Commit 10b60f8d authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

continuing refactoring ml samples; added "max vote" response to ANN_MLP.…

continuing refactoring ml samples; added "max vote" response to ANN_MLP. Probably, should make it in less hacky way
parent 223cdcd0
......@@ -228,9 +228,8 @@ public:
int n = inputs.rows, dn0 = n;
CV_Assert( (type == CV_32F || type == CV_64F) && inputs.cols == layer_sizes[0] );
_outputs.create(n, layer_sizes[l_count-1], type);
Mat outputs = _outputs.getMat();
int noutputs = layer_sizes[l_count-1];
Mat outputs;
int min_buf_sz = 2*max_lsize;
int buf_sz = n*min_buf_sz;
......@@ -242,9 +241,20 @@ public:
buf_sz = dn0*min_buf_sz;
}
cv::AutoBuffer<double> _buf(buf_sz);
cv::AutoBuffer<double> _buf(buf_sz+noutputs);
double* buf = _buf;
if( !_outputs.needed() )
{
CV_Assert( n == 1 );
outputs = Mat(n, noutputs, type, buf + buf_sz);
}
else
{
_outputs.create(n, noutputs, type);
outputs = _outputs.getMat();
}
int dn = 0;
for( int i = 0; i < n; i += dn )
{
......@@ -273,6 +283,13 @@ public:
scale_output( layer_in, layer_out );
}
if( n == 1 )
{
int maxIdx[] = {0, 0};
minMaxIdx(outputs, 0, 0, 0, maxIdx);
return maxIdx[0] + maxIdx[1];
}
return 0.f;
}
......
#include "opencv2/core/core_c.h"
#include "opencv2/core/core.hpp"
#include "opencv2/ml/ml.hpp"
#include <cstdio>
#include <vector>
/*
#include <iostream>
*/
using namespace std;
using namespace cv;
using namespace cv::ml;
static void help()
{
......@@ -33,142 +35,101 @@ static void help()
}
// This function reads data and responses from the file <filename>
static int
read_num_class_data( const char* filename, int var_count,
CvMat** data, CvMat** responses )
static bool
read_num_class_data( const string& filename, int var_count,
Mat* _data, Mat* _responses )
{
const int M = 1024;
FILE* f = fopen( filename, "rt" );
CvMemStorage* storage;
CvSeq* seq;
char buf[M+2];
float* el_ptr;
CvSeqReader reader;
int i, j;
if( !f )
return 0;
Mat el_ptr(1, var_count, CV_32F);
int i;
vector<int> responses;
el_ptr = new float[var_count+1];
storage = cvCreateMemStorage();
seq = cvCreateSeq( 0, sizeof(*seq), (var_count+1)*sizeof(float), storage );
_data->release();
_responses->release();
FILE* f = fopen( filename.c_str(), "rt" );
if( !f )
{
cout << "Could not read the database " << filename << endl;
return false;
}
for(;;)
{
char* ptr;
if( !fgets( buf, M, f ) || !strchr( buf, ',' ) )
break;
el_ptr[0] = buf[0];
responses.push_back((int)buf[0]);
ptr = buf+2;
for( i = 1; i <= var_count; i++ )
for( i = 0; i < var_count; i++ )
{
int n = 0;
sscanf( ptr, "%f%n", el_ptr + i, &n );
sscanf( ptr, "%f%n", &el_ptr.at<float>(i), &n );
ptr += n + 1;
}
if( i <= var_count )
if( i < var_count )
break;
cvSeqPush( seq, el_ptr );
_data->push_back(el_ptr);
}
fclose(f);
Mat(responses).copyTo(*_responses);
*data = cvCreateMat( seq->total, var_count, CV_32F );
*responses = cvCreateMat( seq->total, 1, CV_32F );
cvStartReadSeq( seq, &reader );
for( i = 0; i < seq->total; i++ )
{
const float* sdata = (float*)reader.ptr + 1;
float* ddata = data[0]->data.fl + var_count*i;
float* dr = responses[0]->data.fl + i;
for( j = 0; j < var_count; j++ )
ddata[j] = sdata[j];
*dr = sdata[-1];
CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
}
cout << "The database " << filename << " is loaded.\n";
cvReleaseMemStorage( &storage );
delete[] el_ptr;
return 1;
return true;
}
static
int build_rtrees_classifier( char* data_filename,
char* filename_to_save, char* filename_to_load )
template<typename T>
static Ptr<T> load_classifier(const string& filename_to_load)
{
CvMat* data = 0;
CvMat* responses = 0;
CvMat* var_type = 0;
CvMat* sample_idx = 0;
int ok = read_num_class_data( data_filename, 16, &data, &responses );
int nsamples_all = 0, ntrain_samples = 0;
int i = 0;
double train_hr = 0, test_hr = 0;
CvRTrees forest;
CvMat* var_importance = 0;
if( !ok )
{
printf( "Could not read the database %s\n", data_filename );
return -1;
}
printf( "The database %s is loaded.\n", data_filename );
nsamples_all = data->rows;
ntrain_samples = (int)(nsamples_all*0.8);
// Create or load Random Trees classifier
if( filename_to_load )
{
// load classifier from the specified file
forest.load( filename_to_load );
ntrain_samples = 0;
if( forest.get_tree_count() == 0 )
{
printf( "Could not read the classifier %s\n", filename_to_load );
return -1;
}
printf( "The classifier %s is loaded.\n", filename_to_load );
}
Ptr<T> model = StatModel::load<T>( filename_to_load );
if( model.empty() )
cout << "Could not read the classifier " << filename_to_load << endl;
else
{
// create classifier by using <data> and <responses>
printf( "Training the classifier ...\n");
cout << "The classifier " << filename_to_load << " is loaded.\n";
// 1. create type mask
var_type = cvCreateMat( data->cols + 1, 1, CV_8U );
cvSet( var_type, cvScalarAll(CV_VAR_ORDERED) );
cvSetReal1D( var_type, data->cols, CV_VAR_CATEGORICAL );
return model;
}
// 2. create sample_idx
sample_idx = cvCreateMat( 1, nsamples_all, CV_8UC1 );
{
CvMat mat;
cvGetCols( sample_idx, &mat, 0, ntrain_samples );
cvSet( &mat, cvRealScalar(1) );
static Ptr<TrainData>
prepare_train_data(const Mat& data, const Mat& responses, int ntrain_samples)
{
Mat sample_idx = Mat::zeros( 1, data.rows, CV_8U );
Mat train_samples = sample_idx.colRange(0, ntrain_samples);
train_samples.setTo(Scalar::all(1));
cvGetCols( sample_idx, &mat, ntrain_samples, nsamples_all );
cvSetZero( &mat );
}
int nvars = data.cols;
Mat var_type( nvars + 1, 1, CV_8U );
var_type.setTo(Scalar::all(VAR_ORDERED));
var_type.at<uchar>(nvars) = VAR_CATEGORICAL;
// 3. train classifier
forest.train( data, CV_ROW_SAMPLE, responses, 0, sample_idx, var_type, 0,
CvRTParams(10,10,0,false,15,0,true,4,100,0.01f,CV_TERMCRIT_ITER));
printf( "\n");
}
return TrainData::create(data, ROW_SAMPLE, responses,
noArray(), sample_idx, noArray(), var_type);
}
inline TermCriteria TC(int iters, double eps)
{
return TermCriteria(TermCriteria::MAX_ITER + (eps > 0 ? TermCriteria::EPS : 0), iters, eps);
}
static void test_and_save_classifier(const Ptr<StatModel>& model,
const Mat& data, const Mat& responses,
int ntrain_samples, int rdelta,
const string& filename_to_save)
{
int i, nsamples_all = data.rows;
double train_hr = 0, test_hr = 0;
// compute prediction error on train and test data
for( i = 0; i < nsamples_all; i++ )
{
double r;
CvMat sample;
cvGetRow( data, &sample, i );
Mat sample = data.row(i);
r = forest.predict( &sample );
r = fabs((double)r - responses->data.fl[i]) <= FLT_EPSILON ? 1 : 0;
float r = model->predict( sample );
r = std::abs(r + rdelta - responses.at<int>(i)) <= FLT_EPSILON ? 1 : 0;
if( i < ntrain_samples )
train_hr += r;
......@@ -176,93 +137,101 @@ int build_rtrees_classifier( char* data_filename,
test_hr += r;
}
test_hr /= (double)(nsamples_all-ntrain_samples);
train_hr /= (double)ntrain_samples;
test_hr /= nsamples_all - ntrain_samples;
train_hr = ntrain_samples > 0 ? train_hr/ntrain_samples : 1.;
printf( "Recognition rate: train = %.1f%%, test = %.1f%%\n",
train_hr*100., test_hr*100. );
printf( "Number of trees: %d\n", forest.get_tree_count() );
// Print variable importance
var_importance = (CvMat*)forest.get_var_importance();
if( var_importance )
if( !filename_to_save.empty() )
{
double rt_imp_sum = cvSum( var_importance ).val[0];
printf("var#\timportance (in %%):\n");
for( i = 0; i < var_importance->cols; i++ )
printf( "%-2d\t%-4.1f\n", i,
100.f*var_importance->data.fl[i]/rt_imp_sum);
model->save( filename_to_save );
}
}
//Print some proximitites
printf( "Proximities between some samples corresponding to the letter 'T':\n" );
{
CvMat sample1, sample2;
const int pairs[][2] = {{0,103}, {0,106}, {106,103}, {-1,-1}};
for( i = 0; pairs[i][0] >= 0; i++ )
static bool
build_rtrees_classifier( const string& data_filename,
const string& filename_to_save,
const string& filename_to_load )
{
Mat data;
Mat responses;
bool ok = read_num_class_data( data_filename, 16, &data, &responses );
if( !ok )
return ok;
Ptr<RTrees> model;
int nsamples_all = data.rows;
int ntrain_samples = (int)(nsamples_all*0.8);
// Create or load Random Trees classifier
if( !filename_to_load.empty() )
{
cvGetRow( data, &sample1, pairs[i][0] );
cvGetRow( data, &sample2, pairs[i][1] );
printf( "proximity(%d,%d) = %.1f%%\n", pairs[i][0], pairs[i][1],
forest.get_proximity( &sample1, &sample2 )*100. );
model = load_classifier<RTrees>(filename_to_load);
if( model.empty() )
return false;
ntrain_samples = 0;
}
else
{
// create classifier by using <data> and <responses>
cout << "Training the classifier ...\n";
Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
// 3. train classifier
model = RTrees::create(RTrees::Params(10,10,0,false,15,Mat(),true,4,TC(100,0.01f)));
model->train( tdata );
cout << endl;
}
// Save Random Trees classifier to file if needed
if( filename_to_save )
forest.save( filename_to_save );
test_and_save_classifier(model, data, responses, ntrain_samples, 0, filename_to_save);
cout << "Number of trees: " << model->getRoots().size() << endl;
cvReleaseMat( &sample_idx );
cvReleaseMat( &var_type );
cvReleaseMat( &data );
cvReleaseMat( &responses );
// Print variable importance
Mat var_importance = model->getVarImportance();
if( !var_importance.empty() )
{
double rt_imp_sum = sum( var_importance )[0];
printf("var#\timportance (in %%):\n");
int i, n = (int)var_importance.total();
for( i = 0; i < n; i++ )
printf( "%-2d\t%-4.1f\n", i, 100.f*var_importance.at<float>(i)/rt_imp_sum);
}
return 0;
return true;
}
static
int build_boost_classifier( char* data_filename,
char* filename_to_save, char* filename_to_load )
static bool
build_boost_classifier( const string& data_filename,
const string& filename_to_save,
const string& filename_to_load )
{
const int class_count = 26;
CvMat* data = 0;
CvMat* responses = 0;
CvMat* var_type = 0;
CvMat* temp_sample = 0;
CvMat* weak_responses = 0;
int ok = read_num_class_data( data_filename, 16, &data, &responses );
int nsamples_all = 0, ntrain_samples = 0;
int var_count;
int i, j, k;
double train_hr = 0, test_hr = 0;
CvBoost boost;
Mat data;
Mat responses;
Mat weak_responses;
bool ok = read_num_class_data( data_filename, 16, &data, &responses );
if( !ok )
{
printf( "Could not read the database %s\n", data_filename );
return -1;
}
return ok;
printf( "The database %s is loaded.\n", data_filename );
nsamples_all = data->rows;
ntrain_samples = (int)(nsamples_all*0.5);
var_count = data->cols;
int i, j, k;
Ptr<Boost> model;
int nsamples_all = data.rows;
int ntrain_samples = (int)(nsamples_all*0.5);
int var_count = data.cols;
// Create or load Boosted Tree classifier
if( filename_to_load )
if( !filename_to_load.empty() )
{
// load classifier from the specified file
boost.load( filename_to_load );
model = load_classifier<Boost>(filename_to_load);
if( model.empty() )
return false;
ntrain_samples = 0;
if( !boost.get_weak_predictors() )
{
printf( "Could not read the classifier %s\n", filename_to_load );
return -1;
}
printf( "The classifier %s is loaded.\n", filename_to_load );
}
else
{
......@@ -275,135 +244,108 @@ int build_boost_classifier( char* data_filename,
//
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
CvMat* new_data = cvCreateMat( ntrain_samples*class_count, var_count + 1, CV_32F );
CvMat* new_responses = cvCreateMat( ntrain_samples*class_count, 1, CV_32S );
Mat new_data( ntrain_samples*class_count, var_count + 1, CV_32F );
Mat new_responses( ntrain_samples*class_count, 1, CV_32S );
// 1. unroll the database type mask
printf( "Unrolling the database...\n");
for( i = 0; i < ntrain_samples; i++ )
{
float* data_row = (float*)(data->data.ptr + data->step*i);
const float* data_row = data.ptr<float>(i);
for( j = 0; j < class_count; j++ )
{
float* new_data_row = (float*)(new_data->data.ptr +
new_data->step*(i*class_count+j));
for( k = 0; k < var_count; k++ )
new_data_row[k] = data_row[k];
float* new_data_row = (float*)new_data.ptr<float>(i*class_count+j);
memcpy(new_data_row, data_row, var_count*sizeof(data_row[0]));
new_data_row[var_count] = (float)j;
new_responses->data.i[i*class_count + j] = responses->data.fl[i] == j+'A';
new_responses.at<int>(i*class_count + j) = responses.at<int>(i) == j+'A';
}
}
// 2. create type mask
var_type = cvCreateMat( var_count + 2, 1, CV_8U );
cvSet( var_type, cvScalarAll(CV_VAR_ORDERED) );
// the last indicator variable, as well
// as the new (binary) response are categorical
cvSetReal1D( var_type, var_count, CV_VAR_CATEGORICAL );
cvSetReal1D( var_type, var_count+1, CV_VAR_CATEGORICAL );
Mat var_type( 1, var_count + 2, CV_8U );
var_type.setTo(Scalar::all(VAR_ORDERED));
var_type.at<uchar>(var_count) = var_type.at<uchar>(var_count+1) = VAR_CATEGORICAL;
// 3. train classifier
printf( "Training the classifier (may take a few minutes)...\n");
boost.train( new_data, CV_ROW_SAMPLE, new_responses, 0, 0, var_type, 0,
CvBoostParams(CvBoost::REAL, 100, 0.95, 5, false, 0 ));
cvReleaseMat( &new_data );
cvReleaseMat( &new_responses );
printf("\n");
Ptr<TrainData> tdata = TrainData::create(new_data, ROW_SAMPLE, new_responses,
noArray(), noArray(), noArray(), var_type);
model = Boost::create(Boost::Params(Boost::REAL, 100, 0.95, 5, false, Mat() ));
cout << "Training the classifier (may take a few minutes)...\n";
model->train(tdata);
cout << endl;
}
temp_sample = cvCreateMat( 1, var_count + 1, CV_32F );
weak_responses = cvCreateMat( 1, boost.get_weak_predictors()->total, CV_32F );
Mat temp_sample( 1, var_count + 1, CV_32F );
float* tptr = temp_sample.ptr<float>();
// compute prediction error on train and test data
double train_hr = 0, test_hr = 0;
for( i = 0; i < nsamples_all; i++ )
{
int best_class = 0;
double max_sum = -DBL_MAX;
double r;
CvMat sample;
cvGetRow( data, &sample, i );
const float* ptr = data.ptr<float>(i);
for( k = 0; k < var_count; k++ )
temp_sample->data.fl[k] = sample.data.fl[k];
tptr[k] = ptr[k];
for( j = 0; j < class_count; j++ )
{
temp_sample->data.fl[var_count] = (float)j;
boost.predict( temp_sample, 0, weak_responses );
double sum = cvSum( weak_responses ).val[0];
if( max_sum < sum )
tptr[var_count] = (float)j;
float s = model->predict( temp_sample, noArray(), StatModel::RAW_OUTPUT );
if( max_sum < s )
{
max_sum = sum;
max_sum = s;
best_class = j + 'A';
}
}
r = fabs(best_class - responses->data.fl[i]) < FLT_EPSILON ? 1 : 0;
double r = std::abs(best_class - responses.at<int>(i)) < FLT_EPSILON ? 1 : 0;
if( i < ntrain_samples )
train_hr += r;
else
test_hr += r;
}
test_hr /= (double)(nsamples_all-ntrain_samples);
train_hr /= (double)ntrain_samples;
test_hr /= nsamples_all-ntrain_samples;
train_hr = ntrain_samples > 0 ? train_hr/ntrain_samples : 1.;
printf( "Recognition rate: train = %.1f%%, test = %.1f%%\n",
train_hr*100., test_hr*100. );
printf( "Number of trees: %d\n", boost.get_weak_predictors()->total );
cout << "Number of trees: " << model->getRoots().size() << endl;
// Save classifier to file if needed
if( filename_to_save )
boost.save( filename_to_save );
cvReleaseMat( &temp_sample );
cvReleaseMat( &weak_responses );
cvReleaseMat( &var_type );
cvReleaseMat( &data );
cvReleaseMat( &responses );
if( !filename_to_save.empty() )
model->save( filename_to_save );
return 0;
return true;
}
static
int build_mlp_classifier( char* data_filename,
char* filename_to_save, char* filename_to_load )
static bool
build_mlp_classifier( const string& data_filename,
const string& filename_to_save,
const string& filename_to_load )
{
const int class_count = 26;
CvMat* data = 0;
CvMat train_data;
CvMat* responses = 0;
CvMat* mlp_response = 0;
int ok = read_num_class_data( data_filename, 16, &data, &responses );
int nsamples_all = 0, ntrain_samples = 0;
int i, j;
double train_hr = 0, test_hr = 0;
CvANN_MLP mlp;
Mat data;
Mat responses;
bool ok = read_num_class_data( data_filename, 16, &data, &responses );
if( !ok )
{
printf( "Could not read the database %s\n", data_filename );
return -1;
}
return ok;
printf( "The database %s is loaded.\n", data_filename );
nsamples_all = data->rows;
ntrain_samples = (int)(nsamples_all*0.8);
int i, j;
Ptr<ANN_MLP> model;
int nsamples_all = data.rows;
int ntrain_samples = (int)(nsamples_all*0.8);
// Create or load MLP classifier
if( filename_to_load )
if( !filename_to_load.empty() )
{
// load classifier from the specified file
mlp.load( filename_to_load );
model = load_classifier<ANN_MLP>(filename_to_load);
if( model.empty() )
return false;
ntrain_samples = 0;
if( !mlp.get_layer_count() )
{
printf( "Could not read the classifier %s\n", filename_to_load );
return -1;
}
printf( "The classifier %s is loaded.\n", filename_to_load );
}
else
{
......@@ -417,45 +359,44 @@ int build_mlp_classifier( char* data_filename,
//
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
CvMat* new_responses = cvCreateMat( ntrain_samples, class_count, CV_32F );
Mat train_data = data.rowRange(0, ntrain_samples);
Mat new_responses = Mat::zeros( ntrain_samples, class_count, CV_32F );
// 1. unroll the responses
printf( "Unrolling the responses...\n");
cout << "Unrolling the responses...\n";
for( i = 0; i < ntrain_samples; i++ )
{
int cls_label = cvRound(responses->data.fl[i]) - 'A';
float* bit_vec = (float*)(new_responses->data.ptr + i*new_responses->step);
for( j = 0; j < class_count; j++ )
bit_vec[j] = 0.f;
bit_vec[cls_label] = 1.f;
int cls_label = responses.at<int>(i) - 'A'
new_responses.at<float>(i, cls_label) = 1.f;
}
cvGetRows( data, &train_data, 0, ntrain_samples );
// 2. train classifier
int layer_sz[] = { data->cols, 100, 100, class_count };
CvMat layer_sizes =
cvMat( 1, (int)(sizeof(layer_sz)/sizeof(layer_sz[0])), CV_32S, layer_sz );
mlp.create( &layer_sizes );
printf( "Training the classifier (may take a few minutes)...\n");
int layer_sz[] = { data.cols, 100, 100, class_count };
int nlayers = (int)(sizeof(layer_sz)/sizeof(layer_sz[0]));
Mat layer_sizes( 1, nlayers, CV_32S, layer_sz );
#if 1
int method = CvANN_MLP_TrainParams::BACKPROP;
int method = ANN_MLP::Params::BACKPROP;
double method_param = 0.001;
int max_iter = 300;
#else
int method = CvANN_MLP_TrainParams::RPROP;
int method = ANN_MLP::Params::RPROP;
double method_param = 0.1;
int max_iter = 1000;
#endif
mlp.train( &train_data, new_responses, 0, 0,
CvANN_MLP_TrainParams(cvTermCriteria(CV_TERMCRIT_ITER,max_iter,0.01),
method, method_param));
ANN_MLP::Params(TC(max_iter,0), method, method_param));
model = ANN_MLP::create() mlp.create( &layer_sizes );
printf( "Training the classifier (may take a few minutes)...\n");
cvReleaseMat( &new_responses );
printf("\n");
}
mlp_response = cvCreateMat( 1, class_count, CV_32F );
Mat mlp_response;
// compute prediction error on train and test data
for( i = 0; i < nsamples_all; i++ )
......@@ -481,38 +422,26 @@ int build_mlp_classifier( char* data_filename,
printf( "Recognition rate: train = %.1f%%, test = %.1f%%\n",
train_hr*100., test_hr*100. );
// Save classifier to file if needed
if( filename_to_save )
mlp.save( filename_to_save );
cvReleaseMat( &mlp_response );
cvReleaseMat( &data );
cvReleaseMat( &responses );
if( !filename_to_save.empty() )
model->save( filename_to_save );
return 0;
return true;
}
static
int build_knearest_classifier( char* data_filename, int K )
static bool
build_knearest_classifier( const string& data_filename, int K )
{
const int var_count = 16;
CvMat* data = 0;
Mat data;
CvMat train_data;
CvMat* responses;
int ok = read_num_class_data( data_filename, 16, &data, &responses );
int nsamples_all = 0, ntrain_samples = 0;
//int i, j;
//double /*train_hr = 0,*/ test_hr = 0;
CvANN_MLP mlp;
Mat responses;
bool ok = read_num_class_data( data_filename, 16, &data, &responses );
if( !ok )
{
printf( "Could not read the database %s\n", data_filename );
return -1;
}
return ok;
int nsamples_all = 0, ntrain_samples = 0;
printf( "The database %s is loaded.\n", data_filename );
nsamples_all = data->rows;
ntrain_samples = (int)(nsamples_all*0.8);
......@@ -521,12 +450,13 @@ int build_knearest_classifier( char* data_filename, int K )
cvGetRows( data, &train_data, 0, ntrain_samples );
// 2. train classifier
CvMat* train_resp = cvCreateMat( ntrain_samples, 1, CV_32FC1);
Mat train_resp = cvCreateMat( ntrain_samples, 1, CV_32FC1);
for (int i = 0; i < ntrain_samples; i++)
train_resp->data.fl[i] = responses->data.fl[i];
CvKNearest knearest(&train_data, train_resp);
Ptr<KNearest> model = KNearest::create(true);
model->train(train_data, train_resp);
CvMat* nearests = cvCreateMat( (nsamples_all - ntrain_samples), K, CV_32FC1);
Mat nearests = cvCreateMat( (nsamples_all - ntrain_samples), K, CV_32FC1);
float* _sample = new float[var_count * (nsamples_all - ntrain_samples)];
CvMat sample = cvMat( nsamples_all - ntrain_samples, 16, CV_32FC1, _sample );
float* true_results = new float[nsamples_all - ntrain_samples];
......@@ -569,27 +499,20 @@ int build_knearest_classifier( char* data_filename, int K )
return 0;
}
static
int build_nbayes_classifier( char* data_filename )
static bool
build_nbayes_classifier( const string& data_filename )
{
const int var_count = 16;
CvMat* data = 0;
Mat data;
CvMat train_data;
CvMat* responses;
int ok = read_num_class_data( data_filename, 16, &data, &responses );
int nsamples_all = 0, ntrain_samples = 0;
//int i, j;
//double /*train_hr = 0, */test_hr = 0;
CvANN_MLP mlp;
Mat responses;
bool ok = read_num_class_data( data_filename, 16, &data, &responses );
if( !ok )
{
printf( "Could not read the database %s\n", data_filename );
return -1;
}
return ok;
int nsamples_all = 0, ntrain_samples = 0;
printf( "The database %s is loaded.\n", data_filename );
nsamples_all = data->rows;
ntrain_samples = (int)(nsamples_all*0.5);
......@@ -598,7 +521,7 @@ int build_nbayes_classifier( char* data_filename )
cvGetRows( data, &train_data, 0, ntrain_samples );
// 2. train classifier
CvMat* train_resp = cvCreateMat( ntrain_samples, 1, CV_32FC1);
Mat train_resp = cvCreateMat( ntrain_samples, 1, CV_32FC1);
for (int i = 0; i < ntrain_samples; i++)
train_resp->data.fl[i] = responses->data.fl[i];
CvNormalBayesClassifier nbayes(&train_data, train_resp);
......@@ -638,23 +561,23 @@ int build_nbayes_classifier( char* data_filename )
return 0;
}
static
int build_svm_classifier( char* data_filename, const char* filename_to_save, const char* filename_to_load )
static bool
build_svm_classifier( const string& data_filename,
const string& filename_to_save,
const string& filename_to_load )
{
CvMat* data = 0;
CvMat* responses = 0;
CvMat* train_resp = 0;
Mat data;
Mat responses;
Mat train_resp;
CvMat train_data;
int nsamples_all = 0, ntrain_samples = 0;
int var_count;
CvSVM svm;
Ptr<SVM> model;
int ok = read_num_class_data( data_filename, 16, &data, &responses );
bool ok = read_num_class_data( data_filename, 16, &data, &responses );
if( !ok )
{
printf( "Could not read the database %s\n", data_filename );
return -1;
}
return ok;
////////// SVM parameters ///////////////////////////////
CvSVMParams param;
param.kernel_type=CvSVM::LINEAR;
......@@ -722,15 +645,10 @@ int build_svm_classifier( char* data_filename, const char* filename_to_save, con
printf("true_resp = %f%%\n", (float)true_resp / (nsamples_all - ntrain_samples) * 100);
if( filename_to_save )
svm.save( filename_to_save );
if( !filename_to_save.empty() )
model->save( filename_to_save );
cvReleaseMat( &train_resp );
cvReleaseMat( &result );
cvReleaseMat( &data );
cvReleaseMat( &responses );
return 0;
return true;
}
int main( int argc, char *argv[] )
......
......@@ -229,22 +229,7 @@ static void find_decision_boundary_ANN( const Mat& layer_sizes )
Ptr<TrainData> tdata = TrainData::create(samples, ROW_SAMPLE, trainClasses);
ann->train(tdata);
Mat testSample( 1, 2, CV_32FC1 );
Mat outputs;
for( int y = 0; y < img.rows; y += testStep )
{
for( int x = 0; x < img.cols; x += testStep )
{
testSample.at<float>(0) = (float)x;
testSample.at<float>(1) = (float)y;
ann->predict( testSample, outputs );
Point maxLoc;
minMaxLoc( outputs, 0, 0, 0, &maxLoc );
imgDst.at<Vec3b>(y, x) = classColors[maxLoc.x];
}
}
predict_and_paint(ann, imgDst);
}
#endif
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment