Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
1f6acc23
Commit
1f6acc23
authored
Sep 26, 2014
by
Adrien BAK
Committed by
Adrien BAK
Oct 14, 2014
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
adds header guards + move impl to proper file
parent
e8c2f2ee
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
591 additions
and
541 deletions
+591
-541
seamless_cloning.hpp
modules/photo/src/seamless_cloning.hpp
+39
-541
seamless_cloning_impl.cpp
modules/photo/src/seamless_cloning_impl.cpp
+552
-0
No files found.
modules/photo/src/seamless_cloning.hpp
View file @
1f6acc23
...
...
@@ -39,551 +39,48 @@
//
//M*/
#ifndef CV_SEAMLESS_CLONING_HPP___
#define CV_SEAMLESS_CLONING_HPP___
#include "precomp.hpp"
#include "opencv2/photo.hpp"
#include <iostream>
#include <stdlib.h>
#include <complex>
#include "math.h"
using
namespace
std
;
using
namespace
cv
;
class
Cloning
{
public
:
void
normal_clone
(
const
Mat
&
I
,
const
Mat
&
mask
,
const
Mat
&
wmask
,
Mat
&
cloned
,
int
num
);
void
illum_change
(
Mat
&
I
,
Mat
&
mask
,
Mat
&
wmask
,
Mat
&
cloned
,
float
alpha
,
float
beta
);
void
local_color_change
(
Mat
&
I
,
Mat
&
mask
,
Mat
&
wmask
,
Mat
&
cloned
,
float
red_mul
,
float
green_mul
,
float
blue_mul
);
void
texture_flatten
(
Mat
&
I
,
Mat
&
mask
,
Mat
&
wmask
,
double
low_threshold
,
double
high_threhold
,
int
kernel_size
,
Mat
&
cloned
);
protected
:
vector
<
Mat
>
rgb_channel
,
rgbx_channel
,
rgby_channel
,
output
;
Mat
grx
,
gry
,
sgx
,
sgy
,
srx32
,
sry32
,
grx32
,
gry32
,
smask
,
smask1
;
void
init_var
(
const
Mat
&
I
,
const
Mat
&
wmask
);
void
initialization
(
const
Mat
&
I
,
const
Mat
&
mask
,
const
Mat
&
wmask
);
void
scalar_product
(
Mat
mat
,
float
r
,
float
g
,
float
b
);
void
array_product
(
Mat
mat1
,
Mat
mat2
,
Mat
mat3
);
void
poisson
(
const
Mat
&
I
,
const
Mat
&
gx
,
const
Mat
&
gy
,
const
Mat
&
sx
,
const
Mat
&
sy
);
void
evaluate
(
const
Mat
&
I
,
const
Mat
&
wmask
,
const
Mat
&
cloned
);
void
getGradientx
(
const
Mat
&
img
,
Mat
&
gx
);
void
getGradienty
(
const
Mat
&
img
,
Mat
&
gy
);
void
lapx
(
const
Mat
&
img
,
Mat
&
gxx
);
void
lapy
(
const
Mat
&
img
,
Mat
&
gyy
);
void
dst
(
double
*
mod_diff
,
double
*
sineTransform
,
int
h
,
int
w
);
void
idst
(
double
*
mod_diff
,
double
*
sineTransform
,
int
h
,
int
w
);
void
transpose
(
double
*
mat
,
double
*
mat_t
,
int
h
,
int
w
);
void
solve
(
const
Mat
&
img
,
double
*
mod_diff
,
Mat
&
result
);
void
poisson_solver
(
const
Mat
&
img
,
Mat
&
gxx
,
Mat
&
gyy
,
Mat
&
result
);
};
void
Cloning
::
getGradientx
(
const
Mat
&
img
,
Mat
&
gx
)
{
Mat
kernel
=
Mat
::
zeros
(
1
,
3
,
CV_8S
);
kernel
.
at
<
char
>
(
0
,
2
)
=
1
;
kernel
.
at
<
char
>
(
0
,
1
)
=
-
1
;
filter2D
(
img
,
gx
,
CV_32F
,
kernel
);
}
void
Cloning
::
getGradienty
(
const
Mat
&
img
,
Mat
&
gy
)
{
Mat
kernel
=
Mat
::
zeros
(
3
,
1
,
CV_8S
);
kernel
.
at
<
char
>
(
2
,
0
)
=
1
;
kernel
.
at
<
char
>
(
1
,
0
)
=
-
1
;
filter2D
(
img
,
gy
,
CV_32F
,
kernel
);
}
void
Cloning
::
lapx
(
const
Mat
&
img
,
Mat
&
gxx
)
{
Mat
kernel
=
Mat
::
zeros
(
1
,
3
,
CV_8S
);
kernel
.
at
<
char
>
(
0
,
0
)
=
-
1
;
kernel
.
at
<
char
>
(
0
,
1
)
=
1
;
filter2D
(
img
,
gxx
,
CV_32F
,
kernel
);
}
void
Cloning
::
lapy
(
const
Mat
&
img
,
Mat
&
gyy
)
{
Mat
kernel
=
Mat
::
zeros
(
3
,
1
,
CV_8S
);
kernel
.
at
<
char
>
(
0
,
0
)
=
-
1
;
kernel
.
at
<
char
>
(
1
,
0
)
=
1
;
filter2D
(
img
,
gyy
,
CV_32F
,
kernel
);
}
void
Cloning
::
dst
(
double
*
mod_diff
,
double
*
sineTransform
,
int
h
,
int
w
)
{
unsigned
long
int
idx
;
Mat
temp
=
Mat
(
2
*
h
+
2
,
1
,
CV_32F
);
Mat
res
=
Mat
(
h
,
1
,
CV_32F
);
Mat
planes
[]
=
{
Mat_
<
float
>
(
temp
),
Mat
::
zeros
(
temp
.
size
(),
CV_32F
)};
Mat
result
;
int
p
=
0
;
for
(
int
i
=
0
;
i
<
w
;
i
++
)
{
temp
.
at
<
float
>
(
0
,
0
)
=
0.0
;
for
(
int
j
=
0
,
r
=
1
;
j
<
h
;
j
++
,
r
++
)
{
idx
=
j
*
w
+
i
;
temp
.
at
<
float
>
(
r
,
0
)
=
(
float
)
mod_diff
[
idx
];
}
temp
.
at
<
float
>
(
h
+
1
,
0
)
=
0.0
;
for
(
int
j
=
h
-
1
,
r
=
h
+
2
;
j
>=
0
;
j
--
,
r
++
)
{
idx
=
j
*
w
+
i
;
temp
.
at
<
float
>
(
r
,
0
)
=
(
float
)
(
-
1.0
*
mod_diff
[
idx
]);
}
merge
(
planes
,
2
,
result
);
dft
(
result
,
result
,
0
,
0
);
Mat
planes1
[]
=
{
Mat
::
zeros
(
result
.
size
(),
CV_32F
),
Mat
::
zeros
(
result
.
size
(),
CV_32F
)};
split
(
result
,
planes1
);
std
::
complex
<
double
>
two_i
=
std
::
sqrt
(
std
::
complex
<
double
>
(
-
1
));
double
factor
=
-
2
*
imag
(
two_i
);
for
(
int
c
=
1
,
z
=
0
;
c
<
h
+
1
;
c
++
,
z
++
)
{
res
.
at
<
float
>
(
z
,
0
)
=
(
float
)
(
planes1
[
1
].
at
<
float
>
(
c
,
0
)
/
factor
);
}
for
(
int
q
=
0
,
z
=
0
;
q
<
h
;
q
++
,
z
++
)
{
idx
=
q
*
w
+
p
;
sineTransform
[
idx
]
=
res
.
at
<
float
>
(
z
,
0
);
}
p
++
;
}
}
void
Cloning
::
idst
(
double
*
mod_diff
,
double
*
sineTransform
,
int
h
,
int
w
)
{
int
nn
=
h
+
1
;
unsigned
long
int
idx
;
dst
(
mod_diff
,
sineTransform
,
h
,
w
);
for
(
int
i
=
0
;
i
<
h
;
i
++
)
for
(
int
j
=
0
;
j
<
w
;
j
++
)
{
idx
=
i
*
w
+
j
;
sineTransform
[
idx
]
=
(
double
)
(
2
*
sineTransform
[
idx
])
/
nn
;
}
}
#include <vector>
void
Cloning
::
transpose
(
double
*
mat
,
double
*
mat_t
,
int
h
,
int
w
)
namespace
cv
{
Mat
tmp
=
Mat
(
h
,
w
,
CV_32FC1
);
unsigned
long
int
idx
;
for
(
int
i
=
0
;
i
<
h
;
i
++
)
{
for
(
int
j
=
0
;
j
<
w
;
j
++
)
{
idx
=
i
*
(
w
)
+
j
;
tmp
.
at
<
float
>
(
i
,
j
)
=
(
float
)
mat
[
idx
];
}
}
Mat
tmp_t
=
tmp
.
t
();
for
(
int
i
=
0
;
i
<
tmp_t
.
size
().
height
;
i
++
)
for
(
int
j
=
0
;
j
<
tmp_t
.
size
().
width
;
j
++
)
{
idx
=
i
*
tmp_t
.
size
().
width
+
j
;
mat_t
[
idx
]
=
tmp_t
.
at
<
float
>
(
i
,
j
);
}
}
void
Cloning
::
solve
(
const
Mat
&
img
,
double
*
mod_diff
,
Mat
&
result
)
{
int
w
=
img
.
size
().
width
;
int
h
=
img
.
size
().
height
;
unsigned
long
int
idx
,
idx1
;
double
*
sineTransform
=
new
double
[(
h
-
2
)
*
(
w
-
2
)];
double
*
sineTransform_t
=
new
double
[(
h
-
2
)
*
(
w
-
2
)];
double
*
denom
=
new
double
[(
h
-
2
)
*
(
w
-
2
)];
double
*
invsineTransform
=
new
double
[(
h
-
2
)
*
(
w
-
2
)];
double
*
invsineTransform_t
=
new
double
[(
h
-
2
)
*
(
w
-
2
)];
double
*
img_d
=
new
double
[(
h
)
*
(
w
)];
dst
(
mod_diff
,
sineTransform
,
h
-
2
,
w
-
2
);
transpose
(
sineTransform
,
sineTransform_t
,
h
-
2
,
w
-
2
);
dst
(
sineTransform_t
,
sineTransform
,
w
-
2
,
h
-
2
);
transpose
(
sineTransform
,
sineTransform_t
,
w
-
2
,
h
-
2
);
int
cy
=
1
;
for
(
int
i
=
0
;
i
<
w
-
2
;
i
++
,
cy
++
)
{
for
(
int
j
=
0
,
cx
=
1
;
j
<
h
-
2
;
j
++
,
cx
++
)
{
idx
=
j
*
(
w
-
2
)
+
i
;
denom
[
idx
]
=
(
float
)
2
*
cos
(
CV_PI
*
cy
/
(
(
double
)
(
w
-
1
)))
-
2
+
2
*
cos
(
CV_PI
*
cx
/
((
double
)
(
h
-
1
)))
-
2
;
}
}
for
(
idx
=
0
;
idx
<
(
unsigned
)(
w
-
2
)
*
(
h
-
2
)
;
idx
++
)
{
sineTransform_t
[
idx
]
=
sineTransform_t
[
idx
]
/
denom
[
idx
];
}
idst
(
sineTransform_t
,
invsineTransform
,
h
-
2
,
w
-
2
);
transpose
(
invsineTransform
,
invsineTransform_t
,
h
-
2
,
w
-
2
);
idst
(
invsineTransform_t
,
invsineTransform
,
w
-
2
,
h
-
2
);
transpose
(
invsineTransform
,
invsineTransform_t
,
w
-
2
,
h
-
2
);
for
(
int
i
=
0
;
i
<
h
;
i
++
)
{
for
(
int
j
=
0
;
j
<
w
;
j
++
)
{
idx
=
i
*
w
+
j
;
img_d
[
idx
]
=
(
double
)
img
.
at
<
uchar
>
(
i
,
j
);
}
}
for
(
int
i
=
1
;
i
<
h
-
1
;
i
++
)
{
for
(
int
j
=
1
;
j
<
w
-
1
;
j
++
)
{
idx
=
i
*
w
+
j
;
img_d
[
idx
]
=
0.0
;
}
}
for
(
int
i
=
1
,
id1
=
0
;
i
<
h
-
1
;
i
++
,
id1
++
)
class
Cloning
{
for
(
int
j
=
1
,
id2
=
0
;
j
<
w
-
1
;
j
++
,
id2
++
)
{
idx
=
i
*
w
+
j
;
idx1
=
id1
*
(
w
-
2
)
+
id2
;
img_d
[
idx
]
=
invsineTransform_t
[
idx1
];
}
}
for
(
int
i
=
0
;
i
<
h
;
i
++
)
{
for
(
int
j
=
0
;
j
<
w
;
j
++
)
{
idx
=
i
*
w
+
j
;
if
(
img_d
[
idx
]
<
0.0
)
result
.
at
<
uchar
>
(
i
,
j
)
=
0
;
else
if
(
img_d
[
idx
]
>
255.0
)
result
.
at
<
uchar
>
(
i
,
j
)
=
255
;
else
result
.
at
<
uchar
>
(
i
,
j
)
=
(
uchar
)
img_d
[
idx
];
}
}
delete
[]
sineTransform
;
delete
[]
sineTransform_t
;
delete
[]
denom
;
delete
[]
invsineTransform
;
delete
[]
invsineTransform_t
;
delete
[]
img_d
;
}
void
Cloning
::
poisson_solver
(
const
Mat
&
img
,
Mat
&
gxx
,
Mat
&
gyy
,
Mat
&
result
)
{
int
w
=
img
.
size
().
width
;
int
h
=
img
.
size
().
height
;
unsigned
long
int
idx
;
Mat
lap
=
Mat
(
img
.
size
(),
CV_32FC1
);
lap
=
gxx
+
gyy
;
Mat
bound
=
img
.
clone
();
rectangle
(
bound
,
Point
(
1
,
1
),
Point
(
img
.
cols
-
2
,
img
.
rows
-
2
),
Scalar
::
all
(
0
),
-
1
);
double
*
boundary_point
=
new
double
[
h
*
w
];
for
(
int
i
=
1
;
i
<
h
-
1
;
i
++
)
for
(
int
j
=
1
;
j
<
w
-
1
;
j
++
)
{
idx
=
i
*
w
+
j
;
boundary_point
[
idx
]
=
-
4
*
(
int
)
bound
.
at
<
uchar
>
(
i
,
j
)
+
(
int
)
bound
.
at
<
uchar
>
(
i
,(
j
+
1
))
+
(
int
)
bound
.
at
<
uchar
>
(
i
,(
j
-
1
))
+
(
int
)
bound
.
at
<
uchar
>
(
i
-
1
,
j
)
+
(
int
)
bound
.
at
<
uchar
>
(
i
+
1
,
j
);
}
Mat
diff
=
Mat
(
h
,
w
,
CV_32FC1
);
for
(
int
i
=
0
;
i
<
h
;
i
++
)
{
for
(
int
j
=
0
;
j
<
w
;
j
++
)
{
idx
=
i
*
w
+
j
;
diff
.
at
<
float
>
(
i
,
j
)
=
(
float
)
(
lap
.
at
<
float
>
(
i
,
j
)
-
boundary_point
[
idx
]);
}
}
double
*
mod_diff
=
new
double
[(
h
-
2
)
*
(
w
-
2
)];
for
(
int
i
=
0
;
i
<
h
-
2
;
i
++
)
{
for
(
int
j
=
0
;
j
<
w
-
2
;
j
++
)
{
idx
=
i
*
(
w
-
2
)
+
j
;
mod_diff
[
idx
]
=
diff
.
at
<
float
>
(
i
+
1
,
j
+
1
);
}
}
///////////////////////////////////////////////////// Find DST /////////////////////////////////////////////////////
solve
(
img
,
mod_diff
,
result
);
delete
[]
mod_diff
;
delete
[]
boundary_point
;
}
void
Cloning
::
init_var
(
const
Mat
&
I
,
const
Mat
&
wmask
)
{
grx
=
Mat
(
I
.
size
(),
CV_32FC3
);
gry
=
Mat
(
I
.
size
(),
CV_32FC3
);
sgx
=
Mat
(
I
.
size
(),
CV_32FC3
);
sgy
=
Mat
(
I
.
size
(),
CV_32FC3
);
split
(
I
,
rgb_channel
);
smask
=
Mat
(
wmask
.
size
(),
CV_32FC1
);
srx32
=
Mat
(
I
.
size
(),
CV_32FC3
);
sry32
=
Mat
(
I
.
size
(),
CV_32FC3
);
smask1
=
Mat
(
wmask
.
size
(),
CV_32FC1
);
grx32
=
Mat
(
I
.
size
(),
CV_32FC3
);
gry32
=
Mat
(
I
.
size
(),
CV_32FC3
);
}
void
Cloning
::
initialization
(
const
Mat
&
I
,
const
Mat
&
mask
,
const
Mat
&
wmask
)
{
init_var
(
I
,
wmask
);
getGradientx
(
I
,
grx
);
getGradienty
(
I
,
gry
);
getGradientx
(
mask
,
sgx
);
getGradienty
(
mask
,
sgy
);
Mat
Kernel
(
Size
(
3
,
3
),
CV_8UC1
);
Kernel
.
setTo
(
Scalar
(
1
));
erode
(
wmask
,
wmask
,
Kernel
,
Point
(
-
1
,
-
1
),
3
);
wmask
.
convertTo
(
smask
,
CV_32FC1
,
1.0
/
255.0
);
I
.
convertTo
(
srx32
,
CV_32FC3
,
1.0
/
255.0
);
I
.
convertTo
(
sry32
,
CV_32FC3
,
1.0
/
255.0
);
}
void
Cloning
::
scalar_product
(
Mat
mat
,
float
r
,
float
g
,
float
b
)
{
vector
<
Mat
>
channels
;
split
(
mat
,
channels
);
multiply
(
channels
[
2
],
r
,
channels
[
2
]);
multiply
(
channels
[
1
],
g
,
channels
[
1
]);
multiply
(
channels
[
0
],
b
,
channels
[
0
]);
merge
(
channels
,
mat
);
}
void
Cloning
::
array_product
(
Mat
mat1
,
Mat
mat2
,
Mat
mat3
)
{
vector
<
Mat
>
channels_temp1
;
vector
<
Mat
>
channels_temp2
;
split
(
mat1
,
channels_temp1
);
split
(
mat2
,
channels_temp2
);
multiply
(
channels_temp2
[
2
],
mat3
,
channels_temp1
[
2
]);
multiply
(
channels_temp2
[
1
],
mat3
,
channels_temp1
[
1
]);
multiply
(
channels_temp2
[
0
],
mat3
,
channels_temp1
[
0
]);
merge
(
channels_temp1
,
mat1
);
}
void
Cloning
::
poisson
(
const
Mat
&
I
,
const
Mat
&
gx
,
const
Mat
&
gy
,
const
Mat
&
sx
,
const
Mat
&
sy
)
{
Mat
fx
=
Mat
(
I
.
size
(),
CV_32FC3
);
Mat
fy
=
Mat
(
I
.
size
(),
CV_32FC3
);
fx
=
gx
+
sx
;
fy
=
gy
+
sy
;
Mat
gxx
=
Mat
(
I
.
size
(),
CV_32FC3
);
Mat
gyy
=
Mat
(
I
.
size
(),
CV_32FC3
);
lapx
(
fx
,
gxx
);
lapy
(
fy
,
gyy
);
split
(
gxx
,
rgbx_channel
);
split
(
gyy
,
rgby_channel
);
split
(
I
,
output
);
poisson_solver
(
rgb_channel
[
2
],
rgbx_channel
[
2
],
rgby_channel
[
2
],
output
[
2
]);
poisson_solver
(
rgb_channel
[
1
],
rgbx_channel
[
1
],
rgby_channel
[
1
],
output
[
1
]);
poisson_solver
(
rgb_channel
[
0
],
rgbx_channel
[
0
],
rgby_channel
[
0
],
output
[
0
]);
}
void
Cloning
::
evaluate
(
const
Mat
&
I
,
const
Mat
&
wmask
,
const
Mat
&
cloned
)
{
bitwise_not
(
wmask
,
wmask
);
wmask
.
convertTo
(
smask1
,
CV_32FC1
,
1.0
/
255.0
);
I
.
convertTo
(
grx32
,
CV_32FC3
,
1.0
/
255.0
);
I
.
convertTo
(
gry32
,
CV_32FC3
,
1.0
/
255.0
);
array_product
(
grx32
,
grx
,
smask1
);
array_product
(
gry32
,
gry
,
smask1
);
poisson
(
I
,
grx32
,
gry32
,
srx32
,
sry32
);
merge
(
output
,
cloned
);
}
void
Cloning
::
normal_clone
(
const
Mat
&
I
,
const
Mat
&
mask
,
const
Mat
&
wmask
,
Mat
&
cloned
,
int
num
)
{
int
w
=
I
.
size
().
width
;
int
h
=
I
.
size
().
height
;
int
channel
=
I
.
channels
();
initialization
(
I
,
mask
,
wmask
);
if
(
num
==
1
)
{
array_product
(
srx32
,
sgx
,
smask
);
array_product
(
sry32
,
sgy
,
smask
);
}
else
if
(
num
==
2
)
{
for
(
int
i
=
0
;
i
<
h
;
i
++
)
{
for
(
int
j
=
0
;
j
<
w
;
j
++
)
{
for
(
int
c
=
0
;
c
<
channel
;
++
c
)
{
if
(
abs
(
sgx
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
-
sgy
.
at
<
float
>
(
i
,
j
*
channel
+
c
))
>
abs
(
grx
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
-
gry
.
at
<
float
>
(
i
,
j
*
channel
+
c
)))
{
srx32
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
=
sgx
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
*
smask
.
at
<
float
>
(
i
,
j
);
sry32
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
=
sgy
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
*
smask
.
at
<
float
>
(
i
,
j
);
}
else
{
srx32
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
=
grx
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
*
smask
.
at
<
float
>
(
i
,
j
);
sry32
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
=
gry
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
*
smask
.
at
<
float
>
(
i
,
j
);
}
}
}
}
}
else
if
(
num
==
3
)
{
Mat
gray
=
Mat
(
mask
.
size
(),
CV_8UC1
);
Mat
gray8
=
Mat
(
mask
.
size
(),
CV_8UC3
);
cvtColor
(
mask
,
gray
,
COLOR_BGR2GRAY
);
vector
<
Mat
>
temp
;
split
(
I
,
temp
);
gray
.
copyTo
(
temp
[
2
]);
gray
.
copyTo
(
temp
[
1
]);
gray
.
copyTo
(
temp
[
0
]);
merge
(
temp
,
gray8
);
getGradientx
(
gray8
,
sgx
);
getGradienty
(
gray8
,
sgy
);
array_product
(
srx32
,
sgx
,
smask
);
array_product
(
sry32
,
sgy
,
smask
);
}
evaluate
(
I
,
wmask
,
cloned
);
}
void
Cloning
::
local_color_change
(
Mat
&
I
,
Mat
&
mask
,
Mat
&
wmask
,
Mat
&
cloned
,
float
red_mul
=
1.0
,
float
green_mul
=
1.0
,
float
blue_mul
=
1.0
)
{
initialization
(
I
,
mask
,
wmask
);
array_product
(
srx32
,
sgx
,
smask
);
array_product
(
sry32
,
sgy
,
smask
);
scalar_product
(
srx32
,
red_mul
,
green_mul
,
blue_mul
);
scalar_product
(
sry32
,
red_mul
,
green_mul
,
blue_mul
);
evaluate
(
I
,
wmask
,
cloned
);
}
void
Cloning
::
illum_change
(
Mat
&
I
,
Mat
&
mask
,
Mat
&
wmask
,
Mat
&
cloned
,
float
alpha
,
float
beta
)
{
initialization
(
I
,
mask
,
wmask
);
array_product
(
srx32
,
sgx
,
smask
);
array_product
(
sry32
,
sgy
,
smask
);
Mat
mag
=
Mat
(
I
.
size
(),
CV_32FC3
);
magnitude
(
srx32
,
sry32
,
mag
);
Mat
multX
,
multY
,
multx_temp
,
multy_temp
;
multiply
(
srx32
,
pow
(
alpha
,
beta
),
multX
);
pow
(
mag
,
-
1
*
beta
,
multx_temp
);
multiply
(
multX
,
multx_temp
,
srx32
);
patchNaNs
(
srx32
);
multiply
(
sry32
,
pow
(
alpha
,
beta
),
multY
);
pow
(
mag
,
-
1
*
beta
,
multy_temp
);
multiply
(
multY
,
multy_temp
,
sry32
);
patchNaNs
(
sry32
);
Mat
zeroMask
=
(
srx32
!=
0
);
srx32
.
copyTo
(
srx32
,
zeroMask
);
sry32
.
copyTo
(
sry32
,
zeroMask
);
evaluate
(
I
,
wmask
,
cloned
);
}
void
Cloning
::
texture_flatten
(
Mat
&
I
,
Mat
&
mask
,
Mat
&
wmask
,
double
low_threshold
,
double
high_threshold
,
int
kernel_size
,
Mat
&
cloned
)
{
initialization
(
I
,
mask
,
wmask
);
Mat
out
=
Mat
(
mask
.
size
(),
CV_8UC1
);
Canny
(
mask
,
out
,
low_threshold
,
high_threshold
,
kernel_size
);
Mat
zeros
(
sgx
.
size
(),
CV_32FC3
);
zeros
.
setTo
(
0
);
Mat
zerosMask
=
(
out
!=
255
);
zeros
.
copyTo
(
sgx
,
zerosMask
);
zeros
.
copyTo
(
sgy
,
zerosMask
);
array_product
(
srx32
,
sgx
,
smask
);
array_product
(
sry32
,
sgy
,
smask
);
evaluate
(
I
,
wmask
,
cloned
);
}
public
:
void
normal_clone
(
const
cv
::
Mat
&
I
,
const
cv
::
Mat
&
mask
,
const
cv
::
Mat
&
wmask
,
cv
::
Mat
&
cloned
,
int
num
);
void
illum_change
(
cv
::
Mat
&
I
,
cv
::
Mat
&
mask
,
cv
::
Mat
&
wmask
,
cv
::
Mat
&
cloned
,
float
alpha
,
float
beta
);
void
local_color_change
(
cv
::
Mat
&
I
,
cv
::
Mat
&
mask
,
cv
::
Mat
&
wmask
,
cv
::
Mat
&
cloned
,
float
red_mul
,
float
green_mul
,
float
blue_mul
);
void
texture_flatten
(
cv
::
Mat
&
I
,
cv
::
Mat
&
mask
,
cv
::
Mat
&
wmask
,
double
low_threshold
,
double
high_threhold
,
int
kernel_size
,
cv
::
Mat
&
cloned
);
protected
:
void
init_var
(
const
cv
::
Mat
&
I
,
const
cv
::
Mat
&
wmask
);
void
initialization
(
const
cv
::
Mat
&
I
,
const
cv
::
Mat
&
mask
,
const
cv
::
Mat
&
wmask
);
void
scalar_product
(
cv
::
Mat
mat
,
float
r
,
float
g
,
float
b
);
void
array_product
(
cv
::
Mat
mat1
,
cv
::
Mat
mat2
,
cv
::
Mat
mat3
);
void
poisson
(
const
cv
::
Mat
&
I
,
const
cv
::
Mat
&
gx
,
const
cv
::
Mat
&
gy
,
const
cv
::
Mat
&
sx
,
const
cv
::
Mat
&
sy
);
void
evaluate
(
const
cv
::
Mat
&
I
,
const
cv
::
Mat
&
wmask
,
const
cv
::
Mat
&
cloned
);
void
getGradientx
(
const
cv
::
Mat
&
img
,
cv
::
Mat
&
gx
);
void
getGradienty
(
const
cv
::
Mat
&
img
,
cv
::
Mat
&
gy
);
void
lapx
(
const
cv
::
Mat
&
img
,
cv
::
Mat
&
gxx
);
void
lapy
(
const
cv
::
Mat
&
img
,
cv
::
Mat
&
gyy
);
void
dst
(
double
*
mod_diff
,
double
*
sineTransform
,
int
h
,
int
w
);
void
idst
(
double
*
mod_diff
,
double
*
sineTransform
,
int
h
,
int
w
);
void
transpose
(
double
*
mat
,
double
*
mat_t
,
int
h
,
int
w
);
void
solve
(
const
cv
::
Mat
&
img
,
double
*
mod_diff
,
cv
::
Mat
&
result
);
void
poisson_solver
(
const
cv
::
Mat
&
img
,
cv
::
Mat
&
gxx
,
cv
::
Mat
&
gyy
,
cv
::
Mat
&
result
);
private
:
std
::
vector
<
cv
::
Mat
>
rgb_channel
,
rgbx_channel
,
rgby_channel
,
output
;
cv
::
Mat
grx
,
gry
,
sgx
,
sgy
,
srx32
,
sry32
,
grx32
,
gry32
,
smask
,
smask1
;
};
}
#endif
\ No newline at end of file
modules/photo/src/seamless_cloning_impl.cpp
0 → 100644
View file @
1f6acc23
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "seamless_cloning.hpp"
#include <complex>
using
namespace
cv
;
using
namespace
std
;
void
Cloning
::
getGradientx
(
const
Mat
&
img
,
Mat
&
gx
)
{
Mat
kernel
=
Mat
::
zeros
(
1
,
3
,
CV_8S
);
kernel
.
at
<
char
>
(
0
,
2
)
=
1
;
kernel
.
at
<
char
>
(
0
,
1
)
=
-
1
;
filter2D
(
img
,
gx
,
CV_32F
,
kernel
);
}
void
Cloning
::
getGradienty
(
const
Mat
&
img
,
Mat
&
gy
)
{
Mat
kernel
=
Mat
::
zeros
(
3
,
1
,
CV_8S
);
kernel
.
at
<
char
>
(
2
,
0
)
=
1
;
kernel
.
at
<
char
>
(
1
,
0
)
=
-
1
;
filter2D
(
img
,
gy
,
CV_32F
,
kernel
);
}
void
Cloning
::
lapx
(
const
Mat
&
img
,
Mat
&
gxx
)
{
Mat
kernel
=
Mat
::
zeros
(
1
,
3
,
CV_8S
);
kernel
.
at
<
char
>
(
0
,
0
)
=
-
1
;
kernel
.
at
<
char
>
(
0
,
1
)
=
1
;
filter2D
(
img
,
gxx
,
CV_32F
,
kernel
);
}
void
Cloning
::
lapy
(
const
Mat
&
img
,
Mat
&
gyy
)
{
Mat
kernel
=
Mat
::
zeros
(
3
,
1
,
CV_8S
);
kernel
.
at
<
char
>
(
0
,
0
)
=
-
1
;
kernel
.
at
<
char
>
(
1
,
0
)
=
1
;
filter2D
(
img
,
gyy
,
CV_32F
,
kernel
);
}
void
Cloning
::
dst
(
double
*
mod_diff
,
double
*
sineTransform
,
int
h
,
int
w
)
{
unsigned
long
int
idx
;
Mat
temp
=
Mat
(
2
*
h
+
2
,
1
,
CV_32F
);
Mat
res
=
Mat
(
h
,
1
,
CV_32F
);
Mat
planes
[]
=
{
Mat_
<
float
>
(
temp
),
Mat
::
zeros
(
temp
.
size
(),
CV_32F
)};
Mat
result
;
int
p
=
0
;
for
(
int
i
=
0
;
i
<
w
;
i
++
)
{
temp
.
at
<
float
>
(
0
,
0
)
=
0.0
;
for
(
int
j
=
0
,
r
=
1
;
j
<
h
;
j
++
,
r
++
)
{
idx
=
j
*
w
+
i
;
temp
.
at
<
float
>
(
r
,
0
)
=
(
float
)
mod_diff
[
idx
];
}
temp
.
at
<
float
>
(
h
+
1
,
0
)
=
0.0
;
for
(
int
j
=
h
-
1
,
r
=
h
+
2
;
j
>=
0
;
j
--
,
r
++
)
{
idx
=
j
*
w
+
i
;
temp
.
at
<
float
>
(
r
,
0
)
=
(
float
)
(
-
1.0
*
mod_diff
[
idx
]);
}
merge
(
planes
,
2
,
result
);
dft
(
result
,
result
,
0
,
0
);
Mat
planes1
[]
=
{
Mat
::
zeros
(
result
.
size
(),
CV_32F
),
Mat
::
zeros
(
result
.
size
(),
CV_32F
)};
split
(
result
,
planes1
);
std
::
complex
<
double
>
two_i
=
std
::
sqrt
(
std
::
complex
<
double
>
(
-
1
));
double
factor
=
-
2
*
imag
(
two_i
);
for
(
int
c
=
1
,
z
=
0
;
c
<
h
+
1
;
c
++
,
z
++
)
{
res
.
at
<
float
>
(
z
,
0
)
=
(
float
)
(
planes1
[
1
].
at
<
float
>
(
c
,
0
)
/
factor
);
}
for
(
int
q
=
0
,
z
=
0
;
q
<
h
;
q
++
,
z
++
)
{
idx
=
q
*
w
+
p
;
sineTransform
[
idx
]
=
res
.
at
<
float
>
(
z
,
0
);
}
p
++
;
}
}
void
Cloning
::
idst
(
double
*
mod_diff
,
double
*
sineTransform
,
int
h
,
int
w
)
{
int
nn
=
h
+
1
;
unsigned
long
int
idx
;
dst
(
mod_diff
,
sineTransform
,
h
,
w
);
for
(
int
i
=
0
;
i
<
h
;
i
++
)
for
(
int
j
=
0
;
j
<
w
;
j
++
)
{
idx
=
i
*
w
+
j
;
sineTransform
[
idx
]
=
(
double
)
(
2
*
sineTransform
[
idx
])
/
nn
;
}
}
void
Cloning
::
transpose
(
double
*
mat
,
double
*
mat_t
,
int
h
,
int
w
)
{
Mat
tmp
=
Mat
(
h
,
w
,
CV_32FC1
);
unsigned
long
int
idx
;
for
(
int
i
=
0
;
i
<
h
;
i
++
)
{
for
(
int
j
=
0
;
j
<
w
;
j
++
)
{
idx
=
i
*
(
w
)
+
j
;
tmp
.
at
<
float
>
(
i
,
j
)
=
(
float
)
mat
[
idx
];
}
}
Mat
tmp_t
=
tmp
.
t
();
for
(
int
i
=
0
;
i
<
tmp_t
.
size
().
height
;
i
++
)
for
(
int
j
=
0
;
j
<
tmp_t
.
size
().
width
;
j
++
)
{
idx
=
i
*
tmp_t
.
size
().
width
+
j
;
mat_t
[
idx
]
=
tmp_t
.
at
<
float
>
(
i
,
j
);
}
}
void
Cloning
::
solve
(
const
Mat
&
img
,
double
*
mod_diff
,
Mat
&
result
)
{
int
w
=
img
.
size
().
width
;
int
h
=
img
.
size
().
height
;
unsigned
long
int
idx
,
idx1
;
double
*
sineTransform
=
new
double
[(
h
-
2
)
*
(
w
-
2
)];
double
*
sineTransform_t
=
new
double
[(
h
-
2
)
*
(
w
-
2
)];
double
*
denom
=
new
double
[(
h
-
2
)
*
(
w
-
2
)];
double
*
invsineTransform
=
new
double
[(
h
-
2
)
*
(
w
-
2
)];
double
*
invsineTransform_t
=
new
double
[(
h
-
2
)
*
(
w
-
2
)];
double
*
img_d
=
new
double
[(
h
)
*
(
w
)];
dst
(
mod_diff
,
sineTransform
,
h
-
2
,
w
-
2
);
transpose
(
sineTransform
,
sineTransform_t
,
h
-
2
,
w
-
2
);
dst
(
sineTransform_t
,
sineTransform
,
w
-
2
,
h
-
2
);
transpose
(
sineTransform
,
sineTransform_t
,
w
-
2
,
h
-
2
);
int
cy
=
1
;
for
(
int
i
=
0
;
i
<
w
-
2
;
i
++
,
cy
++
)
{
for
(
int
j
=
0
,
cx
=
1
;
j
<
h
-
2
;
j
++
,
cx
++
)
{
idx
=
j
*
(
w
-
2
)
+
i
;
denom
[
idx
]
=
(
float
)
2
*
cos
(
CV_PI
*
cy
/
(
(
double
)
(
w
-
1
)))
-
2
+
2
*
cos
(
CV_PI
*
cx
/
((
double
)
(
h
-
1
)))
-
2
;
}
}
for
(
idx
=
0
;
idx
<
(
unsigned
)(
w
-
2
)
*
(
h
-
2
)
;
idx
++
)
{
sineTransform_t
[
idx
]
=
sineTransform_t
[
idx
]
/
denom
[
idx
];
}
idst
(
sineTransform_t
,
invsineTransform
,
h
-
2
,
w
-
2
);
transpose
(
invsineTransform
,
invsineTransform_t
,
h
-
2
,
w
-
2
);
idst
(
invsineTransform_t
,
invsineTransform
,
w
-
2
,
h
-
2
);
transpose
(
invsineTransform
,
invsineTransform_t
,
w
-
2
,
h
-
2
);
for
(
int
i
=
0
;
i
<
h
;
i
++
)
{
for
(
int
j
=
0
;
j
<
w
;
j
++
)
{
idx
=
i
*
w
+
j
;
img_d
[
idx
]
=
(
double
)
img
.
at
<
uchar
>
(
i
,
j
);
}
}
for
(
int
i
=
1
;
i
<
h
-
1
;
i
++
)
{
for
(
int
j
=
1
;
j
<
w
-
1
;
j
++
)
{
idx
=
i
*
w
+
j
;
img_d
[
idx
]
=
0.0
;
}
}
for
(
int
i
=
1
,
id1
=
0
;
i
<
h
-
1
;
i
++
,
id1
++
)
{
for
(
int
j
=
1
,
id2
=
0
;
j
<
w
-
1
;
j
++
,
id2
++
)
{
idx
=
i
*
w
+
j
;
idx1
=
id1
*
(
w
-
2
)
+
id2
;
img_d
[
idx
]
=
invsineTransform_t
[
idx1
];
}
}
for
(
int
i
=
0
;
i
<
h
;
i
++
)
{
for
(
int
j
=
0
;
j
<
w
;
j
++
)
{
idx
=
i
*
w
+
j
;
if
(
img_d
[
idx
]
<
0.0
)
result
.
at
<
uchar
>
(
i
,
j
)
=
0
;
else
if
(
img_d
[
idx
]
>
255.0
)
result
.
at
<
uchar
>
(
i
,
j
)
=
255
;
else
result
.
at
<
uchar
>
(
i
,
j
)
=
(
uchar
)
img_d
[
idx
];
}
}
delete
[]
sineTransform
;
delete
[]
sineTransform_t
;
delete
[]
denom
;
delete
[]
invsineTransform
;
delete
[]
invsineTransform_t
;
delete
[]
img_d
;
}
void
Cloning
::
poisson_solver
(
const
Mat
&
img
,
Mat
&
gxx
,
Mat
&
gyy
,
Mat
&
result
)
{
int
w
=
img
.
size
().
width
;
int
h
=
img
.
size
().
height
;
unsigned
long
int
idx
;
Mat
lap
=
Mat
(
img
.
size
(),
CV_32FC1
);
lap
=
gxx
+
gyy
;
Mat
bound
=
img
.
clone
();
rectangle
(
bound
,
Point
(
1
,
1
),
Point
(
img
.
cols
-
2
,
img
.
rows
-
2
),
Scalar
::
all
(
0
),
-
1
);
double
*
boundary_point
=
new
double
[
h
*
w
];
for
(
int
i
=
1
;
i
<
h
-
1
;
i
++
)
for
(
int
j
=
1
;
j
<
w
-
1
;
j
++
)
{
idx
=
i
*
w
+
j
;
boundary_point
[
idx
]
=
-
4
*
(
int
)
bound
.
at
<
uchar
>
(
i
,
j
)
+
(
int
)
bound
.
at
<
uchar
>
(
i
,(
j
+
1
))
+
(
int
)
bound
.
at
<
uchar
>
(
i
,(
j
-
1
))
+
(
int
)
bound
.
at
<
uchar
>
(
i
-
1
,
j
)
+
(
int
)
bound
.
at
<
uchar
>
(
i
+
1
,
j
);
}
Mat
diff
=
Mat
(
h
,
w
,
CV_32FC1
);
for
(
int
i
=
0
;
i
<
h
;
i
++
)
{
for
(
int
j
=
0
;
j
<
w
;
j
++
)
{
idx
=
i
*
w
+
j
;
diff
.
at
<
float
>
(
i
,
j
)
=
(
float
)
(
lap
.
at
<
float
>
(
i
,
j
)
-
boundary_point
[
idx
]);
}
}
double
*
mod_diff
=
new
double
[(
h
-
2
)
*
(
w
-
2
)];
for
(
int
i
=
0
;
i
<
h
-
2
;
i
++
)
{
for
(
int
j
=
0
;
j
<
w
-
2
;
j
++
)
{
idx
=
i
*
(
w
-
2
)
+
j
;
mod_diff
[
idx
]
=
diff
.
at
<
float
>
(
i
+
1
,
j
+
1
);
}
}
///////////////////////////////////////////////////// Find DST /////////////////////////////////////////////////////
solve
(
img
,
mod_diff
,
result
);
delete
[]
mod_diff
;
delete
[]
boundary_point
;
}
void
Cloning
::
init_var
(
const
Mat
&
I
,
const
Mat
&
wmask
)
{
grx
=
Mat
(
I
.
size
(),
CV_32FC3
);
gry
=
Mat
(
I
.
size
(),
CV_32FC3
);
sgx
=
Mat
(
I
.
size
(),
CV_32FC3
);
sgy
=
Mat
(
I
.
size
(),
CV_32FC3
);
split
(
I
,
rgb_channel
);
smask
=
Mat
(
wmask
.
size
(),
CV_32FC1
);
srx32
=
Mat
(
I
.
size
(),
CV_32FC3
);
sry32
=
Mat
(
I
.
size
(),
CV_32FC3
);
smask1
=
Mat
(
wmask
.
size
(),
CV_32FC1
);
grx32
=
Mat
(
I
.
size
(),
CV_32FC3
);
gry32
=
Mat
(
I
.
size
(),
CV_32FC3
);
}
void
Cloning
::
initialization
(
const
Mat
&
I
,
const
Mat
&
mask
,
const
Mat
&
wmask
)
{
init_var
(
I
,
wmask
);
getGradientx
(
I
,
grx
);
getGradienty
(
I
,
gry
);
getGradientx
(
mask
,
sgx
);
getGradienty
(
mask
,
sgy
);
Mat
Kernel
(
Size
(
3
,
3
),
CV_8UC1
);
Kernel
.
setTo
(
Scalar
(
1
));
erode
(
wmask
,
wmask
,
Kernel
,
Point
(
-
1
,
-
1
),
3
);
wmask
.
convertTo
(
smask
,
CV_32FC1
,
1.0
/
255.0
);
I
.
convertTo
(
srx32
,
CV_32FC3
,
1.0
/
255.0
);
I
.
convertTo
(
sry32
,
CV_32FC3
,
1.0
/
255.0
);
}
void
Cloning
::
scalar_product
(
Mat
mat
,
float
r
,
float
g
,
float
b
)
{
vector
<
Mat
>
channels
;
split
(
mat
,
channels
);
multiply
(
channels
[
2
],
r
,
channels
[
2
]);
multiply
(
channels
[
1
],
g
,
channels
[
1
]);
multiply
(
channels
[
0
],
b
,
channels
[
0
]);
merge
(
channels
,
mat
);
}
void
Cloning
::
array_product
(
Mat
mat1
,
Mat
mat2
,
Mat
mat3
)
{
vector
<
Mat
>
channels_temp1
;
vector
<
Mat
>
channels_temp2
;
split
(
mat1
,
channels_temp1
);
split
(
mat2
,
channels_temp2
);
multiply
(
channels_temp2
[
2
],
mat3
,
channels_temp1
[
2
]);
multiply
(
channels_temp2
[
1
],
mat3
,
channels_temp1
[
1
]);
multiply
(
channels_temp2
[
0
],
mat3
,
channels_temp1
[
0
]);
merge
(
channels_temp1
,
mat1
);
}
void
Cloning
::
poisson
(
const
Mat
&
I
,
const
Mat
&
gx
,
const
Mat
&
gy
,
const
Mat
&
sx
,
const
Mat
&
sy
)
{
Mat
fx
=
Mat
(
I
.
size
(),
CV_32FC3
);
Mat
fy
=
Mat
(
I
.
size
(),
CV_32FC3
);
fx
=
gx
+
sx
;
fy
=
gy
+
sy
;
Mat
gxx
=
Mat
(
I
.
size
(),
CV_32FC3
);
Mat
gyy
=
Mat
(
I
.
size
(),
CV_32FC3
);
lapx
(
fx
,
gxx
);
lapy
(
fy
,
gyy
);
split
(
gxx
,
rgbx_channel
);
split
(
gyy
,
rgby_channel
);
split
(
I
,
output
);
poisson_solver
(
rgb_channel
[
2
],
rgbx_channel
[
2
],
rgby_channel
[
2
],
output
[
2
]);
poisson_solver
(
rgb_channel
[
1
],
rgbx_channel
[
1
],
rgby_channel
[
1
],
output
[
1
]);
poisson_solver
(
rgb_channel
[
0
],
rgbx_channel
[
0
],
rgby_channel
[
0
],
output
[
0
]);
}
void
Cloning
::
evaluate
(
const
Mat
&
I
,
const
Mat
&
wmask
,
const
Mat
&
cloned
)
{
bitwise_not
(
wmask
,
wmask
);
wmask
.
convertTo
(
smask1
,
CV_32FC1
,
1.0
/
255.0
);
I
.
convertTo
(
grx32
,
CV_32FC3
,
1.0
/
255.0
);
I
.
convertTo
(
gry32
,
CV_32FC3
,
1.0
/
255.0
);
array_product
(
grx32
,
grx
,
smask1
);
array_product
(
gry32
,
gry
,
smask1
);
poisson
(
I
,
grx32
,
gry32
,
srx32
,
sry32
);
merge
(
output
,
cloned
);
}
void
Cloning
::
normal_clone
(
const
Mat
&
I
,
const
Mat
&
mask
,
const
Mat
&
wmask
,
Mat
&
cloned
,
int
num
)
{
int
w
=
I
.
size
().
width
;
int
h
=
I
.
size
().
height
;
int
channel
=
I
.
channels
();
initialization
(
I
,
mask
,
wmask
);
if
(
num
==
1
)
{
array_product
(
srx32
,
sgx
,
smask
);
array_product
(
sry32
,
sgy
,
smask
);
}
else
if
(
num
==
2
)
{
for
(
int
i
=
0
;
i
<
h
;
i
++
)
{
for
(
int
j
=
0
;
j
<
w
;
j
++
)
{
for
(
int
c
=
0
;
c
<
channel
;
++
c
)
{
if
(
abs
(
sgx
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
-
sgy
.
at
<
float
>
(
i
,
j
*
channel
+
c
))
>
abs
(
grx
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
-
gry
.
at
<
float
>
(
i
,
j
*
channel
+
c
)))
{
srx32
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
=
sgx
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
*
smask
.
at
<
float
>
(
i
,
j
);
sry32
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
=
sgy
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
*
smask
.
at
<
float
>
(
i
,
j
);
}
else
{
srx32
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
=
grx
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
*
smask
.
at
<
float
>
(
i
,
j
);
sry32
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
=
gry
.
at
<
float
>
(
i
,
j
*
channel
+
c
)
*
smask
.
at
<
float
>
(
i
,
j
);
}
}
}
}
}
else
if
(
num
==
3
)
{
Mat
gray
=
Mat
(
mask
.
size
(),
CV_8UC1
);
Mat
gray8
=
Mat
(
mask
.
size
(),
CV_8UC3
);
cvtColor
(
mask
,
gray
,
COLOR_BGR2GRAY
);
vector
<
Mat
>
temp
;
split
(
I
,
temp
);
gray
.
copyTo
(
temp
[
2
]);
gray
.
copyTo
(
temp
[
1
]);
gray
.
copyTo
(
temp
[
0
]);
merge
(
temp
,
gray8
);
getGradientx
(
gray8
,
sgx
);
getGradienty
(
gray8
,
sgy
);
array_product
(
srx32
,
sgx
,
smask
);
array_product
(
sry32
,
sgy
,
smask
);
}
evaluate
(
I
,
wmask
,
cloned
);
}
void
Cloning
::
local_color_change
(
Mat
&
I
,
Mat
&
mask
,
Mat
&
wmask
,
Mat
&
cloned
,
float
red_mul
=
1.0
,
float
green_mul
=
1.0
,
float
blue_mul
=
1.0
)
{
initialization
(
I
,
mask
,
wmask
);
array_product
(
srx32
,
sgx
,
smask
);
array_product
(
sry32
,
sgy
,
smask
);
scalar_product
(
srx32
,
red_mul
,
green_mul
,
blue_mul
);
scalar_product
(
sry32
,
red_mul
,
green_mul
,
blue_mul
);
evaluate
(
I
,
wmask
,
cloned
);
}
void
Cloning
::
illum_change
(
Mat
&
I
,
Mat
&
mask
,
Mat
&
wmask
,
Mat
&
cloned
,
float
alpha
,
float
beta
)
{
initialization
(
I
,
mask
,
wmask
);
array_product
(
srx32
,
sgx
,
smask
);
array_product
(
sry32
,
sgy
,
smask
);
Mat
mag
=
Mat
(
I
.
size
(),
CV_32FC3
);
magnitude
(
srx32
,
sry32
,
mag
);
Mat
multX
,
multY
,
multx_temp
,
multy_temp
;
multiply
(
srx32
,
pow
(
alpha
,
beta
),
multX
);
pow
(
mag
,
-
1
*
beta
,
multx_temp
);
multiply
(
multX
,
multx_temp
,
srx32
);
multiply
(
sry32
,
pow
(
alpha
,
beta
),
multY
);
pow
(
mag
,
-
1
*
beta
,
multy_temp
);
multiply
(
multY
,
multy_temp
,
sry32
);
Mat
zeroMask
=
(
srx32
!=
0
);
srx32
.
copyTo
(
srx32
,
zeroMask
);
sry32
.
copyTo
(
sry32
,
zeroMask
);
evaluate
(
I
,
wmask
,
cloned
);
}
void
Cloning
::
texture_flatten
(
Mat
&
I
,
Mat
&
mask
,
Mat
&
wmask
,
double
low_threshold
,
double
high_threshold
,
int
kernel_size
,
Mat
&
cloned
)
{
initialization
(
I
,
mask
,
wmask
);
Mat
out
=
Mat
(
mask
.
size
(),
CV_8UC1
);
Canny
(
mask
,
out
,
low_threshold
,
high_threshold
,
kernel_size
);
Mat
zeros
(
sgx
.
size
(),
CV_32FC3
);
zeros
.
setTo
(
0
);
Mat
zerosMask
=
(
out
!=
255
);
zeros
.
copyTo
(
sgx
,
zerosMask
);
zeros
.
copyTo
(
sgy
,
zerosMask
);
array_product
(
srx32
,
sgx
,
smask
);
array_product
(
sry32
,
sgy
,
smask
);
evaluate
(
I
,
wmask
,
cloned
);
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment