Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
19173665
Commit
19173665
authored
Sep 26, 2012
by
marina.kolpakova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
empty cascade
parent
4881205b
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
705 additions
and
708 deletions
+705
-708
isf-sc.cu
modules/gpu/src/cuda/isf-sc.cu
+173
-173
icf.hpp
modules/gpu/src/icf.hpp
+125
-125
softcascade.cpp
modules/gpu/src/softcascade.cpp
+407
-410
No files found.
modules/gpu/src/cuda/isf-sc.cu
View file @
19173665
...
...
@@ -40,221 +40,221 @@
//
//M*/
#include <icf.hpp>
#include <opencv2/gpu/device/saturate_cast.hpp>
#include <stdio.h>
#include <float.h>
//#define LOG_CUDA_CASCADE
#if defined LOG_CUDA_CASCADE
# define dprintf(format, ...) \
do { printf(format, __VA_ARGS__); } while (0)
#else
# define dprintf(format, ...)
#endif
namespace cv { namespace gpu { namespace device {
namespace icf {
enum {
HOG_BINS = 6,
HOG_LUV_BINS = 10,
WIDTH = 640,
HEIGHT = 480,
GREY_OFFSET = HEIGHT * HOG_LUV_BINS
};
__global__ void magToHist(const uchar* __restrict__ mag,
const float* __restrict__ angle, const int angPitch,
uchar* __restrict__ hog, const int hogPitch)
{
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int bin = (int)(angle[y * angPitch + x]);
const uchar val = mag[y * angPitch + x];
hog[((HEIGHT * bin) + y) * hogPitch + x] = val;
}
//
#include <icf.hpp>
//
#include <opencv2/gpu/device/saturate_cast.hpp>
//
#include <stdio.h>
//
#include <float.h>
//
//
#define LOG_CUDA_CASCADE
//
#if defined LOG_CUDA_CASCADE
//
# define dprintf(format, ...) \
//
do { printf(format, __VA_ARGS__); } while (0)
//
#else
//
# define dprintf(format, ...)
//
#endif
//
namespace cv { namespace gpu { namespace device {
//
namespace icf {
//
enum {
//
HOG_BINS = 6,
//
HOG_LUV_BINS = 10,
//
WIDTH = 640,
//
HEIGHT = 480,
//
GREY_OFFSET = HEIGHT * HOG_LUV_BINS
//
};
//
__global__ void magToHist(const uchar* __restrict__ mag,
//
const float* __restrict__ angle, const int angPitch,
//
uchar* __restrict__ hog, const int hogPitch)
//
{
//
const int y = blockIdx.y * blockDim.y + threadIdx.y;
//
const int x = blockIdx.x * blockDim.x + threadIdx.x;
//
const int bin = (int)(angle[y * angPitch + x]);
//
const uchar val = mag[y * angPitch + x];
//
hog[((HEIGHT * bin) + y) * hogPitch + x] = val;
//
}
void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle)
{
const uchar* mag = (const uchar*)hogluv.ptr(HEIGHT * HOG_BINS);
uchar* hog = (uchar*)hogluv.ptr();
const float* angle = (const float*)nangle.ptr();
//
void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle)
//
{
//
const uchar* mag = (const uchar*)hogluv.ptr(HEIGHT * HOG_BINS);
//
uchar* hog = (uchar*)hogluv.ptr();
//
const float* angle = (const float*)nangle.ptr();
dim3 block(32, 8);
dim3 grid(WIDTH / 32, HEIGHT / 8);
//
dim3 block(32, 8);
//
dim3 grid(WIDTH / 32, HEIGHT / 8);
magToHist<<<grid, block>>>(mag, angle, nangle.step / sizeof(float), hog, hogluv.step);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
}
__global__ void detect(const cv::gpu::icf::Cascade cascade, const int* __restrict__ hogluv, const int pitch,
PtrStepSz<uchar4> objects)
{
cascade.detectAt(hogluv, pitch, objects);
}
//
magToHist<<<grid, block>>>(mag, angle, nangle.step / sizeof(float), hog, hogluv.step);
//
cudaSafeCall( cudaGetLastError() );
//
cudaSafeCall( cudaDeviceSynchronize() );
//
}
//
}
//
__global__ void detect(const cv::gpu::icf::Cascade cascade, const int* __restrict__ hogluv, const int pitch,
//
PtrStepSz<uchar4> objects)
//
{
//
cascade.detectAt(hogluv, pitch, objects);
//
}
}
//
}
float __device icf::Cascade::rescale(const icf::Level& level, uchar4& scaledRect,
const int channel, const float threshold) const
{
dprintf("feature %d box %d %d %d %d\n", channel, scaledRect.x, scaledRect.y, scaledRect.z, scaledRect.w);
dprintf("rescale: %f [%f %f]\n",level.relScale, level.scaling[0], level.scaling[1]);
//
float __device icf::Cascade::rescale(const icf::Level& level, uchar4& scaledRect,
//
const int channel, const float threshold) const
//
{
//
dprintf("feature %d box %d %d %d %d\n", channel, scaledRect.x, scaledRect.y, scaledRect.z, scaledRect.w);
//
dprintf("rescale: %f [%f %f]\n",level.relScale, level.scaling[0], level.scaling[1]);
float relScale = level.relScale;
float farea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
//
float relScale = level.relScale;
//
float farea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
// rescale
scaledRect.x = __float2int_rn(relScale * scaledRect.x);
scaledRect.y = __float2int_rn(relScale * scaledRect.y);
scaledRect.z = __float2int_rn(relScale * scaledRect.z);
scaledRect.w = __float2int_rn(relScale * scaledRect.w);
//
// rescale
//
scaledRect.x = __float2int_rn(relScale * scaledRect.x);
//
scaledRect.y = __float2int_rn(relScale * scaledRect.y);
//
scaledRect.z = __float2int_rn(relScale * scaledRect.z);
//
scaledRect.w = __float2int_rn(relScale * scaledRect.w);
float sarea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
//
float sarea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
float approx = 1.f;
if (fabs(farea - 0.f) > FLT_EPSILON && fabs(farea - 0.f) > FLT_EPSILON)
{
const float expected_new_area = farea * relScale * relScale;
approx = expected_new_area / sarea;
}
//
float approx = 1.f;
//
if (fabs(farea - 0.f) > FLT_EPSILON && fabs(farea - 0.f) > FLT_EPSILON)
//
{
//
const float expected_new_area = farea * relScale * relScale;
//
approx = expected_new_area / sarea;
//
}
dprintf("new rect: %d box %d %d %d %d rel areas %f %f\n", channel,
scaledRect.x, scaledRect.y, scaledRect.z, scaledRect.w, farea * relScale * relScale, sarea);
//
dprintf("new rect: %d box %d %d %d %d rel areas %f %f\n", channel,
//
scaledRect.x, scaledRect.y, scaledRect.z, scaledRect.w, farea * relScale * relScale, sarea);
// compensation areas rounding
float rootThreshold = threshold / approx;
// printf(" approx %f\n", rootThreshold);
rootThreshold *= level.scaling[(int)(channel > 6)];
//
// compensation areas rounding
//
float rootThreshold = threshold / approx;
//
// printf(" approx %f\n", rootThreshold);
//
rootThreshold *= level.scaling[(int)(channel > 6)];
dprintf("approximation %f %f -> %f %f\n", approx, threshold, rootThreshold, level.scaling[(int)(channel > 6)]);
//
dprintf("approximation %f %f -> %f %f\n", approx, threshold, rootThreshold, level.scaling[(int)(channel > 6)]);
return rootThreshold;
}
//
return rootThreshold;
//
}
typedef unsigned char uchar;
float __device get(const int* __restrict__ hogluv, const int pitch,
const int x, const int y, int channel, uchar4 area)
{
dprintf("feature box %d %d %d %d ", area.x, area.y, area.z, area.w);
dprintf("get for channel %d\n", channel);
dprintf("extract feature for: [%d %d] [%d %d] [%d %d] [%d %d]\n",
x + area.x, y + area.y, x + area.z, y + area.y, x + area.z,y + area.w,
x + area.x, y + area.w);
dprintf("at point %d %d with offset %d\n", x, y, 0);
//
typedef unsigned char uchar;
//
float __device get(const int* __restrict__ hogluv, const int pitch,
//
const int x, const int y, int channel, uchar4 area)
//
{
//
dprintf("feature box %d %d %d %d ", area.x, area.y, area.z, area.w);
//
dprintf("get for channel %d\n", channel);
//
dprintf("extract feature for: [%d %d] [%d %d] [%d %d] [%d %d]\n",
//
x + area.x, y + area.y, x + area.z, y + area.y, x + area.z,y + area.w,
//
x + area.x, y + area.w);
//
dprintf("at point %d %d with offset %d\n", x, y, 0);
const int* curr = hogluv + ((channel * 121) + y) * pitch;
//
const int* curr = hogluv + ((channel * 121) + y) * pitch;
int a = curr[area.y * pitch + x + area.x];
int b = curr[area.y * pitch + x + area.z];
int c = curr[area.w * pitch + x + area.z];
int d = curr[area.w * pitch + x + area.x];
//
int a = curr[area.y * pitch + x + area.x];
//
int b = curr[area.y * pitch + x + area.z];
//
int c = curr[area.w * pitch + x + area.z];
//
int d = curr[area.w * pitch + x + area.x];
dprintf(" retruved integral values: %d %d %d %d\n", a, b, c, d);
//
dprintf(" retruved integral values: %d %d %d %d\n", a, b, c, d);
return (a - b + c - d);
}
//
return (a - b + c - d);
//
}
void __device icf::Cascade::detectAt(const int* __restrict__ hogluv, const int pitch,
PtrStepSz<uchar4>& objects) const
{
const icf::Level* lls = (const icf::Level*)levels.ptr();
//
void __device icf::Cascade::detectAt(const int* __restrict__ hogluv, const int pitch,
//
PtrStepSz<uchar4>& objects) const
//
{
//
const icf::Level* lls = (const icf::Level*)levels.ptr();
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
// if (x > 0 || y > 0) return;
//
const int y = blockIdx.y * blockDim.y + threadIdx.y;
//
const int x = blockIdx.x * blockDim.x + threadIdx.x;
//
// if (x > 0 || y > 0) return;
Level level = lls[blockIdx.z];
if (x >= level.workRect.x || y >= level.workRect.y) return;
//
Level level = lls[blockIdx.z];
//
if (x >= level.workRect.x || y >= level.workRect.y) return;
dprintf("level: %d (%f %f) [%f %f] (%d %d) (%d %d)\n", level.octave, level.relScale, level.shrScale,
level.scaling[0], level.scaling[1], level.workRect.x, level.workRect.y, level.objSize.x, level.objSize.y);
//
dprintf("level: %d (%f %f) [%f %f] (%d %d) (%d %d)\n", level.octave, level.relScale, level.shrScale,
//
level.scaling[0], level.scaling[1], level.workRect.x, level.workRect.y, level.objSize.x, level.objSize.y);
const Octave octave = ((const Octave*)octaves.ptr())[level.octave];
// printf("Octave: %d %d %d (%d %d) %f\n", octave.index, octave.stages,
// octave.shrinkage, octave.size.x, octave.size.y, octave.scale);
//
const Octave octave = ((const Octave*)octaves.ptr())[level.octave];
//
// printf("Octave: %d %d %d (%d %d) %f\n", octave.index, octave.stages,
//
// octave.shrinkage, octave.size.x, octave.size.y, octave.scale);
const int stBegin = octave.index * octave.stages, stEnd = stBegin + octave.stages;
//
const int stBegin = octave.index * octave.stages, stEnd = stBegin + octave.stages;
float detectionScore = 0.f;
//
float detectionScore = 0.f;
int st = stBegin;
for(; st < stEnd; ++st)
{
const float stage = stages(0, st);
dprintf("Stage: %f\n", stage);
{
const int nId = st * 3;
//
int st = stBegin;
//
for(; st < stEnd; ++st)
//
{
//
const float stage = stages(0, st);
//
dprintf("Stage: %f\n", stage);
//
{
//
const int nId = st * 3;
// work with root node
const Node node = ((const Node*)nodes.ptr())[nId];
//
// work with root node
//
const Node node = ((const Node*)nodes.ptr())[nId];
dprintf("Node: %d %f\n", node.feature, node.threshold);
//
dprintf("Node: %d %f\n", node.feature, node.threshold);
const Feature feature = ((const Feature*)features.ptr())[node.feature];
//
const Feature feature = ((const Feature*)features.ptr())[node.feature];
uchar4 scaledRect = feature.rect;
float threshold = rescale(level, scaledRect, feature.channel, node.threshold);
//
uchar4 scaledRect = feature.rect;
//
float threshold = rescale(level, scaledRect, feature.channel, node.threshold);
float sum = get(hogluv,pitch, x, y, feature.channel, scaledRect);
//
float sum = get(hogluv,pitch, x, y, feature.channel, scaledRect);
dprintf("root feature %d %f\n",feature.channel, sum);
//
dprintf("root feature %d %f\n",feature.channel, sum);
int next = 1 + (int)(sum >= threshold);
//
int next = 1 + (int)(sum >= threshold);
dprintf("go: %d (%f >= %f)\n\n" ,next, sum, threshold);
//
dprintf("go: %d (%f >= %f)\n\n" ,next, sum, threshold);
// leaves
const Node leaf = ((const Node*)nodes.ptr())[nId + next];
const Feature fLeaf = ((const Feature*)features.ptr())[leaf.feature];
//
// leaves
//
const Node leaf = ((const Node*)nodes.ptr())[nId + next];
//
const Feature fLeaf = ((const Feature*)features.ptr())[leaf.feature];
scaledRect = fLeaf.rect;
threshold = rescale(level, scaledRect, fLeaf.channel, leaf.threshold);
sum = get(hogluv, pitch, x, y, fLeaf.channel, scaledRect);
//
scaledRect = fLeaf.rect;
//
threshold = rescale(level, scaledRect, fLeaf.channel, leaf.threshold);
//
sum = get(hogluv, pitch, x, y, fLeaf.channel, scaledRect);
const int lShift = (next - 1) * 2 + (int)(sum >= threshold);
float impact = leaves(0, (st * 4) + lShift);
//
const int lShift = (next - 1) * 2 + (int)(sum >= threshold);
//
float impact = leaves(0, (st * 4) + lShift);
detectionScore += impact;
//
detectionScore += impact;
dprintf("decided: %d (%f >= %f) %d %f\n\n" ,next, sum, threshold, lShift, impact);
dprintf("extracted stage:\n");
dprintf("ct %f\n", stage);
dprintf("computed score %f\n\n", detectionScore);
dprintf("\n\n");
}
//
dprintf("decided: %d (%f >= %f) %d %f\n\n" ,next, sum, threshold, lShift, impact);
//
dprintf("extracted stage:\n");
//
dprintf("ct %f\n", stage);
//
dprintf("computed score %f\n\n", detectionScore);
//
dprintf("\n\n");
//
}
if (detectionScore <= stage || st - stBegin == 100) break;
}
//
if (detectionScore <= stage || st - stBegin == 100) break;
//
}
dprintf("x %d y %d: %d\n", x, y, st - stBegin);
//
dprintf("x %d y %d: %d\n", x, y, st - stBegin);
if (st == stEnd)
{
uchar4 a;
a.x = level.workRect.x;
a.y = level.workRect.y;
objects(0, threadIdx.x) = a;
}
}
//
if (st == stEnd)
//
{
//
uchar4 a;
//
a.x = level.workRect.x;
//
a.y = level.workRect.y;
//
objects(0, threadIdx.x) = a;
//
}
//
}
void icf::Cascade::detect(const cv::gpu::PtrStepSzi& hogluv, PtrStepSz<uchar4> objects, cudaStream_t stream) const
{
dim3 block(32, 8, 1);
dim3 grid(ChannelStorage::FRAME_WIDTH / 32, ChannelStorage::FRAME_HEIGHT / 8, 47);
device::detect<<<grid, block, 0, stream>>>(*this, hogluv, hogluv.step / sizeof(int), objects);
cudaSafeCall( cudaGetLastError() );
if (!stream)
cudaSafeCall( cudaDeviceSynchronize() );
}
//
void icf::Cascade::detect(const cv::gpu::PtrStepSzi& hogluv, PtrStepSz<uchar4> objects, cudaStream_t stream) const
//
{
//
dim3 block(32, 8, 1);
//
dim3 grid(ChannelStorage::FRAME_WIDTH / 32, ChannelStorage::FRAME_HEIGHT / 8, 47);
//
device::detect<<<grid, block, 0, stream>>>(*this, hogluv, hogluv.step / sizeof(int), objects);
//
cudaSafeCall( cudaGetLastError() );
//
if (!stream)
//
cudaSafeCall( cudaDeviceSynchronize() );
//
}
}}
\ No newline at end of file
// }}
\ No newline at end of file
modules/gpu/src/icf.hpp
View file @
19173665
...
...
@@ -40,127 +40,127 @@
//
//M*/
#include <opencv2/gpu/device/common.hpp>
#ifndef __OPENCV_ICF_HPP__
#define __OPENCV_ICF_HPP__
#if defined __CUDACC__
# define __device __device__ __forceinline__
#else
# define __device
#endif
namespace
cv
{
namespace
gpu
{
namespace
icf
{
using
cv
::
gpu
::
PtrStepSzb
;
using
cv
::
gpu
::
PtrStepSzf
;
typedef
unsigned
char
uchar
;
struct
__align__
(
16
)
Octave
{
ushort
index
;
ushort
stages
;
ushort
shrinkage
;
ushort2
size
;
float
scale
;
Octave
(
const
ushort
i
,
const
ushort
s
,
const
ushort
sh
,
const
ushort2
sz
,
const
float
sc
)
:
index
(
i
),
stages
(
s
),
shrinkage
(
sh
),
size
(
sz
),
scale
(
sc
)
{}
};
struct
__align__
(
8
)
Level
//is actually 24 bytes
{
int
octave
;
// float origScale; //not actually used
float
relScale
;
float
shrScale
;
// used for marking detection
float
scaling
[
2
];
// calculated according to Dollal paper
// for 640x480 we can not get overflow
uchar2
workRect
;
uchar2
objSize
;
Level
(
int
idx
,
const
Octave
&
oct
,
const
float
scale
,
const
int
w
,
const
int
h
)
:
octave
(
idx
),
relScale
(
scale
/
oct
.
scale
),
shrScale
(
relScale
/
(
float
)
oct
.
shrinkage
)
{
workRect
.
x
=
round
(
w
/
(
float
)
oct
.
shrinkage
);
workRect
.
y
=
round
(
h
/
(
float
)
oct
.
shrinkage
);
objSize
.
x
=
round
(
oct
.
size
.
x
*
relScale
);
objSize
.
y
=
round
(
oct
.
size
.
y
*
relScale
);
}
};
struct
Cascade
{
Cascade
()
{}
Cascade
(
const
cv
::
gpu
::
PtrStepSzb
&
octs
,
const
cv
::
gpu
::
PtrStepSzf
&
sts
,
const
cv
::
gpu
::
PtrStepSzb
&
nds
,
const
cv
::
gpu
::
PtrStepSzf
&
lvs
,
const
cv
::
gpu
::
PtrStepSzb
&
fts
,
const
cv
::
gpu
::
PtrStepSzb
&
lls
)
:
octaves
(
octs
),
stages
(
sts
),
nodes
(
nds
),
leaves
(
lvs
),
features
(
fts
),
levels
(
lls
)
{}
void
detect
(
const
cv
::
gpu
::
PtrStepSzi
&
hogluv
,
cv
::
gpu
::
PtrStepSz
<
uchar4
>
objects
,
cudaStream_t
stream
)
const
;
void
__device
detectAt
(
const
int
*
__restrict__
hogluv
,
const
int
pitch
,
PtrStepSz
<
uchar4
>&
objects
)
const
;
float
__device
rescale
(
const
icf
::
Level
&
level
,
uchar4
&
scaledRect
,
const
int
channel
,
const
float
threshold
)
const
;
PtrStepSzb
octaves
;
PtrStepSzf
stages
;
PtrStepSzb
nodes
;
PtrStepSzf
leaves
;
PtrStepSzb
features
;
PtrStepSzb
levels
;
};
struct
ChannelStorage
{
ChannelStorage
(){}
ChannelStorage
(
const
cv
::
gpu
::
PtrStepSzb
&
buff
,
const
cv
::
gpu
::
PtrStepSzb
&
shr
,
const
cv
::
gpu
::
PtrStepSzb
&
itg
,
const
int
s
)
:
dmem
(
buff
),
shrunk
(
shr
),
hogluv
(
itg
),
shrinkage
(
s
)
{}
void
frame
(
const
cv
::
gpu
::
PtrStepSz
<
uchar3
>&
rgb
,
cudaStream_t
stream
){}
PtrStepSzb
dmem
;
PtrStepSzb
shrunk
;
PtrStepSzb
hogluv
;
enum
{
FRAME_WIDTH
=
640
,
FRAME_HEIGHT
=
480
,
TOTAL_SCALES
=
55
,
CLASSIFIERS
=
5
,
ORIG_OBJECT_WIDTH
=
64
,
ORIG_OBJECT_HEIGHT
=
128
,
HOG_BINS
=
6
,
HOG_LUV_BINS
=
10
};
int
shrinkage
;
static
const
float
magnitudeScaling
=
1.
f
;
// / sqrt(2);
};
struct
__align__
(
8
)
Node
{
int
feature
;
float
threshold
;
Node
(
const
int
f
,
const
float
t
)
:
feature
(
f
),
threshold
(
t
)
{}
};
struct
__align__
(
8
)
Feature
{
int
channel
;
uchar4
rect
;
Feature
(
const
int
c
,
const
uchar4
r
)
:
channel
(
c
),
rect
(
r
)
{}
};
}}}
#endif
\ No newline at end of file
// #include <opencv2/gpu/device/common.hpp>
// #ifndef __OPENCV_ICF_HPP__
// #define __OPENCV_ICF_HPP__
// #if defined __CUDACC__
// # define __device __device__ __forceinline__
// #else
// # define __device
// #endif
// namespace cv { namespace gpu { namespace icf {
// using cv::gpu::PtrStepSzb;
// using cv::gpu::PtrStepSzf;
// typedef unsigned char uchar;
// struct __align__(16) Octave
// {
// ushort index;
// ushort stages;
// ushort shrinkage;
// ushort2 size;
// float scale;
// Octave(const ushort i, const ushort s, const ushort sh, const ushort2 sz, const float sc)
// : index(i), stages(s), shrinkage(sh), size(sz), scale(sc) {}
// };
// struct __align__(8) Level //is actually 24 bytes
// {
// int octave;
// // float origScale; //not actually used
// float relScale;
// float shrScale; // used for marking detection
// float scaling[2]; // calculated according to Dollal paper
// // for 640x480 we can not get overflow
// uchar2 workRect;
// uchar2 objSize;
// Level(int idx, const Octave& oct, const float scale, const int w, const int h)
// : octave(idx), relScale(scale / oct.scale), shrScale (relScale / (float)oct.shrinkage)
// {
// workRect.x = round(w / (float)oct.shrinkage);
// workRect.y = round(h / (float)oct.shrinkage);
// objSize.x = round(oct.size.x * relScale);
// objSize.y = round(oct.size.y * relScale);
// }
// };
// struct Cascade
// {
// Cascade() {}
// Cascade(const cv::gpu::PtrStepSzb& octs, const cv::gpu::PtrStepSzf& sts, const cv::gpu::PtrStepSzb& nds,
// const cv::gpu::PtrStepSzf& lvs, const cv::gpu::PtrStepSzb& fts, const cv::gpu::PtrStepSzb& lls)
// : octaves(octs), stages(sts), nodes(nds), leaves(lvs), features(fts), levels(lls) {}
// void detect(const cv::gpu::PtrStepSzi& hogluv, cv::gpu::PtrStepSz<uchar4> objects, cudaStream_t stream) const;
// void __device detectAt(const int* __restrict__ hogluv, const int pitch, PtrStepSz<uchar4>& objects) const;
// float __device rescale(const icf::Level& level, uchar4& scaledRect,
// const int channel, const float threshold) const;
// PtrStepSzb octaves;
// PtrStepSzf stages;
// PtrStepSzb nodes;
// PtrStepSzf leaves;
// PtrStepSzb features;
// PtrStepSzb levels;
// };
// struct ChannelStorage
// {
// ChannelStorage(){}
// ChannelStorage(const cv::gpu::PtrStepSzb& buff, const cv::gpu::PtrStepSzb& shr,
// const cv::gpu::PtrStepSzb& itg, const int s)
// : dmem (buff), shrunk(shr), hogluv(itg), shrinkage(s) {}
// void frame(const cv::gpu::PtrStepSz<uchar3>& rgb, cudaStream_t stream){}
// PtrStepSzb dmem;
// PtrStepSzb shrunk;
// PtrStepSzb hogluv;
// enum
// {
// FRAME_WIDTH = 640,
// FRAME_HEIGHT = 480,
// TOTAL_SCALES = 55,
// CLASSIFIERS = 5,
// ORIG_OBJECT_WIDTH = 64,
// ORIG_OBJECT_HEIGHT = 128,
// HOG_BINS = 6,
// HOG_LUV_BINS = 10
// };
// int shrinkage;
// static const float magnitudeScaling = 1.f ;// / sqrt(2);
// };
// struct __align__(8) Node
// {
// int feature;
// float threshold;
// Node(const int f, const float t) : feature(f), threshold(t) {}
// };
// struct __align__(8) Feature
// {
// int channel;
// uchar4 rect;
// Feature(const int c, const uchar4 r) : channel(c), rect(r) {}
// };
// }}}
// #endif
\ No newline at end of file
modules/gpu/src/softcascade.cpp
View file @
19173665
...
...
@@ -41,361 +41,365 @@
//M*/
#include <precomp.hpp>
#include
"opencv2/highgui/highgui.hpp"
#include
<opencv2/highgui/highgui.hpp>
#if !defined (HAVE_CUDA)
cv
::
gpu
::
SoftCascade
::
SoftCascade
()
:
filds
(
0
)
{
throw_nogpu
();
}
cv
::
gpu
::
SoftCascade
::
SoftCascade
(
const
string
&
,
const
float
,
const
float
)
:
filds
(
0
)
{
throw_nogpu
();
}
cv
::
gpu
::
SoftCascade
::~
SoftCascade
()
{
throw_nogpu
();
}
bool
cv
::
gpu
::
SoftCascade
::
load
(
const
string
&
,
const
float
,
const
float
)
{
throw_nogpu
();
}
bool
cv
::
gpu
::
SoftCascade
::
load
(
const
string
&
,
const
float
,
const
float
)
{
throw_nogpu
();
return
false
;
}
void
cv
::
gpu
::
SoftCascade
::
detectMultiScale
(
const
GpuMat
&
,
const
GpuMat
&
,
GpuMat
&
,
const
int
,
Stream
)
{
throw_nogpu
();
}
#else
#include <icf.hpp>
//
#include <icf.hpp>
namespace
cv
{
namespace
gpu
{
namespace
device
{
namespace
icf
{
void
fillBins
(
cv
::
gpu
::
PtrStepSzb
hogluv
,
const
cv
::
gpu
::
PtrStepSzf
&
nangle
);
}
}}}
// namespace cv { namespace gpu { namespace device {
// namespace icf {
// void fillBins(cv::gpu::PtrStepSzb hogluv,const cv::gpu::PtrStepSzf& nangle);
// }
// }}}
// namespace {
// char *itoa(long i, char* s, int /*dummy_radix*/)
// {
// sprintf(s, "%ld", i);
// return s;
// }
// }
struct
cv
::
gpu
::
SoftCascade
::
Filds
{
// scales range
float
minScale
;
float
maxScale
;
int
origObjWidth
;
int
origObjHeight
;
GpuMat
octaves
;
GpuMat
stages
;
GpuMat
nodes
;
GpuMat
leaves
;
GpuMat
features
;
GpuMat
levels
;
// preallocated buffer 640x480x10 + 640x480
GpuMat
dmem
;
// 160x120x10
GpuMat
shrunk
;
// 161x121x10
GpuMat
hogluv
;
// will be removed in final version
// temporial mat for cvtColor
GpuMat
luv
;
// temporial mat for integrall
GpuMat
integralBuffer
;
// temp matrix for sobel and cartToPolar
GpuMat
dfdx
,
dfdy
,
angle
,
mag
,
nmag
,
nangle
;
std
::
vector
<
float
>
scales
;
icf
::
Cascade
cascade
;
icf
::
ChannelStorage
storage
;
enum
{
BOOST
=
0
};
enum
{
FRAME_WIDTH
=
640
,
FRAME_HEIGHT
=
480
,
TOTAL_SCALES
=
55
,
CLASSIFIERS
=
5
,
ORIG_OBJECT_WIDTH
=
64
,
ORIG_OBJECT_HEIGHT
=
128
,
HOG_BINS
=
6
,
HOG_LUV_BINS
=
10
};
bool
fill
(
const
FileNode
&
root
,
const
float
mins
,
const
float
maxs
);
void
detect
(
cv
::
gpu
::
GpuMat
objects
,
cudaStream_t
stream
)
const
{
cascade
.
detect
(
hogluv
,
objects
,
stream
);
}
private
:
void
calcLevels
(
const
std
::
vector
<
icf
::
Octave
>&
octs
,
int
frameW
,
int
frameH
,
int
nscales
);
typedef
std
::
vector
<
icf
::
Octave
>::
const_iterator
octIt_t
;
int
fitOctave
(
const
std
::
vector
<
icf
::
Octave
>&
octs
,
const
float
&
logFactor
)
const
{
float
minAbsLog
=
FLT_MAX
;
int
res
=
0
;
for
(
int
oct
=
0
;
oct
<
(
int
)
octs
.
size
();
++
oct
)
{
const
icf
::
Octave
&
octave
=
octs
[
oct
];
float
logOctave
=
::
log
(
octave
.
scale
);
float
logAbsScale
=
::
fabs
(
logFactor
-
logOctave
);
if
(
logAbsScale
<
minAbsLog
)
{
res
=
oct
;
minAbsLog
=
logAbsScale
;
}
}
return
res
;
}
//
// scales range
//
float minScale;
//
float maxScale;
//
int origObjWidth;
//
int origObjHeight;
//
GpuMat octaves;
//
GpuMat stages;
//
GpuMat nodes;
//
GpuMat leaves;
//
GpuMat features;
//
GpuMat levels;
//
// preallocated buffer 640x480x10 + 640x480
//
GpuMat dmem;
//
// 160x120x10
//
GpuMat shrunk;
//
// 161x121x10
//
GpuMat hogluv;
//
// will be removed in final version
//
// temporial mat for cvtColor
//
GpuMat luv;
//
// temporial mat for integrall
//
GpuMat integralBuffer;
//
// temp matrix for sobel and cartToPolar
//
GpuMat dfdx, dfdy, angle, mag, nmag, nangle;
//
std::vector<float> scales;
//
icf::Cascade cascade;
//
icf::ChannelStorage storage;
//
enum { BOOST = 0 };
//
enum
//
{
//
FRAME_WIDTH = 640,
//
FRAME_HEIGHT = 480,
//
TOTAL_SCALES = 55,
//
CLASSIFIERS = 5,
//
ORIG_OBJECT_WIDTH = 64,
//
ORIG_OBJECT_HEIGHT = 128,
//
HOG_BINS = 6,
//
HOG_LUV_BINS = 10
//
};
//
bool fill(const FileNode &root, const float mins, const float maxs);
//
void detect(cv::gpu::GpuMat objects, cudaStream_t stream) const
//
{
//
cascade.detect(hogluv, objects, stream);
//
}
//
private:
//
void calcLevels(const std::vector<icf::Octave>& octs,
//
int frameW, int frameH, int nscales);
//
typedef std::vector<icf::Octave>::const_iterator octIt_t;
//
int fitOctave(const std::vector<icf::Octave>& octs, const float& logFactor) const
//
{
//
float minAbsLog = FLT_MAX;
//
int res = 0;
//
for (int oct = 0; oct < (int)octs.size(); ++oct)
//
{
//
const icf::Octave& octave =octs[oct];
//
float logOctave = ::log(octave.scale);
//
float logAbsScale = ::fabs(logFactor - logOctave);
//
if(logAbsScale < minAbsLog)
//
{
//
res = oct;
//
minAbsLog = logAbsScale;
//
}
//
}
//
return res;
//
}
};
inline
bool
cv
::
gpu
::
SoftCascade
::
Filds
::
fill
(
const
FileNode
&
root
,
const
float
mins
,
const
float
maxs
)
{
minScale
=
mins
;
maxScale
=
maxs
;
// cascade properties
static
const
char
*
const
SC_STAGE_TYPE
=
"stageType"
;
static
const
char
*
const
SC_BOOST
=
"BOOST"
;
static
const
char
*
const
SC_FEATURE_TYPE
=
"featureType"
;
static
const
char
*
const
SC_ICF
=
"ICF"
;
static
const
char
*
const
SC_ORIG_W
=
"width"
;
static
const
char
*
const
SC_ORIG_H
=
"height"
;
static
const
char
*
const
SC_OCTAVES
=
"octaves"
;
static
const
char
*
const
SC_STAGES
=
"stages"
;
static
const
char
*
const
SC_FEATURES
=
"features"
;
static
const
char
*
const
SC_WEEK
=
"weakClassifiers"
;
static
const
char
*
const
SC_INTERNAL
=
"internalNodes"
;
static
const
char
*
const
SC_LEAF
=
"leafValues"
;
static
const
char
*
const
SC_OCT_SCALE
=
"scale"
;
static
const
char
*
const
SC_OCT_STAGES
=
"stageNum"
;
static
const
char
*
const
SC_OCT_SHRINKAGE
=
"shrinkingFactor"
;
static
const
char
*
const
SC_STAGE_THRESHOLD
=
"stageThreshold"
;
static
const
char
*
const
SC_F_CHANNEL
=
"channel"
;
static
const
char
*
const
SC_F_RECT
=
"rect"
;
// only Ada Boost supported
std
::
string
stageTypeStr
=
(
string
)
root
[
SC_STAGE_TYPE
];
CV_Assert
(
stageTypeStr
==
SC_BOOST
);
// only HOG-like integral channel features cupported
string
featureTypeStr
=
(
string
)
root
[
SC_FEATURE_TYPE
];
CV_Assert
(
featureTypeStr
==
SC_ICF
);
origObjWidth
=
(
int
)
root
[
SC_ORIG_W
];
CV_Assert
(
origObjWidth
==
ORIG_OBJECT_WIDTH
);
origObjHeight
=
(
int
)
root
[
SC_ORIG_H
];
CV_Assert
(
origObjHeight
==
ORIG_OBJECT_HEIGHT
);
FileNode
fn
=
root
[
SC_OCTAVES
];
if
(
fn
.
empty
())
return
false
;
std
::
vector
<
icf
::
Octave
>
voctaves
;
std
::
vector
<
float
>
vstages
;
std
::
vector
<
icf
::
Node
>
vnodes
;
std
::
vector
<
float
>
vleaves
;
std
::
vector
<
icf
::
Feature
>
vfeatures
;
scales
.
clear
();
// std::vector<Level> levels;
FileNodeIterator
it
=
fn
.
begin
(),
it_end
=
fn
.
end
();
int
feature_offset
=
0
;
ushort
octIndex
=
0
;
ushort
shrinkage
=
1
;
for
(;
it
!=
it_end
;
++
it
)
{
FileNode
fns
=
*
it
;
float
scale
=
(
float
)
fns
[
SC_OCT_SCALE
];
scales
.
push_back
(
scale
);
ushort
nstages
=
saturate_cast
<
ushort
>
((
int
)
fns
[
SC_OCT_STAGES
]);
ushort2
size
;
size
.
x
=
cvRound
(
ORIG_OBJECT_WIDTH
*
scale
);
size
.
y
=
cvRound
(
ORIG_OBJECT_HEIGHT
*
scale
);
shrinkage
=
saturate_cast
<
ushort
>
((
int
)
fns
[
SC_OCT_SHRINKAGE
]);
icf
::
Octave
octave
(
octIndex
,
nstages
,
shrinkage
,
size
,
scale
);
CV_Assert
(
octave
.
stages
>
0
);
voctaves
.
push_back
(
octave
);
FileNode
ffs
=
fns
[
SC_FEATURES
];
if
(
ffs
.
empty
())
return
false
;
fns
=
fns
[
SC_STAGES
];
if
(
fn
.
empty
())
return
false
;
// for each stage (~ decision tree with H = 2)
FileNodeIterator
st
=
fns
.
begin
(),
st_end
=
fns
.
end
();
for
(;
st
!=
st_end
;
++
st
)
{
fns
=
*
st
;
vstages
.
push_back
((
float
)
fns
[
SC_STAGE_THRESHOLD
]);
fns
=
fns
[
SC_WEEK
];
FileNodeIterator
ftr
=
fns
.
begin
(),
ft_end
=
fns
.
end
();
for
(;
ftr
!=
ft_end
;
++
ftr
)
{
fns
=
(
*
ftr
)[
SC_INTERNAL
];
FileNodeIterator
inIt
=
fns
.
begin
(),
inIt_end
=
fns
.
end
();
for
(;
inIt
!=
inIt_end
;)
{
int
feature
=
(
int
)(
*
(
inIt
+=
2
)
++
)
+
feature_offset
;
float
th
=
(
float
)(
*
(
inIt
++
));
vnodes
.
push_back
(
icf
::
Node
(
feature
,
th
));
}
fns
=
(
*
ftr
)[
SC_LEAF
];
inIt
=
fns
.
begin
(),
inIt_end
=
fns
.
end
();
for
(;
inIt
!=
inIt_end
;
++
inIt
)
vleaves
.
push_back
((
float
)(
*
inIt
));
}
}
st
=
ffs
.
begin
(),
st_end
=
ffs
.
end
();
for
(;
st
!=
st_end
;
++
st
)
{
cv
::
FileNode
rn
=
(
*
st
)[
SC_F_RECT
];
cv
::
FileNodeIterator
r_it
=
rn
.
begin
();
uchar4
rect
;
rect
.
x
=
saturate_cast
<
uchar
>
((
int
)
*
(
r_it
++
));
rect
.
y
=
saturate_cast
<
uchar
>
((
int
)
*
(
r_it
++
));
rect
.
z
=
saturate_cast
<
uchar
>
((
int
)
*
(
r_it
++
));
rect
.
w
=
saturate_cast
<
uchar
>
((
int
)
*
(
r_it
++
));
vfeatures
.
push_back
(
icf
::
Feature
((
int
)(
*
st
)[
SC_F_CHANNEL
],
rect
));
}
feature_offset
+=
octave
.
stages
*
3
;
++
octIndex
;
}
// upload in gpu memory
octaves
.
upload
(
cv
::
Mat
(
1
,
voctaves
.
size
()
*
sizeof
(
icf
::
Octave
),
CV_8UC1
,
(
uchar
*
)
&
(
voctaves
[
0
])
));
CV_Assert
(
!
octaves
.
empty
());
stages
.
upload
(
cv
::
Mat
(
vstages
).
reshape
(
1
,
1
));
CV_Assert
(
!
stages
.
empty
());
nodes
.
upload
(
cv
::
Mat
(
1
,
vnodes
.
size
()
*
sizeof
(
icf
::
Node
),
CV_8UC1
,
(
uchar
*
)
&
(
vnodes
[
0
])
));
CV_Assert
(
!
nodes
.
empty
());
leaves
.
upload
(
cv
::
Mat
(
vleaves
).
reshape
(
1
,
1
));
CV_Assert
(
!
leaves
.
empty
());
features
.
upload
(
cv
::
Mat
(
1
,
vfeatures
.
size
()
*
sizeof
(
icf
::
Feature
),
CV_8UC1
,
(
uchar
*
)
&
(
vfeatures
[
0
])
));
CV_Assert
(
!
features
.
empty
());
// compute levels
calcLevels
(
voctaves
,
FRAME_WIDTH
,
FRAME_HEIGHT
,
TOTAL_SCALES
);
CV_Assert
(
!
levels
.
empty
());
//init Cascade
cascade
=
icf
::
Cascade
(
octaves
,
stages
,
nodes
,
leaves
,
features
,
levels
);
// allocate buffers
dmem
.
create
(
FRAME_HEIGHT
*
(
HOG_LUV_BINS
+
1
),
FRAME_WIDTH
,
CV_8UC1
);
shrunk
.
create
(
FRAME_HEIGHT
/
shrinkage
*
HOG_LUV_BINS
,
FRAME_WIDTH
/
shrinkage
,
CV_8UC1
);
// hogluv.create( (FRAME_HEIGHT / shrinkage + 1) * HOG_LUV_BINS, (FRAME_WIDTH / shrinkage + 1), CV_16UC1);
hogluv
.
create
(
(
FRAME_HEIGHT
/
shrinkage
+
1
)
*
HOG_LUV_BINS
,
(
FRAME_WIDTH
/
shrinkage
+
1
),
CV_32SC1
);
luv
.
create
(
FRAME_HEIGHT
,
FRAME_WIDTH
,
CV_8UC3
);
integralBuffer
.
create
(
shrunk
.
rows
+
1
*
HOG_LUV_BINS
,
shrunk
.
cols
+
1
,
CV_32SC1
);
dfdx
.
create
(
FRAME_HEIGHT
,
FRAME_WIDTH
,
CV_32FC1
);
dfdy
.
create
(
FRAME_HEIGHT
,
FRAME_WIDTH
,
CV_32FC1
);
angle
.
create
(
FRAME_HEIGHT
,
FRAME_WIDTH
,
CV_32FC1
);
mag
.
create
(
FRAME_HEIGHT
,
FRAME_WIDTH
,
CV_32FC1
);
nmag
.
create
(
FRAME_HEIGHT
,
FRAME_WIDTH
,
CV_32FC1
);
nangle
.
create
(
FRAME_HEIGHT
,
FRAME_WIDTH
,
CV_32FC1
);
storage
=
icf
::
ChannelStorage
(
dmem
,
shrunk
,
hogluv
,
shrinkage
);
return
true
;
}
namespace
{
struct
CascadeIntrinsics
{
static
const
float
lambda
=
1.099
f
,
a
=
0.89
f
;
static
float
getFor
(
int
channel
,
float
scaling
)
{
CV_Assert
(
channel
<
10
);
if
(
fabs
(
scaling
-
1.
f
)
<
FLT_EPSILON
)
return
1.
f
;
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers
static
const
float
A
[
2
][
2
]
=
{
//channel <= 6, otherwise
{
0.89
f
,
1.
f
},
// down
{
1.00
f
,
1.
f
}
// up
};
static
const
float
B
[
2
][
2
]
=
{
//channel <= 6, otherwise
{
1.099
f
/
log
(
2
),
2.
f
},
// down
{
0.
f
,
2.
f
}
// up
};
float
a
=
A
[(
int
)(
scaling
>=
1
)][(
int
)(
channel
>
6
)];
float
b
=
B
[(
int
)(
scaling
>=
1
)][(
int
)(
channel
>
6
)];
// printf("!!! scaling: %f %f %f -> %f\n", scaling, a, b, a * pow(scaling, b));
return
a
*
pow
(
scaling
,
b
);
}
};
}
inline
void
cv
::
gpu
::
SoftCascade
::
Filds
::
calcLevels
(
const
std
::
vector
<
icf
::
Octave
>&
octs
,
int
frameW
,
int
frameH
,
int
nscales
)
{
CV_Assert
(
nscales
>
1
);
std
::
vector
<
icf
::
Level
>
vlevels
;
float
logFactor
=
(
::
log
(
maxScale
)
-
::
log
(
minScale
))
/
(
nscales
-
1
);
float
scale
=
minScale
;
for
(
int
sc
=
0
;
sc
<
nscales
;
++
sc
)
{
int
width
=
::
std
::
max
(
0.0
f
,
frameW
-
(
origObjWidth
*
scale
));
int
height
=
::
std
::
max
(
0.0
f
,
frameH
-
(
origObjHeight
*
scale
));
float
logScale
=
::
log
(
scale
);
int
fit
=
fitOctave
(
octs
,
logScale
);
icf
::
Level
level
(
fit
,
octs
[
fit
],
scale
,
width
,
height
);
level
.
scaling
[
0
]
=
CascadeIntrinsics
::
getFor
(
0
,
level
.
relScale
);
level
.
scaling
[
1
]
=
CascadeIntrinsics
::
getFor
(
9
,
level
.
relScale
);
if
(
!
width
||
!
height
)
break
;
else
vlevels
.
push_back
(
level
);
if
(
::
fabs
(
scale
-
maxScale
)
<
FLT_EPSILON
)
break
;
scale
=
::
std
::
min
(
maxScale
,
::
expf
(
::
log
(
scale
)
+
logFactor
));
// printf("level: %d (%f %f) [%f %f] (%d %d) (%d %d)\n", level.octave, level.relScale, level.shrScale,
// level.scaling[0], level.scaling[1], level.workRect.x, level.workRect.y, level.objSize.x, level.objSize.y);
// std::cout << "level " << sc
// << " octeve "
// << vlevels[sc].octave
// << " relScale "
// << vlevels[sc].relScale
// << " " << vlevels[sc].shrScale
// << " [" << (int)vlevels[sc].objSize.x
// << " " << (int)vlevels[sc].objSize.y << "] ["
// << (int)vlevels[sc].workRect.x << " " << (int)vlevels[sc].workRect.y << "]" << std::endl;
}
levels
.
upload
(
cv
::
Mat
(
1
,
vlevels
.
size
()
*
sizeof
(
icf
::
Level
),
CV_8UC1
,
(
uchar
*
)
&
(
vlevels
[
0
])
));
}
//
inline bool cv::gpu::SoftCascade::Filds::fill(const FileNode &root, const float mins, const float maxs)
//
{
//
minScale = mins;
//
maxScale = maxs;
//
// cascade properties
//
static const char *const SC_STAGE_TYPE = "stageType";
//
static const char *const SC_BOOST = "BOOST";
//
static const char *const SC_FEATURE_TYPE = "featureType";
//
static const char *const SC_ICF = "ICF";
//
static const char *const SC_ORIG_W = "width";
//
static const char *const SC_ORIG_H = "height";
//
static const char *const SC_OCTAVES = "octaves";
//
static const char *const SC_STAGES = "stages";
//
static const char *const SC_FEATURES = "features";
//
static const char *const SC_WEEK = "weakClassifiers";
//
static const char *const SC_INTERNAL = "internalNodes";
//
static const char *const SC_LEAF = "leafValues";
//
static const char *const SC_OCT_SCALE = "scale";
//
static const char *const SC_OCT_STAGES = "stageNum";
//
static const char *const SC_OCT_SHRINKAGE = "shrinkingFactor";
//
static const char *const SC_STAGE_THRESHOLD = "stageThreshold";
//
static const char * const SC_F_CHANNEL = "channel";
//
static const char * const SC_F_RECT = "rect";
//
// only Ada Boost supported
//
std::string stageTypeStr = (string)root[SC_STAGE_TYPE];
//
CV_Assert(stageTypeStr == SC_BOOST);
//
// only HOG-like integral channel features cupported
//
string featureTypeStr = (string)root[SC_FEATURE_TYPE];
//
CV_Assert(featureTypeStr == SC_ICF);
//
origObjWidth = (int)root[SC_ORIG_W];
//
CV_Assert(origObjWidth == ORIG_OBJECT_WIDTH);
//
origObjHeight = (int)root[SC_ORIG_H];
//
CV_Assert(origObjHeight == ORIG_OBJECT_HEIGHT);
//
FileNode fn = root[SC_OCTAVES];
//
if (fn.empty()) return false;
//
std::vector<icf::Octave> voctaves;
//
std::vector<float> vstages;
//
std::vector<icf::Node> vnodes;
//
std::vector<float> vleaves;
//
std::vector<icf::Feature> vfeatures;
//
scales.clear();
//
// std::vector<Level> levels;
//
FileNodeIterator it = fn.begin(), it_end = fn.end();
//
int feature_offset = 0;
//
ushort octIndex = 0;
//
ushort shrinkage = 1;
//
for (; it != it_end; ++it)
//
{
//
FileNode fns = *it;
//
float scale = (float)fns[SC_OCT_SCALE];
//
scales.push_back(scale);
//
ushort nstages = saturate_cast<ushort>((int)fns[SC_OCT_STAGES]);
//
ushort2 size;
//
size.x = cvRound(ORIG_OBJECT_WIDTH * scale);
//
size.y = cvRound(ORIG_OBJECT_HEIGHT * scale);
//
shrinkage = saturate_cast<ushort>((int)fns[SC_OCT_SHRINKAGE]);
//
icf::Octave octave(octIndex, nstages, shrinkage, size, scale);
//
CV_Assert(octave.stages > 0);
//
voctaves.push_back(octave);
//
FileNode ffs = fns[SC_FEATURES];
//
if (ffs.empty()) return false;
//
fns = fns[SC_STAGES];
//
if (fn.empty()) return false;
//
// for each stage (~ decision tree with H = 2)
//
FileNodeIterator st = fns.begin(), st_end = fns.end();
//
for (; st != st_end; ++st )
//
{
//
fns = *st;
//
vstages.push_back((float)fns[SC_STAGE_THRESHOLD]);
//
fns = fns[SC_WEEK];
//
FileNodeIterator ftr = fns.begin(), ft_end = fns.end();
//
for (; ftr != ft_end; ++ftr)
//
{
//
fns = (*ftr)[SC_INTERNAL];
//
FileNodeIterator inIt = fns.begin(), inIt_end = fns.end();
//
for (; inIt != inIt_end;)
//
{
//
int feature = (int)(*(inIt +=2)++) + feature_offset;
//
float th = (float)(*(inIt++));
//
vnodes.push_back(icf::Node(feature, th));
//
}
//
fns = (*ftr)[SC_LEAF];
//
inIt = fns.begin(), inIt_end = fns.end();
//
for (; inIt != inIt_end; ++inIt)
//
vleaves.push_back((float)(*inIt));
//
}
//
}
//
st = ffs.begin(), st_end = ffs.end();
//
for (; st != st_end; ++st )
//
{
//
cv::FileNode rn = (*st)[SC_F_RECT];
//
cv::FileNodeIterator r_it = rn.begin();
//
uchar4 rect;
//
rect.x = saturate_cast<uchar>((int)*(r_it++));
//
rect.y = saturate_cast<uchar>((int)*(r_it++));
//
rect.z = saturate_cast<uchar>((int)*(r_it++));
//
rect.w = saturate_cast<uchar>((int)*(r_it++));
//
vfeatures.push_back(icf::Feature((int)(*st)[SC_F_CHANNEL], rect));
//
}
//
feature_offset += octave.stages * 3;
//
++octIndex;
//
}
//
// upload in gpu memory
//
octaves.upload(cv::Mat(1, voctaves.size() * sizeof(icf::Octave), CV_8UC1, (uchar*)&(voctaves[0]) ));
//
CV_Assert(!octaves.empty());
//
stages.upload(cv::Mat(vstages).reshape(1,1));
//
CV_Assert(!stages.empty());
//
nodes.upload(cv::Mat(1, vnodes.size() * sizeof(icf::Node), CV_8UC1, (uchar*)&(vnodes[0]) ));
//
CV_Assert(!nodes.empty());
//
leaves.upload(cv::Mat(vleaves).reshape(1,1));
//
CV_Assert(!leaves.empty());
//
features.upload(cv::Mat(1, vfeatures.size() * sizeof(icf::Feature), CV_8UC1, (uchar*)&(vfeatures[0]) ));
//
CV_Assert(!features.empty());
//
// compute levels
//
calcLevels(voctaves, FRAME_WIDTH, FRAME_HEIGHT, TOTAL_SCALES);
//
CV_Assert(!levels.empty());
//
//init Cascade
//
cascade = icf::Cascade(octaves, stages, nodes, leaves, features, levels);
//
// allocate buffers
//
dmem.create(FRAME_HEIGHT * (HOG_LUV_BINS + 1), FRAME_WIDTH, CV_8UC1);
//
shrunk.create(FRAME_HEIGHT / shrinkage * HOG_LUV_BINS, FRAME_WIDTH / shrinkage, CV_8UC1);
//
// hogluv.create( (FRAME_HEIGHT / shrinkage + 1) * HOG_LUV_BINS, (FRAME_WIDTH / shrinkage + 1), CV_16UC1);
//
hogluv.create( (FRAME_HEIGHT / shrinkage + 1) * HOG_LUV_BINS, (FRAME_WIDTH / shrinkage + 1), CV_32SC1);
//
luv.create(FRAME_HEIGHT, FRAME_WIDTH, CV_8UC3);
//
integralBuffer.create(shrunk.rows + 1 * HOG_LUV_BINS, shrunk.cols + 1, CV_32SC1);
//
dfdx.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
//
dfdy.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
//
angle.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
//
mag.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
//
nmag.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
//
nangle.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
//
storage = icf::ChannelStorage(dmem, shrunk, hogluv, shrinkage);
//
return true;
//
}
//
namespace {
//
struct CascadeIntrinsics
//
{
//
static const float lambda = 1.099f, a = 0.89f;
//
static float getFor(int channel, float scaling)
//
{
//
CV_Assert(channel < 10);
//
if (fabs(scaling - 1.f) < FLT_EPSILON)
//
return 1.f;
//
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers
//
static const float A[2][2] =
//
{ //channel <= 6, otherwise
//
{ 0.89f, 1.f}, // down
//
{ 1.00f, 1.f} // up
//
};
//
static const float B[2][2] =
//
{ //channel <= 6, otherwise
//
{ 1.099f / log(2), 2.f}, // down
//
{ 0.f, 2.f} // up
//
};
//
float a = A[(int)(scaling >= 1)][(int)(channel > 6)];
//
float b = B[(int)(scaling >= 1)][(int)(channel > 6)];
//
// printf("!!! scaling: %f %f %f -> %f\n", scaling, a, b, a * pow(scaling, b));
//
return a * pow(scaling, b);
//
}
//
};
//
}
//
inline void cv::gpu::SoftCascade::Filds::calcLevels(const std::vector<icf::Octave>& octs,
//
int frameW, int frameH, int nscales)
//
{
//
CV_Assert(nscales > 1);
//
std::vector<icf::Level> vlevels;
//
float logFactor = (::log(maxScale) - ::log(minScale)) / (nscales -1);
//
float scale = minScale;
//
for (int sc = 0; sc < nscales; ++sc)
//
{
//
int width = ::std::max(0.0f, frameW - (origObjWidth * scale));
//
int height = ::std::max(0.0f, frameH - (origObjHeight * scale));
//
float logScale = ::log(scale);
//
int fit = fitOctave(octs, logScale);
//
icf::Level level(fit, octs[fit], scale, width, height);
//
level.scaling[0] = CascadeIntrinsics::getFor(0, level.relScale);
//
level.scaling[1] = CascadeIntrinsics::getFor(9, level.relScale);
//
if (!width || !height)
//
break;
//
else
//
vlevels.push_back(level);
//
if (::fabs(scale - maxScale) < FLT_EPSILON) break;
//
scale = ::std::min(maxScale, ::expf(::log(scale) + logFactor));
//
// printf("level: %d (%f %f) [%f %f] (%d %d) (%d %d)\n", level.octave, level.relScale, level.shrScale,
//
// level.scaling[0], level.scaling[1], level.workRect.x, level.workRect.y, level.objSize.x, level.objSize.y);
//
// std::cout << "level " << sc
//
// << " octeve "
//
// << vlevels[sc].octave
//
// << " relScale "
//
// << vlevels[sc].relScale
//
// << " " << vlevels[sc].shrScale
//
// << " [" << (int)vlevels[sc].objSize.x
//
// << " " << (int)vlevels[sc].objSize.y << "] ["
//
// << (int)vlevels[sc].workRect.x << " " << (int)vlevels[sc].workRect.y << "]" << std::endl;
//
}
//
levels.upload(cv::Mat(1, vlevels.size() * sizeof(icf::Level), CV_8UC1, (uchar*)&(vlevels[0]) ));
//
}
cv
::
gpu
::
SoftCascade
::
SoftCascade
()
:
filds
(
0
)
{}
...
...
@@ -419,97 +423,89 @@ bool cv::gpu::SoftCascade::load( const string& filename, const float minScale, c
if
(
!
fs
.
isOpened
())
return
false
;
filds
=
new
Filds
;
Filds
&
flds
=
*
filds
;
if
(
!
flds
.
fill
(
fs
.
getFirstTopLevelNode
(),
minScale
,
maxScale
))
return
false
;
//
Filds& flds = *filds;
//
if (!flds.fill(fs.getFirstTopLevelNode(), minScale, maxScale)) return false;
return
true
;
}
namespace
{
char
*
itoa
(
long
i
,
char
*
s
,
int
/*dummy_radix*/
)
{
sprintf
(
s
,
"%ld"
,
i
);
return
s
;
}
}
#define USE_REFERENCE_VALUES
// #define USE_REFERENCE_VALUES
void
cv
::
gpu
::
SoftCascade
::
detectMultiScale
(
const
GpuMat
&
colored
,
const
GpuMat
&
/*rois*/
,
GpuMat
&
objects
,
const
int
/*rejectfactor*/
,
Stream
s
)
{
// only color images are supperted
CV_Assert
(
colored
.
type
()
==
CV_8UC3
);
// // only this window size allowed
CV_Assert
(
colored
.
cols
==
640
&&
colored
.
rows
==
480
);
Filds
&
flds
=
*
filds
;
#if defined USE_REFERENCE_VALUES
cudaMemset
(
flds
.
hogluv
.
data
,
0
,
flds
.
hogluv
.
step
*
flds
.
hogluv
.
rows
);
cv
::
FileStorage
imgs
(
"/home/kellan/testInts.xml"
,
cv
::
FileStorage
::
READ
);
char
buff
[
33
];
for
(
int
i
=
0
;
i
<
Filds
::
HOG_LUV_BINS
;
++
i
)
{
cv
::
Mat
channel
;
imgs
[
std
::
string
(
"channel"
)
+
itoa
(
i
,
buff
,
10
)]
>>
channel
;
GpuMat
gchannel
(
flds
.
hogluv
,
cv
::
Rect
(
0
,
121
*
i
,
161
,
121
));
gchannel
.
upload
(
channel
);
}
#else
GpuMat
&
dmem
=
flds
.
dmem
;
cudaMemset
(
dmem
.
data
,
0
,
dmem
.
step
*
dmem
.
rows
);
GpuMat
&
shrunk
=
flds
.
shrunk
;
int
w
=
shrunk
.
cols
;
int
h
=
colored
.
rows
/
flds
.
storage
.
shrinkage
;
//
// only color images are supperted
//
CV_Assert(colored.type() == CV_8UC3);
//
// // only this window size allowed
//
CV_Assert(colored.cols == 640 && colored.rows == 480);
//
Filds& flds = *filds;
//
#if defined USE_REFERENCE_VALUES
//
cudaMemset(flds.hogluv.data, 0, flds.hogluv.step * flds.hogluv.rows);
//
cv::FileStorage imgs("/home/kellan/testInts.xml", cv::FileStorage::READ);
//
char buff[33];
//
for(int i = 0; i < Filds::HOG_LUV_BINS; ++i)
//
{
//
cv::Mat channel;
//
imgs[std::string("channel") + itoa(i, buff, 10)] >> channel;
//
GpuMat gchannel(flds.hogluv, cv::Rect(0, 121 * i, 161, 121));
//
gchannel.upload(channel);
//
}
//
#else
//
GpuMat& dmem = flds.dmem;
//
cudaMemset(dmem.data, 0, dmem.step * dmem.rows);
//
GpuMat& shrunk = flds.shrunk;
//
int w = shrunk.cols;
//
int h = colored.rows / flds.storage.shrinkage;
std
::
vector
<
GpuMat
>
splited
;
for
(
int
i
=
0
;
i
<
3
;
++
i
)
{
splited
.
push_back
(
GpuMat
(
dmem
,
cv
::
Rect
(
0
,
colored
.
rows
*
(
7
+
i
),
colored
.
cols
,
colored
.
rows
)));
}
//
std::vector<GpuMat> splited;
//
for(int i = 0; i < 3; ++i)
//
{
//
splited.push_back(GpuMat(dmem, cv::Rect(0, colored.rows * (7 + i), colored.cols, colored.rows)));
//
}
GpuMat
gray
(
dmem
,
cv
::
Rect
(
0
,
colored
.
rows
*
10
,
colored
.
cols
,
colored
.
rows
)
);
//
GpuMat gray(dmem, cv::Rect(0, colored.rows * 10, colored.cols, colored.rows) );
cv
::
gpu
::
cvtColor
(
colored
,
gray
,
CV_RGB2GRAY
);
//
cv::gpu::cvtColor(colored, gray, CV_RGB2GRAY);
//create hog
cv
::
gpu
::
Sobel
(
gray
,
flds
.
dfdx
,
CV_32F
,
1
,
0
,
3
,
0.25
);
cv
::
gpu
::
Sobel
(
gray
,
flds
.
dfdy
,
CV_32F
,
0
,
1
,
3
,
0.25
);
//
//create hog
//
cv::gpu::Sobel(gray, flds.dfdx, CV_32F, 1, 0, 3, 0.25);
//
cv::gpu::Sobel(gray, flds.dfdy, CV_32F, 0, 1, 3, 0.25);
cv
::
gpu
::
cartToPolar
(
flds
.
dfdx
,
flds
.
dfdy
,
flds
.
mag
,
flds
.
angle
,
true
);
//
cv::gpu::cartToPolar(flds.dfdx, flds.dfdy, flds.mag, flds.angle, true);
cv
::
gpu
::
multiply
(
flds
.
mag
,
cv
::
Scalar
::
all
(
1.0
/
::
log
(
2
)),
flds
.
nmag
);
cv
::
gpu
::
multiply
(
flds
.
angle
,
cv
::
Scalar
::
all
(
1.0
/
60.0
),
flds
.
nangle
);
//
cv::gpu::multiply(flds.mag, cv::Scalar::all(1.0 / ::log(2)), flds.nmag);
//
cv::gpu::multiply(flds.angle, cv::Scalar::all(1.0 / 60.0), flds.nangle);
GpuMat
magCannel
(
dmem
,
cv
::
Rect
(
0
,
colored
.
rows
*
6
,
colored
.
cols
,
colored
.
rows
));
flds
.
nmag
.
convertTo
(
magCannel
,
CV_8UC1
);
device
::
icf
::
fillBins
(
dmem
,
flds
.
nangle
);
//
GpuMat magCannel(dmem, cv::Rect(0, colored.rows * 6, colored.cols, colored.rows));
//
flds.nmag.convertTo(magCannel, CV_8UC1);
//
device::icf::fillBins(dmem, flds.nangle);
// create luv
cv
::
gpu
::
cvtColor
(
colored
,
flds
.
luv
,
CV_BGR2Luv
);
cv
::
gpu
::
split
(
flds
.
luv
,
splited
);
//
// create luv
//
cv::gpu::cvtColor(colored, flds.luv, CV_BGR2Luv);
//
cv::gpu::split(flds.luv, splited);
GpuMat
plane
(
dmem
,
cv
::
Rect
(
0
,
0
,
colored
.
cols
,
colored
.
rows
*
Filds
::
HOG_LUV_BINS
));
cv
::
gpu
::
resize
(
plane
,
flds
.
shrunk
,
cv
::
Size
(),
0.25
,
0.25
,
CV_INTER_AREA
);
//
GpuMat plane(dmem, cv::Rect(0, 0, colored.cols, colored.rows * Filds::HOG_LUV_BINS));
//
cv::gpu::resize(plane, flds.shrunk, cv::Size(), 0.25, 0.25, CV_INTER_AREA);
// fer debug purpose
// cudaMemset(flds.hogluv.data, 0, flds.hogluv.step * flds.hogluv.rows);
//
// fer debug purpose
//
// cudaMemset(flds.hogluv.data, 0, flds.hogluv.step * flds.hogluv.rows);
for
(
int
i
=
0
;
i
<
Filds
::
HOG_LUV_BINS
;
++
i
)
{
GpuMat
channel
(
shrunk
,
cv
::
Rect
(
0
,
h
*
i
,
w
,
h
));
GpuMat
sum
(
flds
.
hogluv
,
cv
::
Rect
(
0
,
(
h
+
1
)
*
i
,
w
+
1
,
h
+
1
));
cv
::
gpu
::
integralBuffered
(
channel
,
sum
,
flds
.
integralBuffer
);
}
//
for(int i = 0; i < Filds::HOG_LUV_BINS; ++i)
//
{
//
GpuMat channel(shrunk, cv::Rect(0, h * i, w, h ));
//
GpuMat sum(flds.hogluv, cv::Rect(0, (h + 1) * i, w + 1, h + 1));
//
cv::gpu::integralBuffered(channel, sum, flds.integralBuffer);
//
}
#endif
//
#endif
cudaStream_t
stream
=
StreamAccessor
::
getStream
(
s
);
// detection
flds
.
detect
(
objects
,
stream
);
//
cudaStream_t stream = StreamAccessor::getStream(s);
//
// detection
//
flds.detect(objects, stream);
// flds.storage.frame(colored, stream);
//
// flds.storage.frame(colored, stream);
}
#endif
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment