Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
0f51155e
Commit
0f51155e
authored
May 28, 2017
by
berak
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
py_tutorials: add print() braces for python3
parent
17b89b2a
Hide whitespace changes
Inline
Side-by-side
Showing
18 changed files
with
41 additions
and
41 deletions
+41
-41
py_calibration.markdown
...torials/py_calib3d/py_calibration/py_calibration.markdown
+1
-1
py_basic_ops.markdown
doc/py_tutorials/py_core/py_basic_ops/py_basic_ops.markdown
+6
-6
py_image_arithmetics.markdown
...y_core/py_image_arithmetics/py_image_arithmetics.markdown
+2
-2
py_optimization.markdown
...utorials/py_core/py_optimization/py_optimization.markdown
+1
-1
py_brief.markdown
doc/py_tutorials/py_feature2d/py_brief/py_brief.markdown
+2
-2
py_fast.markdown
doc/py_tutorials/py_feature2d/py_fast/py_fast.markdown
+5
-5
py_feature_homography.markdown
...re2d/py_feature_homography/py_feature_homography.markdown
+1
-1
py_surf_intro.markdown
...torials/py_feature2d/py_surf_intro/py_surf_intro.markdown
+6
-6
py_mouse_handling.markdown
...rials/py_gui/py_mouse_handling/py_mouse_handling.markdown
+1
-1
py_colorspaces.markdown
...torials/py_imgproc/py_colorspaces/py_colorspaces.markdown
+2
-2
py_contour_features.markdown
...contours/py_contour_features/py_contour_features.markdown
+1
-1
py_contours_more_functions.markdown
...ntours_more_functions/py_contours_more_functions.markdown
+1
-1
py_thresholding.markdown
...rials/py_imgproc/py_thresholding/py_thresholding.markdown
+1
-1
py_fourier_transform.markdown
...sforms/py_fourier_transform/py_fourier_transform.markdown
+2
-2
py_knn_opencv.markdown
...torials/py_ml/py_knn/py_knn_opencv/py_knn_opencv.markdown
+3
-3
py_knn_understanding.markdown
...py_knn/py_knn_understanding/py_knn_understanding.markdown
+3
-3
py_setup_in_fedora.markdown
...s/py_setup/py_setup_in_fedora/py_setup_in_fedora.markdown
+2
-2
py_setup_in_windows.markdown
...py_setup/py_setup_in_windows/py_setup_in_windows.markdown
+1
-1
No files found.
doc/py_tutorials/py_calib3d/py_calibration/py_calibration.markdown
View file @
0f51155e
...
@@ -218,7 +218,7 @@ for i in xrange(len(objpoints)):
...
@@ -218,7 +218,7 @@ for i in xrange(len(objpoints)):
error = cv2.norm(imgpoints
[
i
]
, imgpoints2, cv2.NORM_L2)/len(imgpoints2)
error = cv2.norm(imgpoints
[
i
]
, imgpoints2, cv2.NORM_L2)/len(imgpoints2)
mean_error += error
mean_error += error
print
"total error: ", mean_error/len(objpoints
)
print
( "total error: {}".format(mean_error/len(objpoints))
)
@endcode
@endcode
Additional Resources
Additional Resources
--------------------
--------------------
...
...
doc/py_tutorials/py_core/py_basic_ops/py_basic_ops.markdown
View file @
0f51155e
...
@@ -30,18 +30,18 @@ You can access a pixel value by its row and column coordinates. For BGR image, i
...
@@ -30,18 +30,18 @@ You can access a pixel value by its row and column coordinates. For BGR image, i
of Blue, Green, Red values. For grayscale image, just corresponding intensity is returned.
of Blue, Green, Red values. For grayscale image, just corresponding intensity is returned.
@code{.py}
@code{.py}
>>> px = img[100,100]
>>> px = img[100,100]
>>> print
px
>>> print
( px )
[
157 166 200
]
[
157 166 200
]
# accessing only blue pixel
# accessing only blue pixel
>>> blue = img[100,100,0]
>>> blue = img[100,100,0]
>>> print
blue
>>> print
( blue )
157
157
@endcode
@endcode
You can modify the pixel values the same way.
You can modify the pixel values the same way.
@code{.py}
@code{.py}
>>> img[100,100] = [255,255,255]
>>> img[100,100] = [255,255,255]
>>> print
img[100,100]
>>> print
( img[100,100] )
[
255 255 255
]
[
255 255 255
]
@endcode
@endcode
...
@@ -76,7 +76,7 @@ etc.
...
@@ -76,7 +76,7 @@ etc.
Shape of image is accessed by img.shape. It returns a tuple of number of rows, columns and channels
Shape of image is accessed by img.shape. It returns a tuple of number of rows, columns and channels
(if image is color):
(if image is color):
@code{.py}
@code{.py}
>>> print
img.shape
>>> print
( img.shape )
(342, 548, 3)
(342, 548, 3)
@endcode
@endcode
...
@@ -85,12 +85,12 @@ good method to check if loaded image is grayscale or color image.
...
@@ -85,12 +85,12 @@ good method to check if loaded image is grayscale or color image.
Total number of pixels is accessed by
`img.size`
:
Total number of pixels is accessed by
`img.size`
:
@code{.py}
@code{.py}
>>> print
img.size
>>> print
( img.size )
562248
562248
@endcode
@endcode
Image datatype is obtained by
\`
img.dtype
\`
:
Image datatype is obtained by
\`
img.dtype
\`
:
@code{.py}
@code{.py}
>>> print
img.dtype
>>> print
( img.dtype )
uint8
uint8
@endcode
@endcode
...
...
doc/py_tutorials/py_core/py_image_arithmetics/py_image_arithmetics.markdown
View file @
0f51155e
...
@@ -23,10 +23,10 @@ For example, consider below sample:
...
@@ -23,10 +23,10 @@ For example, consider below sample:
>>> x = np.uint8([250])
>>> x = np.uint8([250])
>>> y = np.uint8([10])
>>> y = np.uint8([10])
>>> print
cv2.add(x,y
) # 250+10 = 260 => 255
>>> print
( cv2.add(x,y)
) # 250+10 = 260 => 255
[
[255
]
]
[
[255
]
]
>>> print
x+y
# 250+10 = 260 % 256 = 4
>>> print
( x+y )
# 250+10 = 260 % 256 = 4
[
4
]
[
4
]
@endcode
@endcode
It will be more visible when you add two images. OpenCV function will provide a better result. So
It will be more visible when you add two images. OpenCV function will provide a better result. So
...
...
doc/py_tutorials/py_core/py_optimization/py_optimization.markdown
View file @
0f51155e
...
@@ -44,7 +44,7 @@ for i in xrange(5,49,2):
...
@@ -44,7 +44,7 @@ for i in xrange(5,49,2):
img1 = cv2.medianBlur(img1,i)
img1 = cv2.medianBlur(img1,i)
e2 = cv2.getTickCount()
e2 = cv2.getTickCount()
t = (e2 - e1)/cv2.getTickFrequency()
t = (e2 - e1)/cv2.getTickFrequency()
print
t
print
( t )
# Result I got is 0.521107655 seconds
# Result I got is 0.521107655 seconds
@endcode
@endcode
...
...
doc/py_tutorials/py_feature2d/py_brief/py_brief.markdown
View file @
0f51155e
...
@@ -69,8 +69,8 @@ kp = star.detect(img,None)
...
@@ -69,8 +69,8 @@ kp = star.detect(img,None)
# compute the descriptors with BRIEF
# compute the descriptors with BRIEF
kp, des = brief.compute(img, kp)
kp, des = brief.compute(img, kp)
print
brief.descriptorSize(
)
print
( brief.descriptorSize()
)
print
des.shape
print
( des.shape )
@endcode
@endcode
The function brief.getDescriptorSize() gives the
\f
$n_d
\f
$ size used in bytes. By default it is 32. Next one
The function brief.getDescriptorSize() gives the
\f
$n_d
\f
$ size used in bytes. By default it is 32. Next one
is matching, which will be done in another chapter.
is matching, which will be done in another chapter.
...
...
doc/py_tutorials/py_feature2d/py_fast/py_fast.markdown
View file @
0f51155e
...
@@ -108,10 +108,10 @@ kp = fast.detect(img,None)
...
@@ -108,10 +108,10 @@ kp = fast.detect(img,None)
img2 = cv2.drawKeypoints(img, kp, None, color=(255,0,0))
img2 = cv2.drawKeypoints(img, kp, None, color=(255,0,0))
# Print all default params
# Print all default params
print
"Threshold: ", fast.getThreshold(
)
print
( "Threshold: {}".format(fast.getThreshold())
)
print
"nonmaxSuppression: ", fast.getNonmaxSuppression(
)
print
( "nonmaxSuppression:{}".format(fast.getNonmaxSuppression())
)
print
"neighborhood: ", fast.getType(
)
print
( "neighborhood: {}".format(fast.getType())
)
print
"Total Keypoints with nonmaxSuppression: ", len(kp
)
print
( "Total Keypoints with nonmaxSuppression: {}".format(len(kp))
)
cv2.imwrite('fast_true.png',img2)
cv2.imwrite('fast_true.png',img2)
...
@@ -119,7 +119,7 @@ cv2.imwrite('fast_true.png',img2)
...
@@ -119,7 +119,7 @@ cv2.imwrite('fast_true.png',img2)
fast.setNonmaxSuppression(0)
fast.setNonmaxSuppression(0)
kp = fast.detect(img,None)
kp = fast.detect(img,None)
print
"Total Keypoints without nonmaxSuppression: ", len(kp
)
print
( "Total Keypoints without nonmaxSuppression: {}".format(len(kp))
)
img3 = cv2.drawKeypoints(img, kp, None, color=(255,0,0))
img3 = cv2.drawKeypoints(img, kp, None, color=(255,0,0))
...
...
doc/py_tutorials/py_feature2d/py_feature_homography/py_feature_homography.markdown
View file @
0f51155e
...
@@ -85,7 +85,7 @@ if len(good)>MIN_MATCH_COUNT:
...
@@ -85,7 +85,7 @@ if len(good)>MIN_MATCH_COUNT:
img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA)
img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA)
else:
else:
print
"Not enough matches are found - %d/%d" % (len(good),MIN_MATCH_COUNT
)
print
( "Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT)
)
matchesMask = None
matchesMask = None
@endcode
@endcode
Finally we draw our inliers (if successfully found the object) or matching keypoints (if failed).
Finally we draw our inliers (if successfully found the object) or matching keypoints (if failed).
...
...
doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.markdown
View file @
0f51155e
...
@@ -92,7 +92,7 @@ examples are shown in Python terminal since it is just same as SIFT only.
...
@@ -92,7 +92,7 @@ examples are shown in Python terminal since it is just same as SIFT only.
While matching, we may need all those features, but not now. So we increase the Hessian Threshold.
While matching, we may need all those features, but not now. So we increase the Hessian Threshold.
@code{.py}
@code{.py}
# Check present Hessian threshold
# Check present Hessian threshold
>>> print
surf.getHessianThreshold(
)
>>> print
( surf.getHessianThreshold()
)
400.
0
400.
0
# We set it to some 50000. Remember, it is just for representing in picture.
# We set it to some 50000. Remember, it is just for representing in picture.
...
@@ -102,7 +102,7 @@ While matching, we may need all those features, but not now. So we increase the
...
@@ -102,7 +102,7 @@ While matching, we may need all those features, but not now. So we increase the
# Again compute keypoints and check its number.
# Again compute keypoints and check its number.
>>> kp, des = surf.detectAndCompute(img,None)
>>> kp, des = surf.detectAndCompute(img,None)
>>> print
len(kp
)
>>> print
( len(kp)
)
47
47
@endcode
@endcode
It is less than 50. Let's draw it on the image.
It is less than 50. Let's draw it on the image.
...
@@ -119,7 +119,7 @@ on wings of butterfly. You can test it with other images.
...
@@ -119,7 +119,7 @@ on wings of butterfly. You can test it with other images.
Now I want to apply U-SURF, so that it won't find the orientation.
Now I want to apply U-SURF, so that it won't find the orientation.
@code{.py}
@code{.py}
# Check upright flag, if it False, set it to True
# Check upright flag, if it False, set it to True
>>> print
surf.getUpright(
)
>>> print
( surf.getUpright()
)
False
False
>>> surf.setUpright(True)
>>> surf.setUpright(True)
...
@@ -139,7 +139,7 @@ etc, this is better.
...
@@ -139,7 +139,7 @@ etc, this is better.
Finally we check the descriptor size and change it to 128 if it is only 64-dim.
Finally we check the descriptor size and change it to 128 if it is only 64-dim.
@code{.py}
@code{.py}
# Find size of descriptor
# Find size of descriptor
>>> print
surf.descriptorSize(
)
>>> print
( surf.descriptorSize()
)
64
64
# That means flag, "extended" is False.
# That means flag, "extended" is False.
...
@@ -149,9 +149,9 @@ Finally we check the descriptor size and change it to 128 if it is only 64-dim.
...
@@ -149,9 +149,9 @@ Finally we check the descriptor size and change it to 128 if it is only 64-dim.
# So we make it to True to get 128-dim descriptors.
# So we make it to True to get 128-dim descriptors.
>>> surf.extended = True
>>> surf.extended = True
>>> kp, des = surf.detectAndCompute(img,None)
>>> kp, des = surf.detectAndCompute(img,None)
>>> print
surf.descriptorSize(
)
>>> print
( surf.descriptorSize()
)
128
128
>>> print
des.shape
>>> print
( des.shape )
(47, 128)
(47, 128)
@endcode
@endcode
Remaining part is matching which we will do in another chapter.
Remaining part is matching which we will do in another chapter.
...
...
doc/py_tutorials/py_gui/py_mouse_handling/py_mouse_handling.markdown
View file @
0f51155e
...
@@ -21,7 +21,7 @@ in Python terminal:
...
@@ -21,7 +21,7 @@ in Python terminal:
@code{.py}
@code{.py}
import cv2
import cv2
events =
[
i for i in dir(cv2) if 'EVENT' in i
]
events =
[
i for i in dir(cv2) if 'EVENT' in i
]
print
events
print
( events )
@endcode
@endcode
Creating mouse callback function has a specific format which is same everywhere. It differs only in
Creating mouse callback function has a specific format which is same everywhere. It differs only in
what the function does. So our mouse callback function does one thing, it draws a circle where we
what the function does. So our mouse callback function does one thing, it draws a circle where we
...
...
doc/py_tutorials/py_imgproc/py_colorspaces/py_colorspaces.markdown
View file @
0f51155e
...
@@ -24,7 +24,7 @@ commands in your Python terminal :
...
@@ -24,7 +24,7 @@ commands in your Python terminal :
@code{.py}
@code{.py}
>>> import cv2
>>> import cv2
>>> flags = [i for i in dir(cv2) if i.startswith('COLOR_')]
>>> flags = [i for i in dir(cv2) if i.startswith('COLOR_')]
>>> print
flags
>>> print
( flags )
@endcode
@endcode
@note For HSV, Hue range is
[
0,179
]
, Saturation range is
[
0,255
]
and Value range is
[
0,255
]
.
@note For HSV, Hue range is
[
0,179
]
, Saturation range is
[
0,255
]
and Value range is
[
0,255
]
.
Different softwares use different scales. So if you are comparing OpenCV values with them, you need
Different softwares use different scales. So if you are comparing OpenCV values with them, you need
...
@@ -96,7 +96,7 @@ terminal:
...
@@ -96,7 +96,7 @@ terminal:
@code{.py}
@code{.py}
>>> green = np.uint8([[[0,255,0 ]]])
>>> green = np.uint8([[[0,255,0 ]]])
>>> hsv_green = cv2.cvtColor(green,cv2.COLOR_BGR2HSV)
>>> hsv_green = cv2.cvtColor(green,cv2.COLOR_BGR2HSV)
>>> print
hsv_green
>>> print
( hsv_green )
[
[[ 60 255 255
]
]]
[
[[ 60 255 255
]
]]
@endcode
@endcode
Now you take
[
H-10, 100,100
]
and
[
H+10, 255, 255
]
as lower bound and upper bound respectively. Apart
Now you take
[
H-10, 100,100
]
and
[
H+10, 255, 255
]
as lower bound and upper bound respectively. Apart
...
...
doc/py_tutorials/py_imgproc/py_contours/py_contour_features/py_contour_features.markdown
View file @
0f51155e
...
@@ -27,7 +27,7 @@ im2,contours,hierarchy = cv2.findContours(thresh, 1, 2)
...
@@ -27,7 +27,7 @@ im2,contours,hierarchy = cv2.findContours(thresh, 1, 2)
cnt = contours
[
0
]
cnt = contours
[
0
]
M = cv2.moments(cnt)
M = cv2.moments(cnt)
print
M
print
( M )
@endcode
@endcode
From this moments, you can extract useful data like area, centroid etc. Centroid is given by the
From this moments, you can extract useful data like area, centroid etc. Centroid is given by the
relations,
\f
$C_x =
\f
rac{M_{10}}{M_{00}}
\f
$ and
\f
$C_y =
\f
rac{M_{01}}{M_{00}}
\f
$. This can be done as
relations,
\f
$C_x =
\f
rac{M_{10}}{M_{00}}
\f
$ and
\f
$C_y =
\f
rac{M_{01}}{M_{00}}
\f
$. This can be done as
...
...
doc/py_tutorials/py_imgproc/py_contours/py_contours_more_functions/py_contours_more_functions.markdown
View file @
0f51155e
...
@@ -99,7 +99,7 @@ im2,contours,hierarchy = cv2.findContours(thresh2,2,1)
...
@@ -99,7 +99,7 @@ im2,contours,hierarchy = cv2.findContours(thresh2,2,1)
cnt2 = contours
[
0
]
cnt2 = contours
[
0
]
ret = cv2.matchShapes(cnt1,cnt2,1,0.0)
ret = cv2.matchShapes(cnt1,cnt2,1,0.0)
print
ret
print
( ret )
@endcode
@endcode
I tried matching shapes with different shapes given below:
I tried matching shapes with different shapes given below:
...
...
doc/py_tutorials/py_imgproc/py_thresholding/py_thresholding.markdown
View file @
0f51155e
...
@@ -218,7 +218,7 @@ for i in xrange(1,256):
...
@@ -218,7 +218,7 @@ for i in xrange(1,256):
# find otsu's threshold value with OpenCV function
# find otsu's threshold value with OpenCV function
ret, otsu = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
ret, otsu = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
print
thresh,ret
print
( "{} {}".format(thresh,ret) )
@endcode
@endcode
*(Some of the functions may be new here, but we will cover them in coming chapters)*
*(Some of the functions may be new here, but we will cover them in coming chapters)*
...
...
doc/py_tutorials/py_imgproc/py_transforms/py_fourier_transform/py_fourier_transform.markdown
View file @
0f51155e
...
@@ -186,12 +186,12 @@ using IPython magic command %timeit.
...
@@ -186,12 +186,12 @@ using IPython magic command %timeit.
@code{.py}
@code{.py}
In
[
16
]
: img = cv2.imread('messi5.jpg',0)
In
[
16
]
: img = cv2.imread('messi5.jpg',0)
In
[
17
]
: rows,cols = img.shape
In
[
17
]
: rows,cols = img.shape
In
[
18
]
: print
rows,cols
In
[
18
]
: print
("{} {}".format(rows,cols))
342 548
342 548
In
[
19
]
: nrows = cv2.getOptimalDFTSize(rows)
In
[
19
]
: nrows = cv2.getOptimalDFTSize(rows)
In
[
20
]
: ncols = cv2.getOptimalDFTSize(cols)
In
[
20
]
: ncols = cv2.getOptimalDFTSize(cols)
In
[
21
]
: print
nrows, ncols
In
[
21
]
: print
("{} {}".format(nrows,ncols))
360 576
360 576
@endcode
@endcode
See, the size (342,548) is modified to (360, 576). Now let's pad it with zeros (for OpenCV) and find
See, the size (342,548) is modified to (360, 576). Now let's pad it with zeros (for OpenCV) and find
...
...
doc/py_tutorials/py_ml/py_knn/py_knn_opencv/py_knn_opencv.markdown
View file @
0f51155e
...
@@ -51,7 +51,7 @@ ret,result,neighbours,dist = knn.findNearest(test,k=5)
...
@@ -51,7 +51,7 @@ ret,result,neighbours,dist = knn.findNearest(test,k=5)
matches = result==test_labels
matches = result==test_labels
correct = np.count_nonzero(matches)
correct = np.count_nonzero(matches)
accuracy = correct
*
100.0/result.size
accuracy = correct
*
100.0/result.size
print
accuracy
print
( accuracy )
@endcode
@endcode
So our basic OCR app is ready. This particular example gave me an accuracy of 91%. One option
So our basic OCR app is ready. This particular example gave me an accuracy of 91%. One option
improve accuracy is to add more data for training, especially the wrong ones. So instead of finding
improve accuracy is to add more data for training, especially the wrong ones. So instead of finding
...
@@ -64,7 +64,7 @@ np.savez('knn_data.npz',train=train, train_labels=train_labels)
...
@@ -64,7 +64,7 @@ np.savez('knn_data.npz',train=train, train_labels=train_labels)
# Now load the data
# Now load the data
with np.load('knn_data.npz') as data:
with np.load('knn_data.npz') as data:
print
data.files
print
( data.files )
train = data
[
'train'
]
train = data
[
'train'
]
train_labels = data
[
'train_labels'
]
train_labels = data
[
'train_labels'
]
@endcode
@endcode
...
@@ -109,7 +109,7 @@ ret, result, neighbours, dist = knn.findNearest(testData, k=5)
...
@@ -109,7 +109,7 @@ ret, result, neighbours, dist = knn.findNearest(testData, k=5)
correct = np.count_nonzero(result == labels)
correct = np.count_nonzero(result == labels)
accuracy = correct
*
100.0/10000
accuracy = correct
*
100.0/10000
print
accuracy
print
( accuracy )
@endcode
@endcode
It gives me an accuracy of 93.22%. Again, if you want to increase accuracy, you can iteratively add
It gives me an accuracy of 93.22%. Again, if you want to increase accuracy, you can iteratively add
error data in each level.
error data in each level.
...
...
doc/py_tutorials/py_ml/py_knn/py_knn_understanding/py_knn_understanding.markdown
View file @
0f51155e
...
@@ -118,9 +118,9 @@ knn = cv2.ml.KNearest_create()
...
@@ -118,9 +118,9 @@ knn = cv2.ml.KNearest_create()
knn.train(trainData, cv2.ml.ROW_SAMPLE, responses)
knn.train(trainData, cv2.ml.ROW_SAMPLE, responses)
ret, results, neighbours ,dist = knn.findNearest(newcomer, 3)
ret, results, neighbours ,dist = knn.findNearest(newcomer, 3)
print
"result: ", results,"
\n
"
print
( "result: {}
\n
".format(results) )
print
"neighbours: ", neighbours,"
\n
"
print
( "neighbours: {}
\n
".format(neighbours) )
print
"distance: ", dist
print
( "distance: {}
\n
".format(dist) )
plt.show()
plt.show()
@endcode
@endcode
...
...
doc/py_tutorials/py_setup/py_setup_in_fedora/py_setup_in_fedora.markdown
View file @
0f51155e
...
@@ -30,7 +30,7 @@ $ yum install numpy opencv*
...
@@ -30,7 +30,7 @@ $ yum install numpy opencv*
Open Python IDLE (or IPython) and type following codes in Python terminal.
Open Python IDLE (or IPython) and type following codes in Python terminal.
@code{.py}
@code{.py}
>>> import cv2
>>> import cv2
>>> print
cv2.__version__
>>> print
( cv2.__version__ )
@endcode
@endcode
If the results are printed out without any errors, congratulations !!! You have installed
If the results are printed out without any errors, congratulations !!! You have installed
OpenCV-Python successfully.
OpenCV-Python successfully.
...
@@ -218,7 +218,7 @@ Installation is over. All files are installed in /usr/local/ folder. But to use
...
@@ -218,7 +218,7 @@ Installation is over. All files are installed in /usr/local/ folder. But to use
should be able to find OpenCV module. You have two options for that.
should be able to find OpenCV module. You have two options for that.
-#
**Move the module to any folder in Python Path**
: Python path can be found out by entering
-#
**Move the module to any folder in Python Path**
: Python path can be found out by entering
import sys;print sys.path
in Python terminal. It will print out many locations. Move
`import sys; print(sys.path)`
in Python terminal. It will print out many locations. Move
/usr/local/lib/python2.7/site-packages/cv2.so to any of this folder. For example,
/usr/local/lib/python2.7/site-packages/cv2.so to any of this folder. For example,
@code{.sh}
@code{.sh}
su mv /usr/local/lib/python2.7/site-packages/cv2.so /usr/lib/python2.7/site-packages
su mv /usr/local/lib/python2.7/site-packages/cv2.so /usr/lib/python2.7/site-packages
...
...
doc/py_tutorials/py_setup/py_setup_in_windows/py_setup_in_windows.markdown
View file @
0f51155e
...
@@ -36,7 +36,7 @@ Installing OpenCV from prebuilt binaries
...
@@ -36,7 +36,7 @@ Installing OpenCV from prebuilt binaries
-# Open Python IDLE and type following codes in Python terminal.
-# Open Python IDLE and type following codes in Python terminal.
@code
@code
>>> import cv2
>>> import cv2
>>> print
cv2.__version__
>>> print
( cv2.__version__ )
@endcode
@endcode
If the results are printed out without any errors, congratulations !!! You have installed
If the results are printed out without any errors, congratulations !!! You have installed
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment