In this tutorial you will learn how to find a given configuration or pattern in a binary image by using the Hit-or-Miss transform (also known as Hit-and-Miss transform).
This transform is also the basis of more advanced morphological operations such as thinning or pruning.
We will use the OpenCV function @ref cv::morphologyEx.
We will use the OpenCV function **morphologyEx()** .
Hit-or-Miss theory
-------------------
Morphological operators process images based on their shape. These operators apply one or more *structuring elements* to an input image to obtain the output image.
The two basic morphological operations are the *erosion* and the *dilation*. The combination of these two operations generate advanced morphological transformations such as *opening*, *closing*, or *top-hat* transform.
To know more about these and other basic morphological operations refer to previous tutorials @ref tutorial_erosion_dilatation "here" and @ref tutorial_opening_closing_hats "here".
To know more about these and other basic morphological operations refer to previous tutorials (@ref tutorial_erosion_dilatation "Eroding and Dilating") and (@ref tutorial_opening_closing_hats "More Morphology Transformations").
The Hit-or-Miss transformation is useful to find patterns in binary images. In particular, it finds those pixels whose neighbourhood matches the shape of a first structuring element \f$B_1\f$
while not matching the shape of a second structuring element \f$B_2\f$ at the same time. Mathematically, the operation applied to an image \f$A\f$ can be expressed as follows:
...
...
@@ -43,11 +44,27 @@ You can see that the pattern is found in just one location within the image.
Code
----
The code corresponding to the previous example is shown below. You can also download it from