Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
19173665
Commit
19173665
authored
Sep 26, 2012
by
marina.kolpakova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
empty cascade
parent
4881205b
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
705 additions
and
708 deletions
+705
-708
isf-sc.cu
modules/gpu/src/cuda/isf-sc.cu
+173
-173
icf.hpp
modules/gpu/src/icf.hpp
+125
-125
softcascade.cpp
modules/gpu/src/softcascade.cpp
+407
-410
No files found.
modules/gpu/src/cuda/isf-sc.cu
View file @
19173665
...
@@ -40,221 +40,221 @@
...
@@ -40,221 +40,221 @@
//
//
//M*/
//M*/
#include <icf.hpp>
//
#include <icf.hpp>
#include <opencv2/gpu/device/saturate_cast.hpp>
//
#include <opencv2/gpu/device/saturate_cast.hpp>
#include <stdio.h>
//
#include <stdio.h>
#include <float.h>
//
#include <float.h>
//#define LOG_CUDA_CASCADE
//
//
#define LOG_CUDA_CASCADE
#if defined LOG_CUDA_CASCADE
//
#if defined LOG_CUDA_CASCADE
# define dprintf(format, ...) \
//
# define dprintf(format, ...) \
do { printf(format, __VA_ARGS__); } while (0)
//
do { printf(format, __VA_ARGS__); } while (0)
#else
//
#else
# define dprintf(format, ...)
//
# define dprintf(format, ...)
#endif
//
#endif
namespace cv { namespace gpu { namespace device {
//
namespace cv { namespace gpu { namespace device {
namespace icf {
//
namespace icf {
enum {
//
enum {
HOG_BINS = 6,
//
HOG_BINS = 6,
HOG_LUV_BINS = 10,
//
HOG_LUV_BINS = 10,
WIDTH = 640,
//
WIDTH = 640,
HEIGHT = 480,
//
HEIGHT = 480,
GREY_OFFSET = HEIGHT * HOG_LUV_BINS
//
GREY_OFFSET = HEIGHT * HOG_LUV_BINS
};
//
};
__global__ void magToHist(const uchar* __restrict__ mag,
//
__global__ void magToHist(const uchar* __restrict__ mag,
const float* __restrict__ angle, const int angPitch,
//
const float* __restrict__ angle, const int angPitch,
uchar* __restrict__ hog, const int hogPitch)
//
uchar* __restrict__ hog, const int hogPitch)
{
//
{
const int y = blockIdx.y * blockDim.y + threadIdx.y;
//
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
//
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int bin = (int)(angle[y * angPitch + x]);
//
const int bin = (int)(angle[y * angPitch + x]);
const uchar val = mag[y * angPitch + x];
//
const uchar val = mag[y * angPitch + x];
hog[((HEIGHT * bin) + y) * hogPitch + x] = val;
//
hog[((HEIGHT * bin) + y) * hogPitch + x] = val;
}
//
}
void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle)
//
void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle)
{
//
{
const uchar* mag = (const uchar*)hogluv.ptr(HEIGHT * HOG_BINS);
//
const uchar* mag = (const uchar*)hogluv.ptr(HEIGHT * HOG_BINS);
uchar* hog = (uchar*)hogluv.ptr();
//
uchar* hog = (uchar*)hogluv.ptr();
const float* angle = (const float*)nangle.ptr();
//
const float* angle = (const float*)nangle.ptr();
dim3 block(32, 8);
//
dim3 block(32, 8);
dim3 grid(WIDTH / 32, HEIGHT / 8);
//
dim3 grid(WIDTH / 32, HEIGHT / 8);
magToHist<<<grid, block>>>(mag, angle, nangle.step / sizeof(float), hog, hogluv.step);
//
magToHist<<<grid, block>>>(mag, angle, nangle.step / sizeof(float), hog, hogluv.step);
cudaSafeCall( cudaGetLastError() );
//
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
//
cudaSafeCall( cudaDeviceSynchronize() );
}
//
}
}
//
}
__global__ void detect(const cv::gpu::icf::Cascade cascade, const int* __restrict__ hogluv, const int pitch,
//
__global__ void detect(const cv::gpu::icf::Cascade cascade, const int* __restrict__ hogluv, const int pitch,
PtrStepSz<uchar4> objects)
//
PtrStepSz<uchar4> objects)
{
//
{
cascade.detectAt(hogluv, pitch, objects);
//
cascade.detectAt(hogluv, pitch, objects);
}
//
}
}
//
}
float __device icf::Cascade::rescale(const icf::Level& level, uchar4& scaledRect,
//
float __device icf::Cascade::rescale(const icf::Level& level, uchar4& scaledRect,
const int channel, const float threshold) const
//
const int channel, const float threshold) const
{
//
{
dprintf("feature %d box %d %d %d %d\n", channel, scaledRect.x, scaledRect.y, scaledRect.z, scaledRect.w);
//
dprintf("feature %d box %d %d %d %d\n", channel, scaledRect.x, scaledRect.y, scaledRect.z, scaledRect.w);
dprintf("rescale: %f [%f %f]\n",level.relScale, level.scaling[0], level.scaling[1]);
//
dprintf("rescale: %f [%f %f]\n",level.relScale, level.scaling[0], level.scaling[1]);
float relScale = level.relScale;
//
float relScale = level.relScale;
float farea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
//
float farea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
// rescale
//
// rescale
scaledRect.x = __float2int_rn(relScale * scaledRect.x);
//
scaledRect.x = __float2int_rn(relScale * scaledRect.x);
scaledRect.y = __float2int_rn(relScale * scaledRect.y);
//
scaledRect.y = __float2int_rn(relScale * scaledRect.y);
scaledRect.z = __float2int_rn(relScale * scaledRect.z);
//
scaledRect.z = __float2int_rn(relScale * scaledRect.z);
scaledRect.w = __float2int_rn(relScale * scaledRect.w);
//
scaledRect.w = __float2int_rn(relScale * scaledRect.w);
float sarea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
//
float sarea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
float approx = 1.f;
//
float approx = 1.f;
if (fabs(farea - 0.f) > FLT_EPSILON && fabs(farea - 0.f) > FLT_EPSILON)
//
if (fabs(farea - 0.f) > FLT_EPSILON && fabs(farea - 0.f) > FLT_EPSILON)
{
//
{
const float expected_new_area = farea * relScale * relScale;
//
const float expected_new_area = farea * relScale * relScale;
approx = expected_new_area / sarea;
//
approx = expected_new_area / sarea;
}
//
}
dprintf("new rect: %d box %d %d %d %d rel areas %f %f\n", channel,
//
dprintf("new rect: %d box %d %d %d %d rel areas %f %f\n", channel,
scaledRect.x, scaledRect.y, scaledRect.z, scaledRect.w, farea * relScale * relScale, sarea);
//
scaledRect.x, scaledRect.y, scaledRect.z, scaledRect.w, farea * relScale * relScale, sarea);
// compensation areas rounding
//
// compensation areas rounding
float rootThreshold = threshold / approx;
//
float rootThreshold = threshold / approx;
// printf(" approx %f\n", rootThreshold);
//
// printf(" approx %f\n", rootThreshold);
rootThreshold *= level.scaling[(int)(channel > 6)];
//
rootThreshold *= level.scaling[(int)(channel > 6)];
dprintf("approximation %f %f -> %f %f\n", approx, threshold, rootThreshold, level.scaling[(int)(channel > 6)]);
//
dprintf("approximation %f %f -> %f %f\n", approx, threshold, rootThreshold, level.scaling[(int)(channel > 6)]);
return rootThreshold;
//
return rootThreshold;
}
//
}
typedef unsigned char uchar;
//
typedef unsigned char uchar;
float __device get(const int* __restrict__ hogluv, const int pitch,
//
float __device get(const int* __restrict__ hogluv, const int pitch,
const int x, const int y, int channel, uchar4 area)
//
const int x, const int y, int channel, uchar4 area)
{
//
{
dprintf("feature box %d %d %d %d ", area.x, area.y, area.z, area.w);
//
dprintf("feature box %d %d %d %d ", area.x, area.y, area.z, area.w);
dprintf("get for channel %d\n", channel);
//
dprintf("get for channel %d\n", channel);
dprintf("extract feature for: [%d %d] [%d %d] [%d %d] [%d %d]\n",
//
dprintf("extract feature for: [%d %d] [%d %d] [%d %d] [%d %d]\n",
x + area.x, y + area.y, x + area.z, y + area.y, x + area.z,y + area.w,
//
x + area.x, y + area.y, x + area.z, y + area.y, x + area.z,y + area.w,
x + area.x, y + area.w);
//
x + area.x, y + area.w);
dprintf("at point %d %d with offset %d\n", x, y, 0);
//
dprintf("at point %d %d with offset %d\n", x, y, 0);
const int* curr = hogluv + ((channel * 121) + y) * pitch;
//
const int* curr = hogluv + ((channel * 121) + y) * pitch;
int a = curr[area.y * pitch + x + area.x];
//
int a = curr[area.y * pitch + x + area.x];
int b = curr[area.y * pitch + x + area.z];
//
int b = curr[area.y * pitch + x + area.z];
int c = curr[area.w * pitch + x + area.z];
//
int c = curr[area.w * pitch + x + area.z];
int d = curr[area.w * pitch + x + area.x];
//
int d = curr[area.w * pitch + x + area.x];
dprintf(" retruved integral values: %d %d %d %d\n", a, b, c, d);
//
dprintf(" retruved integral values: %d %d %d %d\n", a, b, c, d);
return (a - b + c - d);
//
return (a - b + c - d);
}
//
}
void __device icf::Cascade::detectAt(const int* __restrict__ hogluv, const int pitch,
//
void __device icf::Cascade::detectAt(const int* __restrict__ hogluv, const int pitch,
PtrStepSz<uchar4>& objects) const
//
PtrStepSz<uchar4>& objects) const
{
//
{
const icf::Level* lls = (const icf::Level*)levels.ptr();
//
const icf::Level* lls = (const icf::Level*)levels.ptr();
const int y = blockIdx.y * blockDim.y + threadIdx.y;
//
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
//
const int x = blockIdx.x * blockDim.x + threadIdx.x;
// if (x > 0 || y > 0) return;
//
// if (x > 0 || y > 0) return;
Level level = lls[blockIdx.z];
//
Level level = lls[blockIdx.z];
if (x >= level.workRect.x || y >= level.workRect.y) return;
//
if (x >= level.workRect.x || y >= level.workRect.y) return;
dprintf("level: %d (%f %f) [%f %f] (%d %d) (%d %d)\n", level.octave, level.relScale, level.shrScale,
//
dprintf("level: %d (%f %f) [%f %f] (%d %d) (%d %d)\n", level.octave, level.relScale, level.shrScale,
level.scaling[0], level.scaling[1], level.workRect.x, level.workRect.y, level.objSize.x, level.objSize.y);
//
level.scaling[0], level.scaling[1], level.workRect.x, level.workRect.y, level.objSize.x, level.objSize.y);
const Octave octave = ((const Octave*)octaves.ptr())[level.octave];
//
const Octave octave = ((const Octave*)octaves.ptr())[level.octave];
// printf("Octave: %d %d %d (%d %d) %f\n", octave.index, octave.stages,
//
// printf("Octave: %d %d %d (%d %d) %f\n", octave.index, octave.stages,
// octave.shrinkage, octave.size.x, octave.size.y, octave.scale);
//
// octave.shrinkage, octave.size.x, octave.size.y, octave.scale);
const int stBegin = octave.index * octave.stages, stEnd = stBegin + octave.stages;
//
const int stBegin = octave.index * octave.stages, stEnd = stBegin + octave.stages;
float detectionScore = 0.f;
//
float detectionScore = 0.f;
int st = stBegin;
//
int st = stBegin;
for(; st < stEnd; ++st)
//
for(; st < stEnd; ++st)
{
//
{
const float stage = stages(0, st);
//
const float stage = stages(0, st);
dprintf("Stage: %f\n", stage);
//
dprintf("Stage: %f\n", stage);
{
//
{
const int nId = st * 3;
//
const int nId = st * 3;
// work with root node
//
// work with root node
const Node node = ((const Node*)nodes.ptr())[nId];
//
const Node node = ((const Node*)nodes.ptr())[nId];
dprintf("Node: %d %f\n", node.feature, node.threshold);
//
dprintf("Node: %d %f\n", node.feature, node.threshold);
const Feature feature = ((const Feature*)features.ptr())[node.feature];
//
const Feature feature = ((const Feature*)features.ptr())[node.feature];
uchar4 scaledRect = feature.rect;
//
uchar4 scaledRect = feature.rect;
float threshold = rescale(level, scaledRect, feature.channel, node.threshold);
//
float threshold = rescale(level, scaledRect, feature.channel, node.threshold);
float sum = get(hogluv,pitch, x, y, feature.channel, scaledRect);
//
float sum = get(hogluv,pitch, x, y, feature.channel, scaledRect);
dprintf("root feature %d %f\n",feature.channel, sum);
//
dprintf("root feature %d %f\n",feature.channel, sum);
int next = 1 + (int)(sum >= threshold);
//
int next = 1 + (int)(sum >= threshold);
dprintf("go: %d (%f >= %f)\n\n" ,next, sum, threshold);
//
dprintf("go: %d (%f >= %f)\n\n" ,next, sum, threshold);
// leaves
//
// leaves
const Node leaf = ((const Node*)nodes.ptr())[nId + next];
//
const Node leaf = ((const Node*)nodes.ptr())[nId + next];
const Feature fLeaf = ((const Feature*)features.ptr())[leaf.feature];
//
const Feature fLeaf = ((const Feature*)features.ptr())[leaf.feature];
scaledRect = fLeaf.rect;
//
scaledRect = fLeaf.rect;
threshold = rescale(level, scaledRect, fLeaf.channel, leaf.threshold);
//
threshold = rescale(level, scaledRect, fLeaf.channel, leaf.threshold);
sum = get(hogluv, pitch, x, y, fLeaf.channel, scaledRect);
//
sum = get(hogluv, pitch, x, y, fLeaf.channel, scaledRect);
const int lShift = (next - 1) * 2 + (int)(sum >= threshold);
//
const int lShift = (next - 1) * 2 + (int)(sum >= threshold);
float impact = leaves(0, (st * 4) + lShift);
//
float impact = leaves(0, (st * 4) + lShift);
detectionScore += impact;
//
detectionScore += impact;
dprintf("decided: %d (%f >= %f) %d %f\n\n" ,next, sum, threshold, lShift, impact);
//
dprintf("decided: %d (%f >= %f) %d %f\n\n" ,next, sum, threshold, lShift, impact);
dprintf("extracted stage:\n");
//
dprintf("extracted stage:\n");
dprintf("ct %f\n", stage);
//
dprintf("ct %f\n", stage);
dprintf("computed score %f\n\n", detectionScore);
//
dprintf("computed score %f\n\n", detectionScore);
dprintf("\n\n");
//
dprintf("\n\n");
}
//
}
if (detectionScore <= stage || st - stBegin == 100) break;
//
if (detectionScore <= stage || st - stBegin == 100) break;
}
//
}
dprintf("x %d y %d: %d\n", x, y, st - stBegin);
//
dprintf("x %d y %d: %d\n", x, y, st - stBegin);
if (st == stEnd)
//
if (st == stEnd)
{
//
{
uchar4 a;
//
uchar4 a;
a.x = level.workRect.x;
//
a.x = level.workRect.x;
a.y = level.workRect.y;
//
a.y = level.workRect.y;
objects(0, threadIdx.x) = a;
//
objects(0, threadIdx.x) = a;
}
//
}
}
//
}
void icf::Cascade::detect(const cv::gpu::PtrStepSzi& hogluv, PtrStepSz<uchar4> objects, cudaStream_t stream) const
//
void icf::Cascade::detect(const cv::gpu::PtrStepSzi& hogluv, PtrStepSz<uchar4> objects, cudaStream_t stream) const
{
//
{
dim3 block(32, 8, 1);
//
dim3 block(32, 8, 1);
dim3 grid(ChannelStorage::FRAME_WIDTH / 32, ChannelStorage::FRAME_HEIGHT / 8, 47);
//
dim3 grid(ChannelStorage::FRAME_WIDTH / 32, ChannelStorage::FRAME_HEIGHT / 8, 47);
device::detect<<<grid, block, 0, stream>>>(*this, hogluv, hogluv.step / sizeof(int), objects);
//
device::detect<<<grid, block, 0, stream>>>(*this, hogluv, hogluv.step / sizeof(int), objects);
cudaSafeCall( cudaGetLastError() );
//
cudaSafeCall( cudaGetLastError() );
if (!stream)
//
if (!stream)
cudaSafeCall( cudaDeviceSynchronize() );
//
cudaSafeCall( cudaDeviceSynchronize() );
}
//
}
}}
// }}
\ No newline at end of file
\ No newline at end of file
modules/gpu/src/icf.hpp
View file @
19173665
...
@@ -40,127 +40,127 @@
...
@@ -40,127 +40,127 @@
//
//
//M*/
//M*/
#include <opencv2/gpu/device/common.hpp>
// #include <opencv2/gpu/device/common.hpp>
#ifndef __OPENCV_ICF_HPP__
// #ifndef __OPENCV_ICF_HPP__
#define __OPENCV_ICF_HPP__
// #define __OPENCV_ICF_HPP__
#if defined __CUDACC__
// #if defined __CUDACC__
# define __device __device__ __forceinline__
// # define __device __device__ __forceinline__
#else
// #else
# define __device
// # define __device
#endif
// #endif
namespace
cv
{
namespace
gpu
{
namespace
icf
{
// namespace cv { namespace gpu { namespace icf {
using
cv
::
gpu
::
PtrStepSzb
;
// using cv::gpu::PtrStepSzb;
using
cv
::
gpu
::
PtrStepSzf
;
// using cv::gpu::PtrStepSzf;
typedef
unsigned
char
uchar
;
// typedef unsigned char uchar;
struct
__align__
(
16
)
Octave
// struct __align__(16) Octave
{
// {
ushort
index
;
// ushort index;
ushort
stages
;
// ushort stages;
ushort
shrinkage
;
// ushort shrinkage;
ushort2
size
;
// ushort2 size;
float
scale
;
// float scale;
Octave
(
const
ushort
i
,
const
ushort
s
,
const
ushort
sh
,
const
ushort2
sz
,
const
float
sc
)
// Octave(const ushort i, const ushort s, const ushort sh, const ushort2 sz, const float sc)
:
index
(
i
),
stages
(
s
),
shrinkage
(
sh
),
size
(
sz
),
scale
(
sc
)
{}
// : index(i), stages(s), shrinkage(sh), size(sz), scale(sc) {}
};
// };
struct
__align__
(
8
)
Level
//is actually 24 bytes
// struct __align__(8) Level //is actually 24 bytes
{
// {
int
octave
;
// int octave;
// float origScale; //not actually used
// // float origScale; //not actually used
float
relScale
;
// float relScale;
float
shrScale
;
// used for marking detection
// float shrScale; // used for marking detection
float
scaling
[
2
];
// calculated according to Dollal paper
// float scaling[2]; // calculated according to Dollal paper
// for 640x480 we can not get overflow
// // for 640x480 we can not get overflow
uchar2
workRect
;
// uchar2 workRect;
uchar2
objSize
;
// uchar2 objSize;
Level
(
int
idx
,
const
Octave
&
oct
,
const
float
scale
,
const
int
w
,
const
int
h
)
// Level(int idx, const Octave& oct, const float scale, const int w, const int h)
:
octave
(
idx
),
relScale
(
scale
/
oct
.
scale
),
shrScale
(
relScale
/
(
float
)
oct
.
shrinkage
)
// : octave(idx), relScale(scale / oct.scale), shrScale (relScale / (float)oct.shrinkage)
{
// {
workRect
.
x
=
round
(
w
/
(
float
)
oct
.
shrinkage
);
// workRect.x = round(w / (float)oct.shrinkage);
workRect
.
y
=
round
(
h
/
(
float
)
oct
.
shrinkage
);
// workRect.y = round(h / (float)oct.shrinkage);
objSize
.
x
=
round
(
oct
.
size
.
x
*
relScale
);
// objSize.x = round(oct.size.x * relScale);
objSize
.
y
=
round
(
oct
.
size
.
y
*
relScale
);
// objSize.y = round(oct.size.y * relScale);
}
// }
};
// };
struct
Cascade
// struct Cascade
{
// {
Cascade
()
{}
// Cascade() {}
Cascade
(
const
cv
::
gpu
::
PtrStepSzb
&
octs
,
const
cv
::
gpu
::
PtrStepSzf
&
sts
,
const
cv
::
gpu
::
PtrStepSzb
&
nds
,
// Cascade(const cv::gpu::PtrStepSzb& octs, const cv::gpu::PtrStepSzf& sts, const cv::gpu::PtrStepSzb& nds,
const
cv
::
gpu
::
PtrStepSzf
&
lvs
,
const
cv
::
gpu
::
PtrStepSzb
&
fts
,
const
cv
::
gpu
::
PtrStepSzb
&
lls
)
// const cv::gpu::PtrStepSzf& lvs, const cv::gpu::PtrStepSzb& fts, const cv::gpu::PtrStepSzb& lls)
:
octaves
(
octs
),
stages
(
sts
),
nodes
(
nds
),
leaves
(
lvs
),
features
(
fts
),
levels
(
lls
)
{}
// : octaves(octs), stages(sts), nodes(nds), leaves(lvs), features(fts), levels(lls) {}
void
detect
(
const
cv
::
gpu
::
PtrStepSzi
&
hogluv
,
cv
::
gpu
::
PtrStepSz
<
uchar4
>
objects
,
cudaStream_t
stream
)
const
;
// void detect(const cv::gpu::PtrStepSzi& hogluv, cv::gpu::PtrStepSz<uchar4> objects, cudaStream_t stream) const;
void
__device
detectAt
(
const
int
*
__restrict__
hogluv
,
const
int
pitch
,
PtrStepSz
<
uchar4
>&
objects
)
const
;
// void __device detectAt(const int* __restrict__ hogluv, const int pitch, PtrStepSz<uchar4>& objects) const;
float
__device
rescale
(
const
icf
::
Level
&
level
,
uchar4
&
scaledRect
,
// float __device rescale(const icf::Level& level, uchar4& scaledRect,
const
int
channel
,
const
float
threshold
)
const
;
// const int channel, const float threshold) const;
PtrStepSzb
octaves
;
// PtrStepSzb octaves;
PtrStepSzf
stages
;
// PtrStepSzf stages;
PtrStepSzb
nodes
;
// PtrStepSzb nodes;
PtrStepSzf
leaves
;
// PtrStepSzf leaves;
PtrStepSzb
features
;
// PtrStepSzb features;
PtrStepSzb
levels
;
// PtrStepSzb levels;
};
// };
struct
ChannelStorage
// struct ChannelStorage
{
// {
ChannelStorage
(){}
// ChannelStorage(){}
ChannelStorage
(
const
cv
::
gpu
::
PtrStepSzb
&
buff
,
const
cv
::
gpu
::
PtrStepSzb
&
shr
,
// ChannelStorage(const cv::gpu::PtrStepSzb& buff, const cv::gpu::PtrStepSzb& shr,
const
cv
::
gpu
::
PtrStepSzb
&
itg
,
const
int
s
)
// const cv::gpu::PtrStepSzb& itg, const int s)
:
dmem
(
buff
),
shrunk
(
shr
),
hogluv
(
itg
),
shrinkage
(
s
)
{}
// : dmem (buff), shrunk(shr), hogluv(itg), shrinkage(s) {}
void
frame
(
const
cv
::
gpu
::
PtrStepSz
<
uchar3
>&
rgb
,
cudaStream_t
stream
){}
// void frame(const cv::gpu::PtrStepSz<uchar3>& rgb, cudaStream_t stream){}
PtrStepSzb
dmem
;
// PtrStepSzb dmem;
PtrStepSzb
shrunk
;
// PtrStepSzb shrunk;
PtrStepSzb
hogluv
;
// PtrStepSzb hogluv;
enum
// enum
{
// {
FRAME_WIDTH
=
640
,
// FRAME_WIDTH = 640,
FRAME_HEIGHT
=
480
,
// FRAME_HEIGHT = 480,
TOTAL_SCALES
=
55
,
// TOTAL_SCALES = 55,
CLASSIFIERS
=
5
,
// CLASSIFIERS = 5,
ORIG_OBJECT_WIDTH
=
64
,
// ORIG_OBJECT_WIDTH = 64,
ORIG_OBJECT_HEIGHT
=
128
,
// ORIG_OBJECT_HEIGHT = 128,
HOG_BINS
=
6
,
// HOG_BINS = 6,
HOG_LUV_BINS
=
10
// HOG_LUV_BINS = 10
};
// };
int
shrinkage
;
// int shrinkage;
static
const
float
magnitudeScaling
=
1.
f
;
// / sqrt(2);
// static const float magnitudeScaling = 1.f ;// / sqrt(2);
};
// };
struct
__align__
(
8
)
Node
// struct __align__(8) Node
{
// {
int
feature
;
// int feature;
float
threshold
;
// float threshold;
Node
(
const
int
f
,
const
float
t
)
:
feature
(
f
),
threshold
(
t
)
{}
// Node(const int f, const float t) : feature(f), threshold(t) {}
};
// };
struct
__align__
(
8
)
Feature
// struct __align__(8) Feature
{
// {
int
channel
;
// int channel;
uchar4
rect
;
// uchar4 rect;
Feature
(
const
int
c
,
const
uchar4
r
)
:
channel
(
c
),
rect
(
r
)
{}
// Feature(const int c, const uchar4 r) : channel(c), rect(r) {}
};
// };
}}}
// }}}
#endif
// #endif
\ No newline at end of file
\ No newline at end of file
modules/gpu/src/softcascade.cpp
View file @
19173665
...
@@ -41,361 +41,365 @@
...
@@ -41,361 +41,365 @@
//M*/
//M*/
#include <precomp.hpp>
#include <precomp.hpp>
#include
"opencv2/highgui/highgui.hpp"
#include
<opencv2/highgui/highgui.hpp>
#if !defined (HAVE_CUDA)
#if !defined (HAVE_CUDA)
cv
::
gpu
::
SoftCascade
::
SoftCascade
()
:
filds
(
0
)
{
throw_nogpu
();
}
cv
::
gpu
::
SoftCascade
::
SoftCascade
()
:
filds
(
0
)
{
throw_nogpu
();
}
cv
::
gpu
::
SoftCascade
::
SoftCascade
(
const
string
&
,
const
float
,
const
float
)
:
filds
(
0
)
{
throw_nogpu
();
}
cv
::
gpu
::
SoftCascade
::
SoftCascade
(
const
string
&
,
const
float
,
const
float
)
:
filds
(
0
)
{
throw_nogpu
();
}
cv
::
gpu
::
SoftCascade
::~
SoftCascade
()
{
throw_nogpu
();
}
cv
::
gpu
::
SoftCascade
::~
SoftCascade
()
{
throw_nogpu
();
}
bool
cv
::
gpu
::
SoftCascade
::
load
(
const
string
&
,
const
float
,
const
float
)
{
throw_nogpu
();
return
false
;
}
bool
cv
::
gpu
::
SoftCascade
::
load
(
const
string
&
,
const
float
,
const
float
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
SoftCascade
::
detectMultiScale
(
const
GpuMat
&
,
const
GpuMat
&
,
GpuMat
&
,
const
int
,
Stream
)
{
throw_nogpu
();
}
void
cv
::
gpu
::
SoftCascade
::
detectMultiScale
(
const
GpuMat
&
,
const
GpuMat
&
,
GpuMat
&
,
const
int
,
Stream
)
{
throw_nogpu
();
}
#else
#else
#include <icf.hpp>
//
#include <icf.hpp>
namespace
cv
{
namespace
gpu
{
namespace
device
{
// namespace cv { namespace gpu { namespace device {
namespace
icf
{
// namespace icf {
void
fillBins
(
cv
::
gpu
::
PtrStepSzb
hogluv
,
const
cv
::
gpu
::
PtrStepSzf
&
nangle
);
// void fillBins(cv::gpu::PtrStepSzb hogluv,const cv::gpu::PtrStepSzf& nangle);
}
// }
}}}
// }}}
// namespace {
// char *itoa(long i, char* s, int /*dummy_radix*/)
// {
// sprintf(s, "%ld", i);
// return s;
// }
// }
struct
cv
::
gpu
::
SoftCascade
::
Filds
struct
cv
::
gpu
::
SoftCascade
::
Filds
{
{
// scales range
//
// scales range
float
minScale
;
//
float minScale;
float
maxScale
;
//
float maxScale;
int
origObjWidth
;
//
int origObjWidth;
int
origObjHeight
;
//
int origObjHeight;
GpuMat
octaves
;
//
GpuMat octaves;
GpuMat
stages
;
//
GpuMat stages;
GpuMat
nodes
;
//
GpuMat nodes;
GpuMat
leaves
;
//
GpuMat leaves;
GpuMat
features
;
//
GpuMat features;
GpuMat
levels
;
//
GpuMat levels;
// preallocated buffer 640x480x10 + 640x480
//
// preallocated buffer 640x480x10 + 640x480
GpuMat
dmem
;
//
GpuMat dmem;
// 160x120x10
//
// 160x120x10
GpuMat
shrunk
;
//
GpuMat shrunk;
// 161x121x10
//
// 161x121x10
GpuMat
hogluv
;
//
GpuMat hogluv;
// will be removed in final version
//
// will be removed in final version
// temporial mat for cvtColor
//
// temporial mat for cvtColor
GpuMat
luv
;
//
GpuMat luv;
// temporial mat for integrall
//
// temporial mat for integrall
GpuMat
integralBuffer
;
//
GpuMat integralBuffer;
// temp matrix for sobel and cartToPolar
//
// temp matrix for sobel and cartToPolar
GpuMat
dfdx
,
dfdy
,
angle
,
mag
,
nmag
,
nangle
;
//
GpuMat dfdx, dfdy, angle, mag, nmag, nangle;
std
::
vector
<
float
>
scales
;
//
std::vector<float> scales;
icf
::
Cascade
cascade
;
//
icf::Cascade cascade;
icf
::
ChannelStorage
storage
;
//
icf::ChannelStorage storage;
enum
{
BOOST
=
0
};
//
enum { BOOST = 0 };
enum
//
enum
{
//
{
FRAME_WIDTH
=
640
,
//
FRAME_WIDTH = 640,
FRAME_HEIGHT
=
480
,
//
FRAME_HEIGHT = 480,
TOTAL_SCALES
=
55
,
//
TOTAL_SCALES = 55,
CLASSIFIERS
=
5
,
//
CLASSIFIERS = 5,
ORIG_OBJECT_WIDTH
=
64
,
//
ORIG_OBJECT_WIDTH = 64,
ORIG_OBJECT_HEIGHT
=
128
,
//
ORIG_OBJECT_HEIGHT = 128,
HOG_BINS
=
6
,
//
HOG_BINS = 6,
HOG_LUV_BINS
=
10
//
HOG_LUV_BINS = 10
};
//
};
bool
fill
(
const
FileNode
&
root
,
const
float
mins
,
const
float
maxs
);
//
bool fill(const FileNode &root, const float mins, const float maxs);
void
detect
(
cv
::
gpu
::
GpuMat
objects
,
cudaStream_t
stream
)
const
//
void detect(cv::gpu::GpuMat objects, cudaStream_t stream) const
{
//
{
cascade
.
detect
(
hogluv
,
objects
,
stream
);
//
cascade.detect(hogluv, objects, stream);
}
//
}
private
:
//
private:
void
calcLevels
(
const
std
::
vector
<
icf
::
Octave
>&
octs
,
//
void calcLevels(const std::vector<icf::Octave>& octs,
int
frameW
,
int
frameH
,
int
nscales
);
//
int frameW, int frameH, int nscales);
typedef
std
::
vector
<
icf
::
Octave
>::
const_iterator
octIt_t
;
//
typedef std::vector<icf::Octave>::const_iterator octIt_t;
int
fitOctave
(
const
std
::
vector
<
icf
::
Octave
>&
octs
,
const
float
&
logFactor
)
const
//
int fitOctave(const std::vector<icf::Octave>& octs, const float& logFactor) const
{
//
{
float
minAbsLog
=
FLT_MAX
;
//
float minAbsLog = FLT_MAX;
int
res
=
0
;
//
int res = 0;
for
(
int
oct
=
0
;
oct
<
(
int
)
octs
.
size
();
++
oct
)
//
for (int oct = 0; oct < (int)octs.size(); ++oct)
{
//
{
const
icf
::
Octave
&
octave
=
octs
[
oct
];
//
const icf::Octave& octave =octs[oct];
float
logOctave
=
::
log
(
octave
.
scale
);
//
float logOctave = ::log(octave.scale);
float
logAbsScale
=
::
fabs
(
logFactor
-
logOctave
);
//
float logAbsScale = ::fabs(logFactor - logOctave);
if
(
logAbsScale
<
minAbsLog
)
//
if(logAbsScale < minAbsLog)
{
//
{
res
=
oct
;
//
res = oct;
minAbsLog
=
logAbsScale
;
//
minAbsLog = logAbsScale;
}
//
}
}
//
}
return
res
;
//
return res;
}
//
}
};
};
inline
bool
cv
::
gpu
::
SoftCascade
::
Filds
::
fill
(
const
FileNode
&
root
,
const
float
mins
,
const
float
maxs
)
//
inline bool cv::gpu::SoftCascade::Filds::fill(const FileNode &root, const float mins, const float maxs)
{
//
{
minScale
=
mins
;
//
minScale = mins;
maxScale
=
maxs
;
//
maxScale = maxs;
// cascade properties
//
// cascade properties
static
const
char
*
const
SC_STAGE_TYPE
=
"stageType"
;
//
static const char *const SC_STAGE_TYPE = "stageType";
static
const
char
*
const
SC_BOOST
=
"BOOST"
;
//
static const char *const SC_BOOST = "BOOST";
static
const
char
*
const
SC_FEATURE_TYPE
=
"featureType"
;
//
static const char *const SC_FEATURE_TYPE = "featureType";
static
const
char
*
const
SC_ICF
=
"ICF"
;
//
static const char *const SC_ICF = "ICF";
static
const
char
*
const
SC_ORIG_W
=
"width"
;
//
static const char *const SC_ORIG_W = "width";
static
const
char
*
const
SC_ORIG_H
=
"height"
;
//
static const char *const SC_ORIG_H = "height";
static
const
char
*
const
SC_OCTAVES
=
"octaves"
;
//
static const char *const SC_OCTAVES = "octaves";
static
const
char
*
const
SC_STAGES
=
"stages"
;
//
static const char *const SC_STAGES = "stages";
static
const
char
*
const
SC_FEATURES
=
"features"
;
//
static const char *const SC_FEATURES = "features";
static
const
char
*
const
SC_WEEK
=
"weakClassifiers"
;
//
static const char *const SC_WEEK = "weakClassifiers";
static
const
char
*
const
SC_INTERNAL
=
"internalNodes"
;
//
static const char *const SC_INTERNAL = "internalNodes";
static
const
char
*
const
SC_LEAF
=
"leafValues"
;
//
static const char *const SC_LEAF = "leafValues";
static
const
char
*
const
SC_OCT_SCALE
=
"scale"
;
//
static const char *const SC_OCT_SCALE = "scale";
static
const
char
*
const
SC_OCT_STAGES
=
"stageNum"
;
//
static const char *const SC_OCT_STAGES = "stageNum";
static
const
char
*
const
SC_OCT_SHRINKAGE
=
"shrinkingFactor"
;
//
static const char *const SC_OCT_SHRINKAGE = "shrinkingFactor";
static
const
char
*
const
SC_STAGE_THRESHOLD
=
"stageThreshold"
;
//
static const char *const SC_STAGE_THRESHOLD = "stageThreshold";
static
const
char
*
const
SC_F_CHANNEL
=
"channel"
;
//
static const char * const SC_F_CHANNEL = "channel";
static
const
char
*
const
SC_F_RECT
=
"rect"
;
//
static const char * const SC_F_RECT = "rect";
// only Ada Boost supported
//
// only Ada Boost supported
std
::
string
stageTypeStr
=
(
string
)
root
[
SC_STAGE_TYPE
];
//
std::string stageTypeStr = (string)root[SC_STAGE_TYPE];
CV_Assert
(
stageTypeStr
==
SC_BOOST
);
//
CV_Assert(stageTypeStr == SC_BOOST);
// only HOG-like integral channel features cupported
//
// only HOG-like integral channel features cupported
string
featureTypeStr
=
(
string
)
root
[
SC_FEATURE_TYPE
];
//
string featureTypeStr = (string)root[SC_FEATURE_TYPE];
CV_Assert
(
featureTypeStr
==
SC_ICF
);
//
CV_Assert(featureTypeStr == SC_ICF);
origObjWidth
=
(
int
)
root
[
SC_ORIG_W
];
//
origObjWidth = (int)root[SC_ORIG_W];
CV_Assert
(
origObjWidth
==
ORIG_OBJECT_WIDTH
);
//
CV_Assert(origObjWidth == ORIG_OBJECT_WIDTH);
origObjHeight
=
(
int
)
root
[
SC_ORIG_H
];
//
origObjHeight = (int)root[SC_ORIG_H];
CV_Assert
(
origObjHeight
==
ORIG_OBJECT_HEIGHT
);
//
CV_Assert(origObjHeight == ORIG_OBJECT_HEIGHT);
FileNode
fn
=
root
[
SC_OCTAVES
];
//
FileNode fn = root[SC_OCTAVES];
if
(
fn
.
empty
())
return
false
;
//
if (fn.empty()) return false;
std
::
vector
<
icf
::
Octave
>
voctaves
;
//
std::vector<icf::Octave> voctaves;
std
::
vector
<
float
>
vstages
;
//
std::vector<float> vstages;
std
::
vector
<
icf
::
Node
>
vnodes
;
//
std::vector<icf::Node> vnodes;
std
::
vector
<
float
>
vleaves
;
//
std::vector<float> vleaves;
std
::
vector
<
icf
::
Feature
>
vfeatures
;
//
std::vector<icf::Feature> vfeatures;
scales
.
clear
();
//
scales.clear();
// std::vector<Level> levels;
//
// std::vector<Level> levels;
FileNodeIterator
it
=
fn
.
begin
(),
it_end
=
fn
.
end
();
//
FileNodeIterator it = fn.begin(), it_end = fn.end();
int
feature_offset
=
0
;
//
int feature_offset = 0;
ushort
octIndex
=
0
;
//
ushort octIndex = 0;
ushort
shrinkage
=
1
;
//
ushort shrinkage = 1;
for
(;
it
!=
it_end
;
++
it
)
//
for (; it != it_end; ++it)
{
//
{
FileNode
fns
=
*
it
;
//
FileNode fns = *it;
float
scale
=
(
float
)
fns
[
SC_OCT_SCALE
];
//
float scale = (float)fns[SC_OCT_SCALE];
scales
.
push_back
(
scale
);
//
scales.push_back(scale);
ushort
nstages
=
saturate_cast
<
ushort
>
((
int
)
fns
[
SC_OCT_STAGES
]);
//
ushort nstages = saturate_cast<ushort>((int)fns[SC_OCT_STAGES]);
ushort2
size
;
//
ushort2 size;
size
.
x
=
cvRound
(
ORIG_OBJECT_WIDTH
*
scale
);
//
size.x = cvRound(ORIG_OBJECT_WIDTH * scale);
size
.
y
=
cvRound
(
ORIG_OBJECT_HEIGHT
*
scale
);
//
size.y = cvRound(ORIG_OBJECT_HEIGHT * scale);
shrinkage
=
saturate_cast
<
ushort
>
((
int
)
fns
[
SC_OCT_SHRINKAGE
]);
//
shrinkage = saturate_cast<ushort>((int)fns[SC_OCT_SHRINKAGE]);
icf
::
Octave
octave
(
octIndex
,
nstages
,
shrinkage
,
size
,
scale
);
//
icf::Octave octave(octIndex, nstages, shrinkage, size, scale);
CV_Assert
(
octave
.
stages
>
0
);
//
CV_Assert(octave.stages > 0);
voctaves
.
push_back
(
octave
);
//
voctaves.push_back(octave);
FileNode
ffs
=
fns
[
SC_FEATURES
];
//
FileNode ffs = fns[SC_FEATURES];
if
(
ffs
.
empty
())
return
false
;
//
if (ffs.empty()) return false;
fns
=
fns
[
SC_STAGES
];
//
fns = fns[SC_STAGES];
if
(
fn
.
empty
())
return
false
;
//
if (fn.empty()) return false;
// for each stage (~ decision tree with H = 2)
//
// for each stage (~ decision tree with H = 2)
FileNodeIterator
st
=
fns
.
begin
(),
st_end
=
fns
.
end
();
//
FileNodeIterator st = fns.begin(), st_end = fns.end();
for
(;
st
!=
st_end
;
++
st
)
//
for (; st != st_end; ++st )
{
//
{
fns
=
*
st
;
//
fns = *st;
vstages
.
push_back
((
float
)
fns
[
SC_STAGE_THRESHOLD
]);
//
vstages.push_back((float)fns[SC_STAGE_THRESHOLD]);
fns
=
fns
[
SC_WEEK
];
//
fns = fns[SC_WEEK];
FileNodeIterator
ftr
=
fns
.
begin
(),
ft_end
=
fns
.
end
();
//
FileNodeIterator ftr = fns.begin(), ft_end = fns.end();
for
(;
ftr
!=
ft_end
;
++
ftr
)
//
for (; ftr != ft_end; ++ftr)
{
//
{
fns
=
(
*
ftr
)[
SC_INTERNAL
];
//
fns = (*ftr)[SC_INTERNAL];
FileNodeIterator
inIt
=
fns
.
begin
(),
inIt_end
=
fns
.
end
();
//
FileNodeIterator inIt = fns.begin(), inIt_end = fns.end();
for
(;
inIt
!=
inIt_end
;)
//
for (; inIt != inIt_end;)
{
//
{
int
feature
=
(
int
)(
*
(
inIt
+=
2
)
++
)
+
feature_offset
;
//
int feature = (int)(*(inIt +=2)++) + feature_offset;
float
th
=
(
float
)(
*
(
inIt
++
));
//
float th = (float)(*(inIt++));
vnodes
.
push_back
(
icf
::
Node
(
feature
,
th
));
//
vnodes.push_back(icf::Node(feature, th));
}
//
}
fns
=
(
*
ftr
)[
SC_LEAF
];
//
fns = (*ftr)[SC_LEAF];
inIt
=
fns
.
begin
(),
inIt_end
=
fns
.
end
();
//
inIt = fns.begin(), inIt_end = fns.end();
for
(;
inIt
!=
inIt_end
;
++
inIt
)
//
for (; inIt != inIt_end; ++inIt)
vleaves
.
push_back
((
float
)(
*
inIt
));
//
vleaves.push_back((float)(*inIt));
}
//
}
}
//
}
st
=
ffs
.
begin
(),
st_end
=
ffs
.
end
();
//
st = ffs.begin(), st_end = ffs.end();
for
(;
st
!=
st_end
;
++
st
)
//
for (; st != st_end; ++st )
{
//
{
cv
::
FileNode
rn
=
(
*
st
)[
SC_F_RECT
];
//
cv::FileNode rn = (*st)[SC_F_RECT];
cv
::
FileNodeIterator
r_it
=
rn
.
begin
();
//
cv::FileNodeIterator r_it = rn.begin();
uchar4
rect
;
//
uchar4 rect;
rect
.
x
=
saturate_cast
<
uchar
>
((
int
)
*
(
r_it
++
));
//
rect.x = saturate_cast<uchar>((int)*(r_it++));
rect
.
y
=
saturate_cast
<
uchar
>
((
int
)
*
(
r_it
++
));
//
rect.y = saturate_cast<uchar>((int)*(r_it++));
rect
.
z
=
saturate_cast
<
uchar
>
((
int
)
*
(
r_it
++
));
//
rect.z = saturate_cast<uchar>((int)*(r_it++));
rect
.
w
=
saturate_cast
<
uchar
>
((
int
)
*
(
r_it
++
));
//
rect.w = saturate_cast<uchar>((int)*(r_it++));
vfeatures
.
push_back
(
icf
::
Feature
((
int
)(
*
st
)[
SC_F_CHANNEL
],
rect
));
//
vfeatures.push_back(icf::Feature((int)(*st)[SC_F_CHANNEL], rect));
}
//
}
feature_offset
+=
octave
.
stages
*
3
;
//
feature_offset += octave.stages * 3;
++
octIndex
;
//
++octIndex;
}
//
}
// upload in gpu memory
//
// upload in gpu memory
octaves
.
upload
(
cv
::
Mat
(
1
,
voctaves
.
size
()
*
sizeof
(
icf
::
Octave
),
CV_8UC1
,
(
uchar
*
)
&
(
voctaves
[
0
])
));
//
octaves.upload(cv::Mat(1, voctaves.size() * sizeof(icf::Octave), CV_8UC1, (uchar*)&(voctaves[0]) ));
CV_Assert
(
!
octaves
.
empty
());
//
CV_Assert(!octaves.empty());
stages
.
upload
(
cv
::
Mat
(
vstages
).
reshape
(
1
,
1
));
//
stages.upload(cv::Mat(vstages).reshape(1,1));
CV_Assert
(
!
stages
.
empty
());
//
CV_Assert(!stages.empty());
nodes
.
upload
(
cv
::
Mat
(
1
,
vnodes
.
size
()
*
sizeof
(
icf
::
Node
),
CV_8UC1
,
(
uchar
*
)
&
(
vnodes
[
0
])
));
//
nodes.upload(cv::Mat(1, vnodes.size() * sizeof(icf::Node), CV_8UC1, (uchar*)&(vnodes[0]) ));
CV_Assert
(
!
nodes
.
empty
());
//
CV_Assert(!nodes.empty());
leaves
.
upload
(
cv
::
Mat
(
vleaves
).
reshape
(
1
,
1
));
//
leaves.upload(cv::Mat(vleaves).reshape(1,1));
CV_Assert
(
!
leaves
.
empty
());
//
CV_Assert(!leaves.empty());
features
.
upload
(
cv
::
Mat
(
1
,
vfeatures
.
size
()
*
sizeof
(
icf
::
Feature
),
CV_8UC1
,
(
uchar
*
)
&
(
vfeatures
[
0
])
));
//
features.upload(cv::Mat(1, vfeatures.size() * sizeof(icf::Feature), CV_8UC1, (uchar*)&(vfeatures[0]) ));
CV_Assert
(
!
features
.
empty
());
//
CV_Assert(!features.empty());
// compute levels
//
// compute levels
calcLevels
(
voctaves
,
FRAME_WIDTH
,
FRAME_HEIGHT
,
TOTAL_SCALES
);
//
calcLevels(voctaves, FRAME_WIDTH, FRAME_HEIGHT, TOTAL_SCALES);
CV_Assert
(
!
levels
.
empty
());
//
CV_Assert(!levels.empty());
//init Cascade
//
//init Cascade
cascade
=
icf
::
Cascade
(
octaves
,
stages
,
nodes
,
leaves
,
features
,
levels
);
//
cascade = icf::Cascade(octaves, stages, nodes, leaves, features, levels);
// allocate buffers
//
// allocate buffers
dmem
.
create
(
FRAME_HEIGHT
*
(
HOG_LUV_BINS
+
1
),
FRAME_WIDTH
,
CV_8UC1
);
//
dmem.create(FRAME_HEIGHT * (HOG_LUV_BINS + 1), FRAME_WIDTH, CV_8UC1);
shrunk
.
create
(
FRAME_HEIGHT
/
shrinkage
*
HOG_LUV_BINS
,
FRAME_WIDTH
/
shrinkage
,
CV_8UC1
);
//
shrunk.create(FRAME_HEIGHT / shrinkage * HOG_LUV_BINS, FRAME_WIDTH / shrinkage, CV_8UC1);
// hogluv.create( (FRAME_HEIGHT / shrinkage + 1) * HOG_LUV_BINS, (FRAME_WIDTH / shrinkage + 1), CV_16UC1);
//
// hogluv.create( (FRAME_HEIGHT / shrinkage + 1) * HOG_LUV_BINS, (FRAME_WIDTH / shrinkage + 1), CV_16UC1);
hogluv
.
create
(
(
FRAME_HEIGHT
/
shrinkage
+
1
)
*
HOG_LUV_BINS
,
(
FRAME_WIDTH
/
shrinkage
+
1
),
CV_32SC1
);
//
hogluv.create( (FRAME_HEIGHT / shrinkage + 1) * HOG_LUV_BINS, (FRAME_WIDTH / shrinkage + 1), CV_32SC1);
luv
.
create
(
FRAME_HEIGHT
,
FRAME_WIDTH
,
CV_8UC3
);
//
luv.create(FRAME_HEIGHT, FRAME_WIDTH, CV_8UC3);
integralBuffer
.
create
(
shrunk
.
rows
+
1
*
HOG_LUV_BINS
,
shrunk
.
cols
+
1
,
CV_32SC1
);
//
integralBuffer.create(shrunk.rows + 1 * HOG_LUV_BINS, shrunk.cols + 1, CV_32SC1);
dfdx
.
create
(
FRAME_HEIGHT
,
FRAME_WIDTH
,
CV_32FC1
);
//
dfdx.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
dfdy
.
create
(
FRAME_HEIGHT
,
FRAME_WIDTH
,
CV_32FC1
);
//
dfdy.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
angle
.
create
(
FRAME_HEIGHT
,
FRAME_WIDTH
,
CV_32FC1
);
//
angle.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
mag
.
create
(
FRAME_HEIGHT
,
FRAME_WIDTH
,
CV_32FC1
);
//
mag.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
nmag
.
create
(
FRAME_HEIGHT
,
FRAME_WIDTH
,
CV_32FC1
);
//
nmag.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
nangle
.
create
(
FRAME_HEIGHT
,
FRAME_WIDTH
,
CV_32FC1
);
//
nangle.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
storage
=
icf
::
ChannelStorage
(
dmem
,
shrunk
,
hogluv
,
shrinkage
);
//
storage = icf::ChannelStorage(dmem, shrunk, hogluv, shrinkage);
return
true
;
//
return true;
}
//
}
namespace
{
//
namespace {
struct
CascadeIntrinsics
//
struct CascadeIntrinsics
{
//
{
static
const
float
lambda
=
1.099
f
,
a
=
0.89
f
;
//
static const float lambda = 1.099f, a = 0.89f;
static
float
getFor
(
int
channel
,
float
scaling
)
//
static float getFor(int channel, float scaling)
{
//
{
CV_Assert
(
channel
<
10
);
//
CV_Assert(channel < 10);
if
(
fabs
(
scaling
-
1.
f
)
<
FLT_EPSILON
)
//
if (fabs(scaling - 1.f) < FLT_EPSILON)
return
1.
f
;
//
return 1.f;
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers
//
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers
static
const
float
A
[
2
][
2
]
=
//
static const float A[2][2] =
{
//channel <= 6, otherwise
//
{ //channel <= 6, otherwise
{
0.89
f
,
1.
f
},
// down
//
{ 0.89f, 1.f}, // down
{
1.00
f
,
1.
f
}
// up
//
{ 1.00f, 1.f} // up
};
//
};
static
const
float
B
[
2
][
2
]
=
//
static const float B[2][2] =
{
//channel <= 6, otherwise
//
{ //channel <= 6, otherwise
{
1.099
f
/
log
(
2
),
2.
f
},
// down
//
{ 1.099f / log(2), 2.f}, // down
{
0.
f
,
2.
f
}
// up
//
{ 0.f, 2.f} // up
};
//
};
float
a
=
A
[(
int
)(
scaling
>=
1
)][(
int
)(
channel
>
6
)];
//
float a = A[(int)(scaling >= 1)][(int)(channel > 6)];
float
b
=
B
[(
int
)(
scaling
>=
1
)][(
int
)(
channel
>
6
)];
//
float b = B[(int)(scaling >= 1)][(int)(channel > 6)];
// printf("!!! scaling: %f %f %f -> %f\n", scaling, a, b, a * pow(scaling, b));
//
// printf("!!! scaling: %f %f %f -> %f\n", scaling, a, b, a * pow(scaling, b));
return
a
*
pow
(
scaling
,
b
);
//
return a * pow(scaling, b);
}
//
}
};
//
};
}
//
}
inline
void
cv
::
gpu
::
SoftCascade
::
Filds
::
calcLevels
(
const
std
::
vector
<
icf
::
Octave
>&
octs
,
//
inline void cv::gpu::SoftCascade::Filds::calcLevels(const std::vector<icf::Octave>& octs,
int
frameW
,
int
frameH
,
int
nscales
)
//
int frameW, int frameH, int nscales)
{
//
{
CV_Assert
(
nscales
>
1
);
//
CV_Assert(nscales > 1);
std
::
vector
<
icf
::
Level
>
vlevels
;
//
std::vector<icf::Level> vlevels;
float
logFactor
=
(
::
log
(
maxScale
)
-
::
log
(
minScale
))
/
(
nscales
-
1
);
//
float logFactor = (::log(maxScale) - ::log(minScale)) / (nscales -1);
float
scale
=
minScale
;
//
float scale = minScale;
for
(
int
sc
=
0
;
sc
<
nscales
;
++
sc
)
//
for (int sc = 0; sc < nscales; ++sc)
{
//
{
int
width
=
::
std
::
max
(
0.0
f
,
frameW
-
(
origObjWidth
*
scale
));
//
int width = ::std::max(0.0f, frameW - (origObjWidth * scale));
int
height
=
::
std
::
max
(
0.0
f
,
frameH
-
(
origObjHeight
*
scale
));
//
int height = ::std::max(0.0f, frameH - (origObjHeight * scale));
float
logScale
=
::
log
(
scale
);
//
float logScale = ::log(scale);
int
fit
=
fitOctave
(
octs
,
logScale
);
//
int fit = fitOctave(octs, logScale);
icf
::
Level
level
(
fit
,
octs
[
fit
],
scale
,
width
,
height
);
//
icf::Level level(fit, octs[fit], scale, width, height);
level
.
scaling
[
0
]
=
CascadeIntrinsics
::
getFor
(
0
,
level
.
relScale
);
//
level.scaling[0] = CascadeIntrinsics::getFor(0, level.relScale);
level
.
scaling
[
1
]
=
CascadeIntrinsics
::
getFor
(
9
,
level
.
relScale
);
//
level.scaling[1] = CascadeIntrinsics::getFor(9, level.relScale);
if
(
!
width
||
!
height
)
//
if (!width || !height)
break
;
//
break;
else
//
else
vlevels
.
push_back
(
level
);
//
vlevels.push_back(level);
if
(
::
fabs
(
scale
-
maxScale
)
<
FLT_EPSILON
)
break
;
//
if (::fabs(scale - maxScale) < FLT_EPSILON) break;
scale
=
::
std
::
min
(
maxScale
,
::
expf
(
::
log
(
scale
)
+
logFactor
));
//
scale = ::std::min(maxScale, ::expf(::log(scale) + logFactor));
// printf("level: %d (%f %f) [%f %f] (%d %d) (%d %d)\n", level.octave, level.relScale, level.shrScale,
//
// printf("level: %d (%f %f) [%f %f] (%d %d) (%d %d)\n", level.octave, level.relScale, level.shrScale,
// level.scaling[0], level.scaling[1], level.workRect.x, level.workRect.y, level.objSize.x, level.objSize.y);
//
// level.scaling[0], level.scaling[1], level.workRect.x, level.workRect.y, level.objSize.x, level.objSize.y);
// std::cout << "level " << sc
//
// std::cout << "level " << sc
// << " octeve "
//
// << " octeve "
// << vlevels[sc].octave
//
// << vlevels[sc].octave
// << " relScale "
//
// << " relScale "
// << vlevels[sc].relScale
//
// << vlevels[sc].relScale
// << " " << vlevels[sc].shrScale
//
// << " " << vlevels[sc].shrScale
// << " [" << (int)vlevels[sc].objSize.x
//
// << " [" << (int)vlevels[sc].objSize.x
// << " " << (int)vlevels[sc].objSize.y << "] ["
//
// << " " << (int)vlevels[sc].objSize.y << "] ["
// << (int)vlevels[sc].workRect.x << " " << (int)vlevels[sc].workRect.y << "]" << std::endl;
//
// << (int)vlevels[sc].workRect.x << " " << (int)vlevels[sc].workRect.y << "]" << std::endl;
}
//
}
levels
.
upload
(
cv
::
Mat
(
1
,
vlevels
.
size
()
*
sizeof
(
icf
::
Level
),
CV_8UC1
,
(
uchar
*
)
&
(
vlevels
[
0
])
));
//
levels.upload(cv::Mat(1, vlevels.size() * sizeof(icf::Level), CV_8UC1, (uchar*)&(vlevels[0]) ));
}
//
}
cv
::
gpu
::
SoftCascade
::
SoftCascade
()
:
filds
(
0
)
{}
cv
::
gpu
::
SoftCascade
::
SoftCascade
()
:
filds
(
0
)
{}
...
@@ -419,97 +423,89 @@ bool cv::gpu::SoftCascade::load( const string& filename, const float minScale, c
...
@@ -419,97 +423,89 @@ bool cv::gpu::SoftCascade::load( const string& filename, const float minScale, c
if
(
!
fs
.
isOpened
())
return
false
;
if
(
!
fs
.
isOpened
())
return
false
;
filds
=
new
Filds
;
filds
=
new
Filds
;
Filds
&
flds
=
*
filds
;
//
Filds& flds = *filds;
if
(
!
flds
.
fill
(
fs
.
getFirstTopLevelNode
(),
minScale
,
maxScale
))
return
false
;
//
if (!flds.fill(fs.getFirstTopLevelNode(), minScale, maxScale)) return false;
return
true
;
return
true
;
}
}
namespace
{
// #define USE_REFERENCE_VALUES
char
*
itoa
(
long
i
,
char
*
s
,
int
/*dummy_radix*/
)
{
sprintf
(
s
,
"%ld"
,
i
);
return
s
;
}
}
#define USE_REFERENCE_VALUES
void
cv
::
gpu
::
SoftCascade
::
detectMultiScale
(
const
GpuMat
&
colored
,
const
GpuMat
&
/*rois*/
,
void
cv
::
gpu
::
SoftCascade
::
detectMultiScale
(
const
GpuMat
&
colored
,
const
GpuMat
&
/*rois*/
,
GpuMat
&
objects
,
const
int
/*rejectfactor*/
,
Stream
s
)
GpuMat
&
objects
,
const
int
/*rejectfactor*/
,
Stream
s
)
{
{
// only color images are supperted
//
// only color images are supperted
CV_Assert
(
colored
.
type
()
==
CV_8UC3
);
//
CV_Assert(colored.type() == CV_8UC3);
// // only this window size allowed
//
// // only this window size allowed
CV_Assert
(
colored
.
cols
==
640
&&
colored
.
rows
==
480
);
//
CV_Assert(colored.cols == 640 && colored.rows == 480);
Filds
&
flds
=
*
filds
;
//
Filds& flds = *filds;
#if defined USE_REFERENCE_VALUES
//
#if defined USE_REFERENCE_VALUES
cudaMemset
(
flds
.
hogluv
.
data
,
0
,
flds
.
hogluv
.
step
*
flds
.
hogluv
.
rows
);
//
cudaMemset(flds.hogluv.data, 0, flds.hogluv.step * flds.hogluv.rows);
cv
::
FileStorage
imgs
(
"/home/kellan/testInts.xml"
,
cv
::
FileStorage
::
READ
);
//
cv::FileStorage imgs("/home/kellan/testInts.xml", cv::FileStorage::READ);
char
buff
[
33
];
//
char buff[33];
for
(
int
i
=
0
;
i
<
Filds
::
HOG_LUV_BINS
;
++
i
)
//
for(int i = 0; i < Filds::HOG_LUV_BINS; ++i)
{
//
{
cv
::
Mat
channel
;
//
cv::Mat channel;
imgs
[
std
::
string
(
"channel"
)
+
itoa
(
i
,
buff
,
10
)]
>>
channel
;
//
imgs[std::string("channel") + itoa(i, buff, 10)] >> channel;
GpuMat
gchannel
(
flds
.
hogluv
,
cv
::
Rect
(
0
,
121
*
i
,
161
,
121
));
//
GpuMat gchannel(flds.hogluv, cv::Rect(0, 121 * i, 161, 121));
gchannel
.
upload
(
channel
);
//
gchannel.upload(channel);
}
//
}
#else
//
#else
GpuMat
&
dmem
=
flds
.
dmem
;
//
GpuMat& dmem = flds.dmem;
cudaMemset
(
dmem
.
data
,
0
,
dmem
.
step
*
dmem
.
rows
);
//
cudaMemset(dmem.data, 0, dmem.step * dmem.rows);
GpuMat
&
shrunk
=
flds
.
shrunk
;
//
GpuMat& shrunk = flds.shrunk;
int
w
=
shrunk
.
cols
;
//
int w = shrunk.cols;
int
h
=
colored
.
rows
/
flds
.
storage
.
shrinkage
;
//
int h = colored.rows / flds.storage.shrinkage;
std
::
vector
<
GpuMat
>
splited
;
//
std::vector<GpuMat> splited;
for
(
int
i
=
0
;
i
<
3
;
++
i
)
//
for(int i = 0; i < 3; ++i)
{
//
{
splited
.
push_back
(
GpuMat
(
dmem
,
cv
::
Rect
(
0
,
colored
.
rows
*
(
7
+
i
),
colored
.
cols
,
colored
.
rows
)));
//
splited.push_back(GpuMat(dmem, cv::Rect(0, colored.rows * (7 + i), colored.cols, colored.rows)));
}
//
}
GpuMat
gray
(
dmem
,
cv
::
Rect
(
0
,
colored
.
rows
*
10
,
colored
.
cols
,
colored
.
rows
)
);
//
GpuMat gray(dmem, cv::Rect(0, colored.rows * 10, colored.cols, colored.rows) );
cv
::
gpu
::
cvtColor
(
colored
,
gray
,
CV_RGB2GRAY
);
//
cv::gpu::cvtColor(colored, gray, CV_RGB2GRAY);
//create hog
//
//create hog
cv
::
gpu
::
Sobel
(
gray
,
flds
.
dfdx
,
CV_32F
,
1
,
0
,
3
,
0.25
);
//
cv::gpu::Sobel(gray, flds.dfdx, CV_32F, 1, 0, 3, 0.25);
cv
::
gpu
::
Sobel
(
gray
,
flds
.
dfdy
,
CV_32F
,
0
,
1
,
3
,
0.25
);
//
cv::gpu::Sobel(gray, flds.dfdy, CV_32F, 0, 1, 3, 0.25);
cv
::
gpu
::
cartToPolar
(
flds
.
dfdx
,
flds
.
dfdy
,
flds
.
mag
,
flds
.
angle
,
true
);
//
cv::gpu::cartToPolar(flds.dfdx, flds.dfdy, flds.mag, flds.angle, true);
cv
::
gpu
::
multiply
(
flds
.
mag
,
cv
::
Scalar
::
all
(
1.0
/
::
log
(
2
)),
flds
.
nmag
);
//
cv::gpu::multiply(flds.mag, cv::Scalar::all(1.0 / ::log(2)), flds.nmag);
cv
::
gpu
::
multiply
(
flds
.
angle
,
cv
::
Scalar
::
all
(
1.0
/
60.0
),
flds
.
nangle
);
//
cv::gpu::multiply(flds.angle, cv::Scalar::all(1.0 / 60.0), flds.nangle);
GpuMat
magCannel
(
dmem
,
cv
::
Rect
(
0
,
colored
.
rows
*
6
,
colored
.
cols
,
colored
.
rows
));
//
GpuMat magCannel(dmem, cv::Rect(0, colored.rows * 6, colored.cols, colored.rows));
flds
.
nmag
.
convertTo
(
magCannel
,
CV_8UC1
);
//
flds.nmag.convertTo(magCannel, CV_8UC1);
device
::
icf
::
fillBins
(
dmem
,
flds
.
nangle
);
//
device::icf::fillBins(dmem, flds.nangle);
// create luv
//
// create luv
cv
::
gpu
::
cvtColor
(
colored
,
flds
.
luv
,
CV_BGR2Luv
);
//
cv::gpu::cvtColor(colored, flds.luv, CV_BGR2Luv);
cv
::
gpu
::
split
(
flds
.
luv
,
splited
);
//
cv::gpu::split(flds.luv, splited);
GpuMat
plane
(
dmem
,
cv
::
Rect
(
0
,
0
,
colored
.
cols
,
colored
.
rows
*
Filds
::
HOG_LUV_BINS
));
//
GpuMat plane(dmem, cv::Rect(0, 0, colored.cols, colored.rows * Filds::HOG_LUV_BINS));
cv
::
gpu
::
resize
(
plane
,
flds
.
shrunk
,
cv
::
Size
(),
0.25
,
0.25
,
CV_INTER_AREA
);
//
cv::gpu::resize(plane, flds.shrunk, cv::Size(), 0.25, 0.25, CV_INTER_AREA);
// fer debug purpose
//
// fer debug purpose
// cudaMemset(flds.hogluv.data, 0, flds.hogluv.step * flds.hogluv.rows);
//
// cudaMemset(flds.hogluv.data, 0, flds.hogluv.step * flds.hogluv.rows);
for
(
int
i
=
0
;
i
<
Filds
::
HOG_LUV_BINS
;
++
i
)
//
for(int i = 0; i < Filds::HOG_LUV_BINS; ++i)
{
//
{
GpuMat
channel
(
shrunk
,
cv
::
Rect
(
0
,
h
*
i
,
w
,
h
));
//
GpuMat channel(shrunk, cv::Rect(0, h * i, w, h ));
GpuMat
sum
(
flds
.
hogluv
,
cv
::
Rect
(
0
,
(
h
+
1
)
*
i
,
w
+
1
,
h
+
1
));
//
GpuMat sum(flds.hogluv, cv::Rect(0, (h + 1) * i, w + 1, h + 1));
cv
::
gpu
::
integralBuffered
(
channel
,
sum
,
flds
.
integralBuffer
);
//
cv::gpu::integralBuffered(channel, sum, flds.integralBuffer);
}
//
}
#endif
//
#endif
cudaStream_t
stream
=
StreamAccessor
::
getStream
(
s
);
//
cudaStream_t stream = StreamAccessor::getStream(s);
// detection
//
// detection
flds
.
detect
(
objects
,
stream
);
//
flds.detect(objects, stream);
// flds.storage.frame(colored, stream);
//
// flds.storage.frame(colored, stream);
}
}
#endif
#endif
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment