Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
13b30d74
Commit
13b30d74
authored
Jun 27, 2012
by
Alexander Mordvintsev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
digits_adjust.py sample added
parent
d636e112
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
137 additions
and
0 deletions
+137
-0
digits_adjust.py
samples/python2/digits_adjust.py
+137
-0
No files found.
samples/python2/digits_adjust.py
0 → 100644
View file @
13b30d74
'''
Digit recognition adjustment.
Grid search is used to find the best parameters for SVN and KNearest classifiers.
SVM adjustment follows the guidelines given in
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
Threading or cloud computing (with http://www.picloud.com/)) may be used
to speedup the computation.
Usage:
digits_adjust.py [--model {svm|knearest}] [--cloud] [--env <PiCloud environment>]
--model {svm|knearest} - select the classifier (SVM is the default)
--cloud - use PiCloud computing platform (for SVM only)
--env - cloud environment name
'''
# TODO dataset preprocessing in cloud
# TODO cloud env setup tutorial
import
numpy
as
np
import
cv2
from
multiprocessing.pool
import
ThreadPool
from
digits
import
*
def
cross_validate
(
model_class
,
params
,
samples
,
labels
,
kfold
=
3
,
pool
=
None
):
n
=
len
(
samples
)
folds
=
np
.
array_split
(
np
.
arange
(
n
),
kfold
)
def
f
(
i
):
model
=
model_class
(
**
params
)
test_idx
=
folds
[
i
]
train_idx
=
list
(
folds
)
train_idx
.
pop
(
i
)
train_idx
=
np
.
hstack
(
train_idx
)
train_samples
,
train_labels
=
samples
[
train_idx
],
labels
[
train_idx
]
test_samples
,
test_labels
=
samples
[
test_idx
],
labels
[
test_idx
]
model
.
train
(
train_samples
,
train_labels
)
resp
=
model
.
predict
(
test_samples
)
score
=
(
resp
!=
test_labels
)
.
mean
()
print
"."
,
return
score
if
pool
is
None
:
scores
=
map
(
f
,
xrange
(
kfold
))
else
:
scores
=
pool
.
map
(
f
,
xrange
(
kfold
))
return
np
.
mean
(
scores
)
def
adjust_KNearest
(
samples
,
labels
):
print
'adjusting KNearest ...'
best_err
,
best_k
=
np
.
inf
,
-
1
for
k
in
xrange
(
1
,
9
):
err
=
cross_validate
(
KNearest
,
dict
(
k
=
k
),
samples
,
labels
)
if
err
<
best_err
:
best_err
,
best_k
=
err
,
k
print
'k =
%
d, error:
%.2
f
%%
'
%
(
k
,
err
*
100
)
best_params
=
dict
(
k
=
best_k
)
print
'best params:'
,
best_params
return
best_params
def
adjust_SVM
(
samples
,
labels
,
usecloud
=
False
,
cloud_env
=
''
):
Cs
=
np
.
logspace
(
0
,
5
,
10
,
base
=
2
)
gammas
=
np
.
logspace
(
-
7
,
-
2
,
10
,
base
=
2
)
scores
=
np
.
zeros
((
len
(
Cs
),
len
(
gammas
)))
scores
[:]
=
np
.
nan
if
usecloud
:
try
:
import
cloud
except
ImportError
:
print
'cloud module is not installed'
usecloud
=
False
if
usecloud
:
print
'uploading dataset to cloud...'
np
.
savez
(
'train.npz'
,
samples
=
samples
,
labels
=
labels
)
cloud
.
files
.
put
(
'train.npz'
)
print
'adjusting SVM (may take a long time) ...'
def
f
(
job
):
i
,
j
=
job
params
=
dict
(
C
=
Cs
[
i
],
gamma
=
gammas
[
j
])
score
=
cross_validate
(
SVM
,
params
,
samples
,
labels
)
return
i
,
j
,
score
def
fcloud
(
job
):
i
,
j
=
job
cloud
.
files
.
get
(
'train.npz'
)
npz
=
np
.
load
(
'train.npz'
)
params
=
dict
(
C
=
Cs
[
i
],
gamma
=
gammas
[
j
])
score
=
cross_validate
(
SVM
,
params
,
npz
[
'samples'
],
npz
[
'labels'
])
return
i
,
j
,
score
if
usecloud
:
jids
=
cloud
.
map
(
fcloud
,
np
.
ndindex
(
*
scores
.
shape
),
_env
=
cloud_env
,
_profile
=
True
)
ires
=
cloud
.
iresult
(
jids
)
else
:
pool
=
ThreadPool
(
processes
=
cv2
.
getNumberOfCPUs
())
ires
=
pool
.
imap_unordered
(
f
,
np
.
ndindex
(
*
scores
.
shape
))
for
count
,
(
i
,
j
,
score
)
in
enumerate
(
ires
):
scores
[
i
,
j
]
=
score
print
'
%
d /
%
d (best error:
%.2
f
%%
, last:
%.2
f
%%
)'
%
(
count
+
1
,
scores
.
size
,
np
.
nanmin
(
scores
)
*
100
,
score
*
100
)
print
scores
i
,
j
=
np
.
unravel_index
(
scores
.
argmin
(),
scores
.
shape
)
best_params
=
dict
(
C
=
Cs
[
i
],
gamma
=
gammas
[
j
])
print
'best params:'
,
best_params
print
'best error:
%.2
f
%%
'
%
(
scores
.
min
()
*
100
)
return
best_params
if
__name__
==
'__main__'
:
import
getopt
import
sys
print
__doc__
args
,
_
=
getopt
.
getopt
(
sys
.
argv
[
1
:],
''
,
[
'model='
,
'cloud'
,
'env='
])
args
=
dict
(
args
)
args
.
setdefault
(
'--model'
,
'svm'
)
args
.
setdefault
(
'--env'
,
''
)
if
args
[
'--model'
]
not
in
[
'svm'
,
'knearest'
]:
print
'unknown model "
%
s"'
%
args
[
'--model'
]
sys
.
exit
(
1
)
digits
,
labels
=
load_digits
(
'digits.png'
)
shuffle
=
np
.
random
.
permutation
(
len
(
digits
))
digits
,
labels
=
digits
[
shuffle
],
labels
[
shuffle
]
digits2
=
map
(
deskew
,
digits
)
samples
=
np
.
float32
(
digits2
)
.
reshape
(
-
1
,
SZ
*
SZ
)
/
255.0
t
=
clock
()
if
args
[
'--model'
]
==
'knearest'
:
adjust_KNearest
(
samples
,
labels
)
else
:
adjust_SVM
(
samples
,
labels
,
usecloud
=
'--cloud'
in
args
,
cloud_env
=
args
[
'--env'
])
print
'work time:
%
f s'
%
(
clock
()
-
t
)
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment