Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
21390d80
Commit
21390d80
authored
Sep 19, 2013
by
Ovidiu Parvu
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Removed non-ASCII characters from the comments
parent
73f476bd
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
4 additions
and
4 deletions
+4
-4
min_enclosing_triangle.cpp
modules/imgproc/src/min_enclosing_triangle.cpp
+4
-4
No files found.
modules/imgproc/src/min_enclosing_triangle.cpp
View file @
21390d80
...
@@ -20,10 +20,10 @@
...
@@ -20,10 +20,10 @@
//
//
// THE IMPLEMENTATION OF THE MODULES IS BASED ON THE FOLLOWING PAPERS:
// THE IMPLEMENTATION OF THE MODULES IS BASED ON THE FOLLOWING PAPERS:
//
//
// [1] V. Klee and M. C. Laskowski,
“
Finding the smallest triangles containing a given convex
// [1] V. Klee and M. C. Laskowski,
"
Finding the smallest triangles containing a given convex
// polygon
”, Journal of Algorithms, vol. 6, no. 3, pp. 359–
375, Sep. 1985.
// polygon
", Journal of Algorithms, vol. 6, no. 3, pp. 359-
375, Sep. 1985.
// [2] J. O
’Rourke, A. Aggarwal, S. Maddila, and M. Baldwin, “
An optimal algorithm for finding
// [2] J. O
'Rourke, A. Aggarwal, S. Maddila, and M. Baldwin, "
An optimal algorithm for finding
// minimal enclosing triangles
”, Journal of Algorithms, vol. 7, no. 2, pp. 258–
269, Jun. 1986.
// minimal enclosing triangles
", Journal of Algorithms, vol. 7, no. 2, pp. 258-
269, Jun. 1986.
//
//
// The overall complexity of the algorithm is theta(n) where "n" represents the number
// The overall complexity of the algorithm is theta(n) where "n" represents the number
// of vertices in the convex polygon.
// of vertices in the convex polygon.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment