Commit 1652540a authored by Vladislav Vinogradov's avatar Vladislav Vinogradov

refactored HoughLines (converted it into Algorithm)

parent 48fb8c4f
......@@ -86,13 +86,14 @@ PERF_TEST_P(Image, HoughLinesP, testing::Values(std::string("im1_1280x800.jpg"))
{
cv::gpu::GpuMat d_image(image);
cv::gpu::GpuMat d_lines;
cv::gpu::HoughLinesBuf d_buf;
cv::gpu::HoughLinesP(d_image, d_lines, d_buf, rho, theta, minLineLenght, maxLineGap);
cv::Ptr<cv::gpu::HoughSegmentDetector> hough = cv::gpu::createHoughSegmentDetector(rho, theta, minLineLenght, maxLineGap);
hough->detect(d_image, d_lines);
TEST_CYCLE()
{
cv::gpu::HoughLinesP(d_image, d_lines, d_buf, rho, theta, minLineLenght, maxLineGap);
hough->detect(d_image, d_lines);
}
}
else
......
......@@ -220,18 +220,82 @@ inline void Canny(InputArray dx, InputArray dy, OutputArray edges, double low_th
/////////////////////////// Hough Transform ////////////////////////////
struct HoughLinesBuf
//////////////////////////////////////
// HoughLines
class CV_EXPORTS HoughLinesDetector : public Algorithm
{
GpuMat accum;
GpuMat list;
public:
virtual void detect(InputArray src, OutputArray lines) = 0;
virtual void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray()) = 0;
virtual void setRho(float rho) = 0;
virtual float getRho() const = 0;
virtual void setTheta(float theta) = 0;
virtual float getTheta() const = 0;
virtual void setThreshold(int threshold) = 0;
virtual int getThreshold() const = 0;
virtual void setDoSort(bool doSort) = 0;
virtual bool getDoSort() const = 0;
virtual void setMaxLines(int maxLines) = 0;
virtual int getMaxLines() const = 0;
};
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
CV_EXPORTS void HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines, OutputArray h_votes = noArray());
CV_EXPORTS Ptr<HoughLinesDetector> createHoughLinesDetector(float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
// obsolete
__OPENCV_GPUIMGPROC_DEPR_BEFORE__ void HoughLines(InputArray src, OutputArray lines, float rho, float theta, int threshold,
bool doSort = false, int maxLines = 4096) __OPENCV_GPUIMGPROC_DEPR_AFTER__;
inline void HoughLines(InputArray src, OutputArray lines, float rho, float theta, int threshold, bool doSort, int maxLines)
{
gpu::createHoughLinesDetector(rho, theta, threshold, doSort, maxLines)->detect(src, lines);
}
//////////////////////////////////////
// HoughLinesP
//! finds line segments in the black-n-white image using probabalistic Hough transform
CV_EXPORTS void HoughLinesP(const GpuMat& image, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096);
class CV_EXPORTS HoughSegmentDetector : public Algorithm
{
public:
virtual void detect(InputArray src, OutputArray lines) = 0;
virtual void setRho(float rho) = 0;
virtual float getRho() const = 0;
virtual void setTheta(float theta) = 0;
virtual float getTheta() const = 0;
virtual void setMinLineLength(int minLineLength) = 0;
virtual int getMinLineLength() const = 0;
virtual void setMaxLineGap(int maxLineGap) = 0;
virtual int getMaxLineGap() const = 0;
virtual void setMaxLines(int maxLines) = 0;
virtual int getMaxLines() const = 0;
};
CV_EXPORTS Ptr<HoughSegmentDetector> createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096);
// obsolete
__OPENCV_GPUIMGPROC_DEPR_BEFORE__ void HoughLinesP(InputArray src, OutputArray lines,
float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096) __OPENCV_GPUIMGPROC_DEPR_AFTER__;
inline void HoughLinesP(InputArray src, OutputArray lines, float rho, float theta, int minLineLength, int maxLineGap, int maxLines)
{
gpu::createHoughSegmentDetector(rho, theta, minLineLength, maxLineGap, maxLines)->detect(src, lines);
}
//////////////////////////////////////
// HoughCircles
struct HoughCirclesBuf
{
......@@ -245,6 +309,9 @@ CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, int method, flo
CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
CV_EXPORTS void HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circles);
//////////////////////////////////////
// GeneralizedHough
//! finds arbitrary template in the grayscale image using Generalized Hough Transform
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
......
......@@ -103,9 +103,10 @@ PERF_TEST_P(Sz, HoughLines,
{
const cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_lines;
cv::gpu::HoughLinesBuf d_buf;
TEST_CYCLE() cv::gpu::HoughLines(d_src, d_lines, d_buf, rho, theta, threshold);
cv::Ptr<cv::gpu::HoughLinesDetector> hough = cv::gpu::createHoughLinesDetector(rho, theta, threshold);
TEST_CYCLE() hough->detect(d_src, d_lines);
cv::Mat gpu_lines(d_lines.row(0));
cv::Vec2f* begin = gpu_lines.ptr<cv::Vec2f>(0);
......@@ -151,9 +152,10 @@ PERF_TEST_P(Image, HoughLinesP,
{
const cv::gpu::GpuMat d_mask(mask);
cv::gpu::GpuMat d_lines;
cv::gpu::HoughLinesBuf d_buf;
TEST_CYCLE() cv::gpu::HoughLinesP(d_mask, d_lines, d_buf, rho, theta, minLineLenght, maxLineGap);
cv::Ptr<cv::gpu::HoughSegmentDetector> hough = cv::gpu::createHoughSegmentDetector(rho, theta, minLineLenght, maxLineGap);
TEST_CYCLE() hough->detect(d_mask, d_lines);
cv::Mat gpu_lines(d_lines);
cv::Vec4i* begin = gpu_lines.ptr<cv::Vec4i>();
......
This diff is collapsed.
......@@ -94,11 +94,13 @@ GPU_TEST_P(HoughLines, Accuracy)
cv::Mat src(size, CV_8UC1);
generateLines(src);
cv::Ptr<cv::gpu::HoughLinesDetector> hough = cv::gpu::createHoughLinesDetector(rho, theta, threshold);
cv::gpu::GpuMat d_lines;
cv::gpu::HoughLines(loadMat(src, useRoi), d_lines, rho, theta, threshold);
hough->detect(loadMat(src, useRoi), d_lines);
std::vector<cv::Vec2f> lines;
cv::gpu::HoughLinesDownload(d_lines, lines);
hough->downloadResults(d_lines, lines);
cv::Mat dst(size, CV_8UC1);
drawLines(dst, lines);
......
......@@ -41,7 +41,7 @@ int main(int argc, const char* argv[])
{
const int64 start = getTickCount();
HoughLinesP(mask, lines_cpu, 1, CV_PI / 180, 50, 60, 5);
cv::HoughLinesP(mask, lines_cpu, 1, CV_PI / 180, 50, 60, 5);
const double timeSec = (getTickCount() - start) / getTickFrequency();
cout << "CPU Time : " << timeSec * 1000 << " ms" << endl;
......@@ -56,11 +56,12 @@ int main(int argc, const char* argv[])
GpuMat d_src(mask);
GpuMat d_lines;
HoughLinesBuf d_buf;
{
const int64 start = getTickCount();
gpu::HoughLinesP(d_src, d_lines, d_buf, 1.0f, (float) (CV_PI / 180.0f), 50, 5);
Ptr<gpu::HoughSegmentDetector> hough = gpu::createHoughSegmentDetector(1.0f, (float) (CV_PI / 180.0f), 50, 5);
hough->detect(d_src, d_lines);
const double timeSec = (getTickCount() - start) / getTickFrequency();
cout << "GPU Time : " << timeSec * 1000 << " ms" << endl;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment