Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
1445a29e
Commit
1445a29e
authored
Sep 20, 2013
by
Alexander Smorkalov
Committed by
OpenCV Buildbot
Sep 20, 2013
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #1469 from lluisgomez:scene_text_detection_erGrouping
parents
0ecd7913
2837bfd9
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
84 additions
and
76 deletions
+84
-76
erfilter.hpp
modules/objdetect/include/opencv2/objdetect/erfilter.hpp
+23
-0
erfilter.cpp
modules/objdetect/src/erfilter.cpp
+0
-0
erfilter.cpp
samples/cpp/erfilter.cpp
+61
-76
No files found.
modules/objdetect/include/opencv2/objdetect/erfilter.hpp
View file @
1445a29e
...
...
@@ -236,5 +236,28 @@ enum { ERFILTER_NM_RGBLGrad = 0,
*/
CV_EXPORTS
void
computeNMChannels
(
InputArray
_src
,
OutputArrayOfArrays
_channels
,
int
_mode
=
ERFILTER_NM_RGBLGrad
);
/*!
Find groups of Extremal Regions that are organized as text blocks. This function implements
the grouping algorithm described in:
Gomez L. and Karatzas D.: Multi-script Text Extraction from Natural Scenes, ICDAR 2013.
Notice that this implementation constrains the results to horizontally-aligned text and
latin script (since ERFilter classifiers are trained only for latin script detection).
The algorithm combines two different clustering techniques in a single parameter-free procedure
to detect groups of regions organized as text. The maximally meaningful groups are fist detected
in several feature spaces, where each feature space is a combination of proximity information
(x,y coordinates) and a similarity measure (intensity, color, size, gradient magnitude, etc.),
thus providing a set of hypotheses of text groups. Evidence Accumulation framework is used to
combine all these hypotheses to get the final estimate. Each of the resulting groups are finally
heuristically validated in order to assest if they form a valid horizontally-aligned text block.
\param src Vector of sinle channel images CV_8UC1 from wich the regions were extracted.
\param regions Vector of ER's retreived from the ERFilter algorithm from each channel
\param groups The output of the algorithm are stored in this parameter as list of rectangles.
*/
CV_EXPORTS
void
erGrouping
(
InputArrayOfArrays
src
,
std
::
vector
<
std
::
vector
<
ERStat
>
>
&
regions
,
std
::
vector
<
Rect
>
&
groups
);
}
#endif // _OPENCV_ERFILTER_HPP_
modules/objdetect/src/erfilter.cpp
View file @
1445a29e
This diff is collapsed.
Click to expand it.
samples/cpp/erfilter.cpp
View file @
1445a29e
...
...
@@ -16,105 +16,90 @@
using
namespace
std
;
using
namespace
cv
;
void
er_draw
(
Mat
&
src
,
Mat
&
dst
,
ERStat
&
er
);
void
show_help_and_exit
(
const
char
*
cmd
);
void
groups_draw
(
Mat
&
src
,
vector
<
Rect
>
&
groups
);
void
er_draw
(
Mat
&
src
,
Mat
&
dst
,
ERStat
&
er
);
void
er_draw
(
Mat
&
src
,
Mat
&
dst
,
ERStat
&
er
)
int
main
(
int
argc
,
const
char
*
argv
[]
)
{
if
(
er
.
parent
!=
NULL
)
// deprecate the root region
{
int
newMaskVal
=
255
;
int
flags
=
4
+
(
newMaskVal
<<
8
)
+
FLOODFILL_FIXED_RANGE
+
FLOODFILL_MASK_ONLY
;
floodFill
(
src
,
dst
,
Point
(
er
.
pixel
%
src
.
cols
,
er
.
pixel
/
src
.
cols
),
Scalar
(
255
),
0
,
Scalar
(
er
.
level
),
Scalar
(
0
),
flags
);
}
if
(
argc
<
2
)
show_help_and_exit
(
argv
[
0
]);
}
int
main
(
int
argc
,
const
char
*
argv
[])
{
Mat
src
=
imread
(
argv
[
1
]);
// Extract channels to be processed individually
vector
<
Mat
>
channels
;
computeNMChannels
(
src
,
channels
);
vector
<
ERStat
>
regions
;
int
cn
=
(
int
)
channels
.
size
();
// Append negative channels to detect ER- (bright regions over dark background)
for
(
int
c
=
0
;
c
<
cn
-
1
;
c
++
)
channels
.
push_back
(
255
-
channels
[
c
]);
if
(
argc
<
2
)
{
cout
<<
"Demo program of the Extremal Region Filter algorithm described in "
<<
endl
;
cout
<<
"Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012"
<<
endl
<<
endl
;
cout
<<
" Usage: "
<<
argv
[
0
]
<<
" input_image <optional_groundtruth_image>"
<<
endl
;
cout
<<
" Default classifier files (trained_classifierNM*.xml) should be in ./"
<<
endl
;
return
-
1
;
}
// Create ERFilter objects with the 1st and 2nd stage default classifiers
Ptr
<
ERFilter
>
er_filter1
=
createERFilterNM1
(
loadClassifierNM1
(
"trained_classifierNM1.xml"
),
8
,
0.00025
,
0.13
,
0.4
,
true
,
0.1
);
Ptr
<
ERFilter
>
er_filter2
=
createERFilterNM2
(
loadClassifierNM2
(
"trained_classifierNM2.xml"
),
0.3
);
Mat
original
=
imread
(
argv
[
1
]
);
Mat
gt
;
if
(
argc
>
2
)
vector
<
vector
<
ERStat
>
>
regions
(
channels
.
size
()
);
// Apply the default cascade classifier to each independent channel (could be done in parallel)
for
(
int
c
=
0
;
c
<
(
int
)
channels
.
size
();
c
++
)
{
gt
=
imread
(
argv
[
2
]);
cvtColor
(
gt
,
gt
,
COLOR_RGB2GRAY
);
threshold
(
gt
,
gt
,
254
,
255
,
THRESH_BINARY
);
er_filter1
->
run
(
channels
[
c
],
regions
[
c
]);
er_filter2
->
run
(
channels
[
c
],
regions
[
c
]);
}
Mat
grey
(
original
.
size
(),
CV_8UC1
);
cvtColor
(
original
,
grey
,
COLOR_RGB2GRAY
);
double
t
=
(
double
)
getTickCount
();
// Build ER tree and filter with the 1st stage default classifier
Ptr
<
ERFilter
>
er_filter1
=
createERFilterNM1
(
loadClassifierNM1
(
"trained_classifierNM1.xml"
));
// Detect character groups
vector
<
Rect
>
groups
;
erGrouping
(
channels
,
regions
,
groups
);
er_filter1
->
run
(
grey
,
regions
);
t
=
(
double
)
getTickCount
()
-
t
;
cout
<<
" --------------------------------------------------------------------------------------------------"
<<
endl
;
cout
<<
"
\t
FIRST STAGE CLASSIFIER done in "
<<
t
*
1000.
/
getTickFrequency
()
<<
" ms."
<<
endl
;
cout
<<
" --------------------------------------------------------------------------------------------------"
<<
endl
;
cout
<<
setw
(
9
)
<<
regions
.
size
()
+
er_filter1
->
getNumRejected
()
<<
"
\t
Extremal Regions extracted "
<<
endl
;
cout
<<
setw
(
9
)
<<
regions
.
size
()
<<
"
\t
Extremal Regions selected by the first stage of the sequential classifier."
<<
endl
;
cout
<<
"
\t
\t
(saving into out_second_stage.jpg)"
<<
endl
;
cout
<<
" --------------------------------------------------------------------------------------------------"
<<
endl
;
// draw groups
groups_draw
(
src
,
groups
);
imshow
(
"grouping"
,
src
);
waitKey
(
-
1
);
// memory clean-up
er_filter1
.
release
();
// draw regions
Mat
mask
=
Mat
::
zeros
(
grey
.
rows
+
2
,
grey
.
cols
+
2
,
CV_8UC1
);
for
(
int
r
=
0
;
r
<
(
int
)
regions
.
size
();
r
++
)
er_draw
(
grey
,
mask
,
regions
.
at
(
r
));
mask
=
255
-
mask
;
imwrite
(
"out_first_stage.jpg"
,
mask
);
if
(
argc
>
2
)
er_filter2
.
release
();
regions
.
clear
();
if
(
!
groups
.
empty
())
{
Mat
tmp_mask
=
(
255
-
gt
)
&
(
255
-
mask
(
Rect
(
Point
(
1
,
1
),
Size
(
mask
.
cols
-
2
,
mask
.
rows
-
2
))));
cout
<<
"Recall for the 1st stage filter = "
<<
(
float
)
countNonZero
(
tmp_mask
)
/
countNonZero
(
255
-
gt
)
<<
endl
;
groups
.
clear
();
}
}
t
=
(
double
)
getTickCount
();
// Default second stage classifier
Ptr
<
ERFilter
>
er_filter2
=
createERFilterNM2
(
loadClassifierNM2
(
"trained_classifierNM2.xml"
));
er_filter2
->
run
(
grey
,
regions
);
t
=
(
double
)
getTickCount
()
-
t
;
cout
<<
" --------------------------------------------------------------------------------------------------"
<<
endl
;
cout
<<
"
\t
SECOND STAGE CLASSIFIER done in "
<<
t
*
1000.
/
getTickFrequency
()
<<
" ms."
<<
endl
;
cout
<<
" --------------------------------------------------------------------------------------------------"
<<
endl
;
cout
<<
setw
(
9
)
<<
regions
.
size
()
<<
"
\t
Extremal Regions selected by the second stage of the sequential classifier."
<<
endl
;
cout
<<
"
\t
\t
(saving into out_second_stage.jpg)"
<<
endl
;
cout
<<
" --------------------------------------------------------------------------------------------------"
<<
endl
;
// helper functions
er_filter2
.
release
();
// draw regions
mask
=
mask
*
0
;
for
(
int
r
=
0
;
r
<
(
int
)
regions
.
size
();
r
++
)
er_draw
(
grey
,
mask
,
regions
.
at
(
r
));
mask
=
255
-
mask
;
imwrite
(
"out_second_stage.jpg"
,
mask
);
void
show_help_and_exit
(
const
char
*
cmd
)
{
cout
<<
endl
<<
cmd
<<
endl
<<
endl
;
cout
<<
"Demo program of the Extremal Region Filter algorithm described in "
<<
endl
;
cout
<<
"Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012"
<<
endl
<<
endl
;
cout
<<
" Usage: "
<<
cmd
<<
" <input_image> "
<<
endl
;
cout
<<
" Default classifier files (trained_classifierNM*.xml) must be in current directory"
<<
endl
<<
endl
;
exit
(
-
1
);
}
if
(
argc
>
2
)
void
groups_draw
(
Mat
&
src
,
vector
<
Rect
>
&
groups
)
{
for
(
int
i
=
groups
.
size
()
-
1
;
i
>=
0
;
i
--
)
{
Mat
tmp_mask
=
(
255
-
gt
)
&
(
255
-
mask
(
Rect
(
Point
(
1
,
1
),
Size
(
mask
.
cols
-
2
,
mask
.
rows
-
2
))));
cout
<<
"Recall for the 2nd stage filter = "
<<
(
float
)
countNonZero
(
tmp_mask
)
/
countNonZero
(
255
-
gt
)
<<
endl
;
if
(
src
.
type
()
==
CV_8UC3
)
rectangle
(
src
,
groups
.
at
(
i
).
tl
(),
groups
.
at
(
i
).
br
(),
Scalar
(
0
,
255
,
255
),
3
,
8
);
else
rectangle
(
src
,
groups
.
at
(
i
).
tl
(),
groups
.
at
(
i
).
br
(),
Scalar
(
255
),
3
,
8
);
}
}
regions
.
clear
();
void
er_draw
(
Mat
&
src
,
Mat
&
dst
,
ERStat
&
er
)
{
if
(
er
.
parent
!=
NULL
)
// deprecate the root region
{
int
newMaskVal
=
255
;
int
flags
=
4
+
(
newMaskVal
<<
8
)
+
FLOODFILL_FIXED_RANGE
+
FLOODFILL_MASK_ONLY
;
floodFill
(
src
,
dst
,
Point
(
er
.
pixel
%
src
.
cols
,
er
.
pixel
/
src
.
cols
),
Scalar
(
255
),
0
,
Scalar
(
er
.
level
),
Scalar
(
0
),
flags
);
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment