public:
CV_Assert(blobs.size() >= 2);
CV_Assert(inputs.size() == 1);
if (umat_weight.empty())
{
umat_weight = weights_.getUMat(ACCESS_READ);
umat_bias = bias_.getUMat(ACCESS_READ);
}
UMat &inpBlob = inputs[0];
CV_Assert(inpBlob.dims == 2 || inpBlob.dims == 4);
int groups = inpBlob.size[0];
......
......@@ -60,6 +60,36 @@ public:
normVariance = params.get<bool>("normalize_variance", true);
acrossChannels = params.get<bool>("across_channels", false);
eps = params.get<double>("eps", 1e-9);
fuse_batch_norm = false;
fuse_relu = false;
relu_slope = 0.f;
}
Ptr<BatchNormLayer> bnorm;
Mat scale, shift;
UMat bnorm_weight, bnorm_bias;
bool fuse_batch_norm;
bool setBatchNorm(const Ptr<BatchNormLayer>& layer )
{
bnorm = layer;
fuse_batch_norm = !bnorm.empty() && (preferableTarget == DNN_TARGET_OPENCL);
return fuse_batch_norm;
}
Ptr<ReLULayer> activ_relu;
float relu_slope;
bool fuse_relu;
bool setActivation(const Ptr<ActivationLayer>& layer)
{
if (!layer.empty() && preferableTarget == DNN_TARGET_OPENCL)
{
activ_relu = layer.dynamicCast<ReLULayer>();
if( !activ_relu.empty() )
relu_slope = activ_relu->negativeSlope;
}
fuse_relu = !activ_relu.empty();
return fuse_relu;
}
#ifdef HAVE_OPENCL
......@@ -71,19 +101,24 @@ public:
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
if( fuse_batch_norm && scale.empty())
{
bnorm->getScaleShift(scale, shift);
bnorm_weight = scale.getUMat(ACCESS_READ);
bnorm_bias = shift.getUMat(ACCESS_READ);
}
for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++)
{
UMat &inpBlob = inputs[inpIdx];
UMat &outBlob = outputs[inpIdx];
UMat &inpMat = inputs[inpIdx];
UMat &outMat = outputs[inpIdx];
int splitDim = (acrossChannels) ? 1 : 2;
int i, newRows = 1;
for( i = 0; i < splitDim; i++ )
newRows *= inpBlob.size[i];
newRows *= inpMat.size[i];
MatShape s = shape(newRows, inpBlob.total() / newRows);
UMat& inpMat = inpBlob;
UMat& outMat = outBlob;
MatShape s = shape(newRows, inpMat.total() / newRows);
UMat oneMat = UMat::ones(s[1], 1, CV_32F);
UMat meanMat = UMat(s[0], 1, CV_32F);
UMat devMat = UMat(s[0], 1, CV_32F);
......@@ -121,8 +156,9 @@ public:
}
String kname = format("mvn%d", number);
if (normVariance)
buildopt += "-DNORM_VARIANCE";
buildopt += format("%s %s %s ", (normVariance) ? "-DNORM_VARIANCE" : "",
(fuse_batch_norm) ? "-DFUSE_BATCH_NORM" : "",
(fuse_relu) ? "-DFUSE_RELU" : "");
ocl::Kernel kernel1(kname.c_str(), ocl::dnn::mvn_oclsrc, buildopt);
if (kernel1.empty())
return false;
......@@ -132,7 +168,11 @@ public:
kernel1.set(3, (float)eps);
kernel1.set(4, ocl::KernelArg::PtrReadOnly(meanMat));
kernel1.set(5, ocl::KernelArg::PtrReadOnly(devMat));
kernel1.set(6, ocl::KernelArg::PtrWriteOnly(outMat));
kernel1.set(6, ocl::KernelArg::PtrReadOnly(bnorm_weight));
kernel1.set(7, ocl::KernelArg::PtrReadOnly(bnorm_bias));
kernel1.set(8, (int)inpMat.size[1]);
kernel1.set(9, (float)relu_slope);
kernel1.set(10, ocl::KernelArg::PtrWriteOnly(outMat));
ret = kernel1.run(2, global, NULL, false);
if (!ret)
return false;
......
......@@ -89,6 +89,10 @@ __kernel void MVN(__global const Dtype* src,
const Dtype eps,
__global const Dtype* mean,
__global const Dtype* dev,
__global const Dtype* bnorm_weight,
__global const Dtype* bnorm_bias,
const int channels,
const float relu_slope,
__global Dtype* dst)
{
int x = get_global_id(0);
......@@ -106,7 +110,21 @@ __kernel void MVN(__global const Dtype* src,
#else
alpha = 1;
#endif
Dtype w = 1.f, b = 0.f;
#ifdef FUSE_BATCH_NORM
w = bnorm_weight[x % channels];
b = bnorm_bias[x % channels];
#endif
vec_type src_vec = load(src, index) - (vec_type)mean_val;
vec_type dst_vec = src_vec * alpha;
dst_vec = dst_vec * w + (vec_type)b;
#ifdef FUSE_RELU
vec_type new_val = dst_vec * relu_slope;
dst_vec = select(new_val, dst_vec, dst_vec > (vec_type)0.f);
#endif
store(dst_vec, dst, index);
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment