Commit 1f04ea47 authored by Vladislav Vinogradov's avatar Vladislav Vinogradov

added DisparityBilateralFilter to gpu module

parent 48090fd3
......@@ -391,6 +391,7 @@ namespace cv
////////////////////////// StereoBeliefPropagation ///////////////////////////
// "Efficient Belief Propagation for Early Vision"
// P.Felzenszwalb
class CV_EXPORTS StereoBeliefPropagation
{
public:
......@@ -504,6 +505,45 @@ namespace cv
GpuMat out;
};
/////////////////////////// DisparityBilateralFilter ///////////////////////////
// Disparity map refinement using joint bilateral filtering given a single color image.
// Qingxiong Yang, Liang Wang†, Narendra Ahuja
// http://vision.ai.uiuc.edu/~qyang6/
class CV_EXPORTS DisparityBilateralFilter
{
public:
enum { DEFAULT_NDISP = 64 };
enum { DEFAULT_RADIUS = 3 };
enum { DEFAULT_ITERS = 1 };
//! the default constructor
explicit DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS);
//! the full constructor taking the number of disparities, filter radius,
//! number of iterations, truncation of data continuity, truncation of disparity continuity
//! and filter range sigma
DisparityBilateralFilter(int ndisp, int radius, int iters, float edge_threshold, float max_disc_threshold, float sigma_range);
//! the disparity map refinement operator. Refine disparity map using joint bilateral filtering given a single color image.
//! disparity must have CV_8U or CV_16S type, image must have CV_8UC1 or CV_8UC3 type.
void operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst);
//! Acync version
void operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst, Stream& stream);
int ndisp;
int radius;
int iters;
float edge_threshold;
float max_disc_threshold;
float sigma_range;
private:
std::vector<float> table_color;
GpuMat table_space;
};
}
//! Speckle filtering - filters small connected components on diparity image.
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
using namespace std;
#if !defined (HAVE_CUDA)
cv::gpu::DisparityBilateralFilter::DisparityBilateralFilter(int, int, int) { throw_nogpu(); }
cv::gpu::DisparityBilateralFilter::DisparityBilateralFilter(int, int, int, float, float, float) { throw_nogpu(); }
void cv::gpu::DisparityBilateralFilter::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::DisparityBilateralFilter::operator()(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
namespace cv { namespace gpu { namespace bf
{
void calc_space_weighted_filter_gpu(const DevMem2Df& table_space, int half, float dist_space, cudaStream_t stream);
void load_constants(float* table_color, const DevMem2Df& table_space, int ndisp, int radius, short edge_disc, short max_disc);
void bilateral_filter_gpu(const DevMem2D& disp, const DevMem2D& img, int channels, int iters, cudaStream_t stream);
void bilateral_filter_gpu(const DevMem2D_<short>& disp, const DevMem2D& img, int channels, int iters, cudaStream_t stream);
}}}
namespace
{
const float DEFAULT_EDGE_THRESHOLD = 0.1f;
const float DEFAULT_MAX_DISC_THRESHOLD = 0.2f;
const float DEFAULT_SIGMA_RANGE = 10.0f;
inline void calc_color_weighted_table(vector<float>& table_color, float sigma_range, int len)
{
float* color_table_x;
table_color.resize(len);
color_table_x = &table_color[0];
for(int y = 0; y < len; y++)
table_color[y] = static_cast<float>(std::exp(-double(y * y) / (2 * sigma_range * sigma_range)));
}
inline void calc_space_weighted_filter(GpuMat& table_space, int win_size, float dist_space, cudaStream_t stream)
{
int half = (win_size >> 1);
table_space.create(half + 1, half + 1, CV_32F);
bf::calc_space_weighted_filter_gpu(table_space, half, dist_space, stream);
}
template <typename T>
void bilateral_filter_operator(DisparityBilateralFilter& rthis, vector<float>& table_color, GpuMat& table_space,
const GpuMat& disp, const GpuMat& img, GpuMat& dst, cudaStream_t stream)
{
calc_color_weighted_table(table_color, rthis.sigma_range, 255);
calc_space_weighted_filter(table_space, rthis.radius * 2 + 1, rthis.radius + 1.0f, stream);
short edge_disc = max<short>(short(1), short(rthis.ndisp * rthis.edge_threshold + 0.5));
short max_disc = short(rthis.ndisp * rthis.max_disc_threshold + 0.5);
bf::load_constants(&table_color[0], table_space, rthis.ndisp, rthis.radius, edge_disc, max_disc);
if (&dst != &disp)
disp.copyTo(dst);
bf::bilateral_filter_gpu((DevMem2D_<T>)dst, img, img.channels(), rthis.iters, stream);
}
typedef void (*bilateral_filter_operator_t)(DisparityBilateralFilter& rthis, vector<float>& table_color, GpuMat& table_space,
const GpuMat& disp, const GpuMat& img, GpuMat& dst, cudaStream_t stream);
const bilateral_filter_operator_t operators[] =
{bilateral_filter_operator<unsigned char>, 0, 0, bilateral_filter_operator<short>, 0, 0, 0, 0};
}
cv::gpu::DisparityBilateralFilter::DisparityBilateralFilter(int ndisp_, int radius_, int iters_)
: ndisp(ndisp_), radius(radius_), iters(iters_), edge_threshold(DEFAULT_EDGE_THRESHOLD), max_disc_threshold(DEFAULT_MAX_DISC_THRESHOLD),
sigma_range(DEFAULT_SIGMA_RANGE)
{
}
cv::gpu::DisparityBilateralFilter::DisparityBilateralFilter(int ndisp_, int radius_, int iters_, float edge_threshold_,
float max_disc_threshold_, float sigma_range_)
: ndisp(ndisp_), radius(radius_), iters(iters_), edge_threshold(edge_threshold_), max_disc_threshold(max_disc_threshold_),
sigma_range(sigma_range_)
{
}
void cv::gpu::DisparityBilateralFilter::operator()(const GpuMat& disp, const GpuMat& img, GpuMat& dst)
{
CV_DbgAssert(0 < ndisp && 0 < radius && 0 < iters);
CV_Assert(disp.rows == img.rows && disp.cols == img.cols && (disp.type() == CV_8U || disp.type() == CV_16S) && (img.type() == CV_8UC1 || img.type() == CV_8UC3));
operators[disp.type()](*this, table_color, table_space, disp, img, dst, 0);
}
void cv::gpu::DisparityBilateralFilter::operator()(const GpuMat& disp, const GpuMat& img, GpuMat& dst, Stream& stream)
{
CV_DbgAssert(0 < ndisp && 0 < radius && 0 < iters);
CV_Assert(disp.rows == img.rows && disp.cols == img.cols && (disp.type() == CV_8U || disp.type() == CV_16S) && (img.type() == CV_8UC1 || img.type() == CV_8UC3));
operators[disp.type()](*this, table_color, table_space, disp, img, dst, StreamAccessor::getStream(stream));
}
#endif /* !defined (HAVE_CUDA) */
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/gpu/devmem2d.hpp"
#include "saturate_cast.hpp"
#include "safe_call.hpp"
using namespace cv::gpu;
using namespace cv::gpu::impl;
#ifndef FLT_MAX
#define FLT_MAX 3.402823466e+30F
#endif
namespace bf_krnls
{
__global__ void calc_space_weighted_filter(float* table_space, size_t step, int half, float dist_space)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y <= half && x <= half)
*(table_space + y * step + x) = expf(-sqrtf(float(y * y) + float(x * x)) / dist_space);
}
}
namespace cv { namespace gpu { namespace bf
{
void calc_space_weighted_filter_gpu(const DevMem2Df& table_space, int half, float dist_space, cudaStream_t stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(half + 1, threads.x);
grid.x = divUp(half + 1, threads.y);
bf_krnls::calc_space_weighted_filter<<<grid, threads, 0, stream>>>(table_space.ptr, table_space.step/sizeof(float), half, dist_space);
if (stream != 0)
cudaSafeCall( cudaThreadSynchronize() );
}
}}}
namespace bf_krnls
{
__constant__ float* ctable_color;
__constant__ float* ctable_space;
__constant__ size_t ctable_space_step;
__constant__ int cndisp;
__constant__ int cradius;
__constant__ short cedge_disc;
__constant__ short cmax_disc;
}
namespace cv { namespace gpu { namespace bf
{
void load_constants(float* table_color, const DevMem2Df& table_space, int ndisp, int radius, short edge_disc, short max_disc)
{
cudaSafeCall( cudaMemcpyToSymbol(bf_krnls::ctable_color, &table_color, sizeof(table_color)) );
cudaSafeCall( cudaMemcpyToSymbol(bf_krnls::ctable_space, &table_space.ptr, sizeof(table_space.ptr)) );
size_t table_space_step = table_space.step / sizeof(float);
cudaSafeCall( cudaMemcpyToSymbol(bf_krnls::ctable_space_step, &table_space_step, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(bf_krnls::cndisp, &ndisp, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(bf_krnls::cradius, &radius, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(bf_krnls::cedge_disc, &edge_disc, sizeof(short)) );
cudaSafeCall( cudaMemcpyToSymbol(bf_krnls::cmax_disc, &max_disc, sizeof(short)) );
}
}}}
namespace bf_krnls
{
template <int channels>
struct DistRgbMax
{
static __device__ uchar calc(const uchar* a, const uchar* b)
{
uchar x = abs(a[0] - b[0]);
uchar y = abs(a[1] - b[1]);
uchar z = abs(a[2] - b[2]);
return (max(max(x, y), z));
}
};
template <>
struct DistRgbMax<1>
{
static __device__ uchar calc(const uchar* a, const uchar* b)
{
return abs(a[0] - b[0]);
}
};
template <int channels, typename T>
__global__ void bilateral_filter(int t, T* disp, size_t disp_step, const uchar* img, size_t img_step, int h, int w)
{
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = ((blockIdx.x * blockDim.x + threadIdx.x) << 1) + ((y + t) & 1);
T dp[5];
if (y > 0 && y < h - 1 && x > 0 && x < w - 1)
{
dp[0] = *(disp + (y ) * disp_step + x + 0);
dp[1] = *(disp + (y-1) * disp_step + x + 0);
dp[2] = *(disp + (y ) * disp_step + x - 1);
dp[3] = *(disp + (y+1) * disp_step + x + 0);
dp[4] = *(disp + (y ) * disp_step + x + 1);
if(abs(dp[1] - dp[0]) >= cedge_disc || abs(dp[2] - dp[0]) >= cedge_disc || abs(dp[3] - dp[0]) >= cedge_disc || abs(dp[4] - dp[0]) >= cedge_disc)
{
const int ymin = max(0, y - cradius);
const int xmin = max(0, x - cradius);
const int ymax = min(h - 1, y + cradius);
const int xmax = min(w - 1, x + cradius);
float cost[] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
const uchar* ic = img + y * img_step + channels * x;
for(int yi = ymin; yi <= ymax; yi++)
{
const T* disp_y = disp + yi * disp_step;
for(int xi = xmin; xi <= xmax; xi++)
{
const uchar* in = img + yi * img_step + channels * xi;
uchar dist_rgb = DistRgbMax<channels>::calc(in, ic);
const float weight = ctable_color[dist_rgb] * (ctable_space + abs(y-yi)* ctable_space_step)[abs(x-xi)];
const T disp_reg = disp_y[xi];
cost[0] += min(cmax_disc, abs(disp_reg - dp[0])) * weight;
cost[1] += min(cmax_disc, abs(disp_reg - dp[1])) * weight;
cost[2] += min(cmax_disc, abs(disp_reg - dp[2])) * weight;
cost[3] += min(cmax_disc, abs(disp_reg - dp[3])) * weight;
cost[4] += min(cmax_disc, abs(disp_reg - dp[4])) * weight;
}
}
float minimum = FLT_MAX;
int id = 0;
if (cost[0] < minimum)
{
minimum = cost[0];
id = 0;
}
if (cost[1] < minimum)
{
minimum = cost[1];
id = 1;
}
if (cost[2] < minimum)
{
minimum = cost[2];
id = 2;
}
if (cost[3] < minimum)
{
minimum = cost[3];
id = 3;
}
if (cost[4] < minimum)
{
minimum = cost[4];
id = 4;
}
*(disp + y * disp_step + x) = dp[id];
}
}
}
}
namespace cv { namespace gpu { namespace bf
{
template <typename T>
void bilateral_filter_caller(const DevMem2D_<T>& disp, const DevMem2D& img, int channels, int iters, cudaStream_t stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(disp.cols, threads.x << 1);
grid.y = divUp(disp.rows, threads.y);
switch (channels)
{
case 1:
for (int i = 0; i < iters; ++i)
{
bf_krnls::bilateral_filter<1><<<grid, threads, 0, stream>>>(0, disp.ptr, disp.step/sizeof(T), img.ptr, img.step, disp.rows, disp.cols);
bf_krnls::bilateral_filter<1><<<grid, threads, 0, stream>>>(1, disp.ptr, disp.step/sizeof(T), img.ptr, img.step, disp.rows, disp.cols);
}
break;
case 3:
for (int i = 0; i < iters; ++i)
{
bf_krnls::bilateral_filter<3><<<grid, threads, 0, stream>>>(0, disp.ptr, disp.step/sizeof(T), img.ptr, img.step, disp.rows, disp.cols);
bf_krnls::bilateral_filter<3><<<grid, threads, 0, stream>>>(1, disp.ptr, disp.step/sizeof(T), img.ptr, img.step, disp.rows, disp.cols);
}
break;
default:
cv::gpu::error("Unsupported channels count", __FILE__, __LINE__);
}
if (stream != 0)
cudaSafeCall( cudaThreadSynchronize() );
}
void bilateral_filter_gpu(const DevMem2D& disp, const DevMem2D& img, int channels, int iters, cudaStream_t stream)
{
bilateral_filter_caller(disp, img, channels, iters, stream);
}
void bilateral_filter_gpu(const DevMem2D_<short>& disp, const DevMem2D& img, int channels, int iters, cudaStream_t stream)
{
bilateral_filter_caller(disp, img, channels, iters, stream);
}
}}}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment