Commit 19236b6e authored by marina.kolpakova's avatar marina.kolpakova

remove dead code

parent d4d47b1e
......@@ -85,13 +85,6 @@ sft::Octave::~Octave(){}
bool sft::Octave::train( const cv::Mat& _trainData, const cv::Mat& _responses, const cv::Mat& varIdx,
const cv::Mat& sampleIdx, const cv::Mat& varType, const cv::Mat& missingDataMask)
{
// std::cout << "WARNING: sampleIdx " << sampleIdx << std::endl;
// std::cout << "WARNING: trainData " << _trainData << std::endl;
// std::cout << "WARNING: _responses " << _responses << std::endl;
// std::cout << "WARNING: varIdx" << varIdx << std::endl;
// std::cout << "WARNING: varType" << varType << std::endl;
bool update = false;
return cv::Boost::train(_trainData, CV_COL_SAMPLE, _responses, varIdx, sampleIdx, varType, missingDataMask, params,
update);
......@@ -119,10 +112,6 @@ void sft::Octave::setRejectThresholds(cv::Mat& thresholds)
mptr[si] = cv::saturate_cast<uchar>((uint)( (responses.ptr<float>(si)[0] == 1.f) && (decision == 1.f)));
}
// std::cout << "WARNING: responses " << responses << std::endl;
// std::cout << "WARNING: desisions " << desisions << std::endl;
// std::cout << "WARNING: ppmask " << ppmask << std::endl;
int weaks = weak->total;
thresholds.create(1, weaks, CV_64FC1);
double* thptr = thresholds.ptr<double>(0);
......@@ -144,10 +133,7 @@ void sft::Octave::setRejectThresholds(cv::Mat& thresholds)
double mintrace = 0.;
cv::minMaxLoc(traces.row(w), &mintrace);
thptr[w] = mintrace;
// std::cout << "mintrace " << mintrace << std::endl << traces.colRange(0, npositives).rowRange(w, w + 1) << std::endl << std::endl << std::endl << std::endl;
}
std::cout << "WARNING: thresholds " << thresholds << std::endl;
}
namespace {
......@@ -211,8 +197,6 @@ public:
};
}
// ToDo: parallelize it, fix curring
// ToDo: sunch model size and shrinced model size usage/ Now model size mean already shrinked model
void sft::Octave::processPositives(const Dataset& dataset, const FeaturePool& pool)
{
Preprocessor prepocessor(shrinkage);
......@@ -227,8 +211,6 @@ void sft::Octave::processPositives(const Dataset& dataset, const FeaturePool& po
{
const string& curr = *it;
// dprintf("Process candidate positive image %s\n", curr.c_str());
cv::Mat sample = cv::imread(curr);
cv::Mat channels = integrals.row(total).reshape(0, h / shrinkage * 10 + 1);
......@@ -266,9 +248,6 @@ void sft::Octave::generateNegatives(const Dataset& dataset)
{
int curr = iRand(idxEng);
// dprintf("View %d-th sample\n", curr);
// dprintf("Process %s\n", dataset.neg[curr].c_str());
Mat frame = cv::imread(dataset.neg[curr]);
int maxW = frame.cols - 2 * boundingBox.x - boundingBox.width;
......@@ -352,7 +331,7 @@ void sft::Octave::traverse(const CvBoostTree* tree, cv::FileStorage& fs, int& nf
fs << "leafValues" << "[";
for (int ni = 0; ni < -leafValIdx; ni++)
fs << leafs[ni];//( (!th) ? leafs[ni] : (sgn(leafs[ni]) * *th));
fs << leafs[ni];
fs << "]";
......@@ -447,19 +426,6 @@ bool sft::Octave::train(const Dataset& dataset, const FeaturePool& pool, int wea
bool ok = train(trainData, responses, varIdx, sampleIdx, varType, missingMask);
if (!ok)
std::cout << "ERROR: tree can not be trained " << std::endl;
#if defined SELF_TEST
cv::Mat a(1, nfeatures, CV_32FC1);
cv::Mat votes(1, cvSliceLength( CV_WHOLE_SEQ, weak ), CV_32FC1, cv::Scalar::all(0));
// std::cout << a.cols << " " << a.rows << " !!!!!!!!!!! " << data->var_all << std::endl;
for (int si = 0; si < nsamples; ++si)
{
// trainData.col(si).copyTo(a.reshape(0,trainData.rows));
float desision = predict(trainData.col(si), votes, false, true);
// std::cout << "desision " << desision << " class " << responses.at<float>(si, 0) << votes <<std::endl;
}
#endif
return ok;
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment