Commit 2055bcc8 authored by Cartucho's avatar Cartucho Committed by Maksim Shabunin

Extending template_matching tutorial with Java (#8043)

* Extending template_matching tutorial with Java

* adding mask to java version of the tutorial

* adding the python toggle and code

* updating table of content

* adding py and java to table of content

* adding mask to python

* going back to markdown with duplicated text

* non duplicated text
parent 3b669149
...@@ -67,7 +67,7 @@ $("h2").each(function() { ...@@ -67,7 +67,7 @@ $("h2").each(function() {
$smallerHeadings = $(this).nextUntil("h2").filter("h3").add($(this).nextUntil("h2").find("h3")); $smallerHeadings = $(this).nextUntil("h2").filter("h3").add($(this).nextUntil("h2").find("h3"));
if ($smallerHeadings.length) { if ($smallerHeadings.length) {
$smallerHeadings.each(function() { $smallerHeadings.each(function() {
var $elements = $(this).nextUntil("h3").filter("div.newInnerHTML"); var $elements = $(this).nextUntil("h2,h3").filter("div.newInnerHTML");
buttonsToAdd($elements, $(this), "h3"); buttonsToAdd($elements, $(this), "h3");
}); });
} else { } else {
......
...@@ -173,6 +173,8 @@ In this section you will learn about the image processing (manipulation) functio ...@@ -173,6 +173,8 @@ In this section you will learn about the image processing (manipulation) functio
- @subpage tutorial_template_matching - @subpage tutorial_template_matching
*Languages:* C++, Java, Python
*Compatibility:* \> OpenCV 2.0 *Compatibility:* \> OpenCV 2.0
*Author:* Ana Huamán *Author:* Ana Huamán
......
...@@ -12,6 +12,7 @@ ...@@ -12,6 +12,7 @@
using namespace std; using namespace std;
using namespace cv; using namespace cv;
//! [declare]
/// Global Variables /// Global Variables
bool use_mask; bool use_mask;
Mat img; Mat templ; Mat mask; Mat result; Mat img; Mat templ; Mat mask; Mat result;
...@@ -20,6 +21,7 @@ const char* result_window = "Result window"; ...@@ -20,6 +21,7 @@ const char* result_window = "Result window";
int match_method; int match_method;
int max_Trackbar = 5; int max_Trackbar = 5;
//! [declare]
/// Function Headers /// Function Headers
void MatchingMethod( int, void* ); void MatchingMethod( int, void* );
...@@ -36,6 +38,7 @@ int main( int argc, char** argv ) ...@@ -36,6 +38,7 @@ int main( int argc, char** argv )
return -1; return -1;
} }
//! [load_image]
/// Load image and template /// Load image and template
img = imread( argv[1], IMREAD_COLOR ); img = imread( argv[1], IMREAD_COLOR );
templ = imread( argv[2], IMREAD_COLOR ); templ = imread( argv[2], IMREAD_COLOR );
...@@ -50,19 +53,26 @@ int main( int argc, char** argv ) ...@@ -50,19 +53,26 @@ int main( int argc, char** argv )
cout << "Can't read one of the images" << endl; cout << "Can't read one of the images" << endl;
return -1; return -1;
} }
//! [load_image]
//! [create_windows]
/// Create windows /// Create windows
namedWindow( image_window, WINDOW_AUTOSIZE ); namedWindow( image_window, WINDOW_AUTOSIZE );
namedWindow( result_window, WINDOW_AUTOSIZE ); namedWindow( result_window, WINDOW_AUTOSIZE );
//! [create_windows]
//! [create_trackbar]
/// Create Trackbar /// Create Trackbar
const char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED"; const char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED";
createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod ); createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod );
//! [create_trackbar]
MatchingMethod( 0, 0 ); MatchingMethod( 0, 0 );
//! [wait_key]
waitKey(0); waitKey(0);
return 0; return 0;
//! [wait_key]
} }
/** /**
...@@ -71,44 +81,57 @@ int main( int argc, char** argv ) ...@@ -71,44 +81,57 @@ int main( int argc, char** argv )
*/ */
void MatchingMethod( int, void* ) void MatchingMethod( int, void* )
{ {
//! [copy_source]
/// Source image to display /// Source image to display
Mat img_display; Mat img_display;
img.copyTo( img_display ); img.copyTo( img_display );
//! [copy_source]
//! [create_result_matrix]
/// Create the result matrix /// Create the result matrix
int result_cols = img.cols - templ.cols + 1; int result_cols = img.cols - templ.cols + 1;
int result_rows = img.rows - templ.rows + 1; int result_rows = img.rows - templ.rows + 1;
result.create( result_rows, result_cols, CV_32FC1 ); result.create( result_rows, result_cols, CV_32FC1 );
//! [create_result_matrix]
//! [match_template]
/// Do the Matching and Normalize /// Do the Matching and Normalize
bool method_accepts_mask = (CV_TM_SQDIFF == match_method || match_method == CV_TM_CCORR_NORMED); bool method_accepts_mask = (CV_TM_SQDIFF == match_method || match_method == CV_TM_CCORR_NORMED);
if (use_mask && method_accepts_mask) if (use_mask && method_accepts_mask)
{ matchTemplate( img, templ, result, match_method, mask); } { matchTemplate( img, templ, result, match_method, mask); }
else else
{ matchTemplate( img, templ, result, match_method); } { matchTemplate( img, templ, result, match_method); }
//! [match_template]
//! [normalize]
normalize( result, result, 0, 1, NORM_MINMAX, -1, Mat() ); normalize( result, result, 0, 1, NORM_MINMAX, -1, Mat() );
//! [normalize]
//! [best_match]
/// Localizing the best match with minMaxLoc /// Localizing the best match with minMaxLoc
double minVal; double maxVal; Point minLoc; Point maxLoc; double minVal; double maxVal; Point minLoc; Point maxLoc;
Point matchLoc; Point matchLoc;
minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() ); minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() );
//! [best_match]
//! [match_loc]
/// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better /// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
if( match_method == TM_SQDIFF || match_method == TM_SQDIFF_NORMED ) if( match_method == TM_SQDIFF || match_method == TM_SQDIFF_NORMED )
{ matchLoc = minLoc; } { matchLoc = minLoc; }
else else
{ matchLoc = maxLoc; } { matchLoc = maxLoc; }
//! [match_loc]
//! [imshow]
/// Show me what you got /// Show me what you got
rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 ); rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 ); rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
imshow( image_window, img_display ); imshow( image_window, img_display );
imshow( result_window, result ); imshow( result_window, result );
//! [imshow]
return; return;
} }
import org.opencv.core.*;
import org.opencv.core.Point;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import javax.swing.*;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferByte;
import java.util.*;
class MatchTemplateDemoRun implements ChangeListener{
//! [declare]
/// Global Variables
Boolean use_mask = false;
Mat img = new Mat(), templ = new Mat();
Mat mask = new Mat();
int match_method;
JLabel imgDisplay = new JLabel(), resultDisplay = new JLabel();
//! [declare]
public void run(String[] args) {
if (args.length < 2)
{
System.out.println("Not enough parameters");
System.out.println("Program arguments:\n<image_name> <template_name> [<mask_name>]");
System.exit(-1);
}
//! [load_image]
/// Load image and template
img = Imgcodecs.imread( args[0], Imgcodecs.IMREAD_COLOR );
templ = Imgcodecs.imread( args[1], Imgcodecs.IMREAD_COLOR );
//! [load_image]
if(args.length > 2) {
use_mask = true;
mask = Imgcodecs.imread( args[2], Imgcodecs.IMREAD_COLOR );
}
if(img.empty() || templ.empty() || (use_mask && mask.empty()))
{
System.out.println("Can't read one of the images");
System.exit(-1);
}
matchingMethod();
createJFrame();
}
private void matchingMethod() {
Mat result = new Mat();
//! [copy_source]
/// Source image to display
Mat img_display = new Mat();
img.copyTo( img_display );
//! [copy_source]
//! [create_result_matrix]
/// Create the result matrix
int result_cols = img.cols() - templ.cols() + 1;
int result_rows = img.rows() - templ.rows() + 1;
result.create( result_rows, result_cols, CvType.CV_32FC1 );
//! [create_result_matrix]
//! [match_template]
/// Do the Matching and Normalize
Boolean method_accepts_mask = (Imgproc.TM_SQDIFF == match_method ||
match_method == Imgproc.TM_CCORR_NORMED);
if (use_mask && method_accepts_mask)
{ Imgproc.matchTemplate( img, templ, result, match_method, mask); }
else
{ Imgproc.matchTemplate( img, templ, result, match_method); }
//! [match_template]
//! [normalize]
Core.normalize( result, result, 0, 1, Core.NORM_MINMAX, -1, new Mat() );
//! [normalize]
//! [best_match]
/// Localizing the best match with minMaxLoc
double minVal; double maxVal;
Point matchLoc;
Core.MinMaxLocResult mmr = Core.minMaxLoc( result );
//! [best_match]
//! [match_loc]
/// For SQDIFF and SQDIFF_NORMED, the best matches are lower values.
// For all the other methods, the higher the better
if( match_method == Imgproc.TM_SQDIFF || match_method == Imgproc.TM_SQDIFF_NORMED )
{ matchLoc = mmr.minLoc; }
else
{ matchLoc = mmr.maxLoc; }
//! [match_loc]
//! [imshow]
/// Show me what you got
Imgproc.rectangle(img_display, matchLoc, new Point(matchLoc.x + templ.cols(),
matchLoc.y + templ.rows()), new Scalar(0, 0, 0), 2, 8, 0);
Imgproc.rectangle(result, matchLoc, new Point(matchLoc.x + templ.cols(),
matchLoc.y + templ.rows()), new Scalar(0, 0, 0), 2, 8, 0);
Image tmpImg = toBufferedImage(img_display);
ImageIcon icon = new ImageIcon(tmpImg);
imgDisplay.setIcon(icon);
result.convertTo(result, CvType.CV_8UC1, 255.0);
tmpImg = toBufferedImage(result);
icon = new ImageIcon(tmpImg);
resultDisplay.setIcon(icon);
//! [imshow]
}
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
if (!source.getValueIsAdjusting()) {
match_method = (int)source.getValue();
matchingMethod();
}
}
public Image toBufferedImage(Mat m) {
int type = BufferedImage.TYPE_BYTE_GRAY;
if ( m.channels() > 1 ) {
type = BufferedImage.TYPE_3BYTE_BGR;
}
int bufferSize = m.channels()*m.cols()*m.rows();
byte [] b = new byte[bufferSize];
m.get(0,0,b); // get all the pixels
BufferedImage image = new BufferedImage(m.cols(),m.rows(), type);
final byte[] targetPixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();
System.arraycopy(b, 0, targetPixels, 0, b.length);
return image;
}
private void createJFrame() {
String title = "Source image; Control; Result image";
JFrame frame = new JFrame(title);
frame.setLayout(new GridLayout(2, 2));
frame.add(imgDisplay);
//! [create_trackbar]
int min = 0, max = 5;
JSlider slider = new JSlider(JSlider.VERTICAL, min, max, match_method);
//! [create_trackbar]
slider.setPaintTicks(true);
slider.setPaintLabels(true);
// Set the spacing for the minor tick mark
slider.setMinorTickSpacing(1);
// Customizing the labels
Hashtable labelTable = new Hashtable();
labelTable.put( new Integer( 0 ), new JLabel("0 - SQDIFF") );
labelTable.put( new Integer( 1 ), new JLabel("1 - SQDIFF NORMED") );
labelTable.put( new Integer( 2 ), new JLabel("2 - TM CCORR") );
labelTable.put( new Integer( 3 ), new JLabel("3 - TM CCORR NORMED") );
labelTable.put( new Integer( 4 ), new JLabel("4 - TM COEFF") );
labelTable.put( new Integer( 5 ), new JLabel("5 - TM COEFF NORMED : (Method)") );
slider.setLabelTable( labelTable );
slider.addChangeListener(this);
frame.add(slider);
frame.add(resultDisplay);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();
frame.setVisible(true);
}
}
public class MatchTemplateDemo
{
public static void main(String[] args) {
// load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// run code
new MatchTemplateDemoRun().run(args);
}
}
import sys
import cv2
## [global_variables]
use_mask = False
img = None
templ = None
mask = None
image_window = "Source Image"
result_window = "Result window"
match_method = 0
max_Trackbar = 5
## [global_variables]
def main(argv):
if (len(sys.argv) < 3):
print 'Not enough parameters'
print 'Usage:\nmatch_template_demo.py <image_name> <template_name> [<mask_name>]'
return -1
## [load_image]
global img
global templ
img = cv2.imread(sys.argv[1], cv2.IMREAD_COLOR)
templ = cv2.imread(sys.argv[2], cv2.IMREAD_COLOR)
if (len(sys.argv) > 3):
global use_mask
use_mask = True
global mask
mask = cv2.imread( sys.argv[3], cv2.IMREAD_COLOR )
if ((img is None) or (templ is None) or (use_mask and (mask is None))):
print 'Can\'t read one of the images'
return -1
## [load_image]
## [create_windows]
cv2.namedWindow( image_window, cv2.WINDOW_AUTOSIZE )
cv2.namedWindow( result_window, cv2.WINDOW_AUTOSIZE )
## [create_windows]
## [create_trackbar]
trackbar_label = 'Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED'
cv2.createTrackbar( trackbar_label, image_window, match_method, max_Trackbar, MatchingMethod )
## [create_trackbar]
MatchingMethod(match_method)
## [wait_key]
cv2.waitKey(0)
return 0
## [wait_key]
def MatchingMethod(param):
global match_method
match_method = param
## [copy_source]
img_display = img.copy()
## [copy_source]
## [match_template]
method_accepts_mask = (cv2.TM_SQDIFF == match_method or match_method == cv2.TM_CCORR_NORMED)
if (use_mask and method_accepts_mask):
result = cv2.matchTemplate(img, templ, match_method, None, mask)
else:
result = cv2.matchTemplate(img, templ, match_method)
## [match_template]
## [normalize]
cv2.normalize( result, result, 0, 1, cv2.NORM_MINMAX, -1 )
## [normalize]
## [best_match]
minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(result, None)
## [best_match]
## [match_loc]
if (match_method == cv2.TM_SQDIFF or match_method == cv2.TM_SQDIFF_NORMED):
matchLoc = minLoc
else:
matchLoc = maxLoc
## [match_loc]
## [imshow]
cv2.rectangle(img_display, matchLoc, (matchLoc[0] + templ.shape[0], matchLoc[1] + templ.shape[1]), (0,0,0), 2, 8, 0 )
cv2.rectangle(result, matchLoc, (matchLoc[0] + templ.shape[0], matchLoc[1] + templ.shape[1]), (0,0,0), 2, 8, 0 )
cv2.imshow(image_window, img_display)
cv2.imshow(result_window, result)
## [imshow]
pass
if __name__ == "__main__":
main(sys.argv[1:])
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment