Commit 0ea009f6 authored by Olexa Bilaniuk's avatar Olexa Bilaniuk

Merge remote-tracking branch 'refs/remotes/upstream/master'

parents f148f233 7b270f4c
......@@ -122,7 +122,6 @@ CV_INLINE CvParamLattice cvDefaultParamLattice( void )
#define CV_TYPE_NAME_ML_SVM "opencv-ml-svm"
#define CV_TYPE_NAME_ML_KNN "opencv-ml-knn"
#define CV_TYPE_NAME_ML_NBAYES "opencv-ml-bayesian"
#define CV_TYPE_NAME_ML_EM "opencv-ml-em"
#define CV_TYPE_NAME_ML_BOOSTING "opencv-ml-boost-tree"
#define CV_TYPE_NAME_ML_TREE "opencv-ml-tree"
#define CV_TYPE_NAME_ML_ANN_MLP "opencv-ml-ann-mlp"
......@@ -562,100 +561,6 @@ private:
CvSVM& operator = (const CvSVM&);
};
/****************************************************************************************\
* Expectation - Maximization *
\****************************************************************************************/
namespace cv
{
class EM : public Algorithm
{
public:
// Type of covariation matrices
enum {COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2, COV_MAT_DEFAULT=COV_MAT_DIAGONAL};
// Default parameters
enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100};
// The initial step
enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0};
CV_WRAP EM(int nclusters=EM::DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL,
const TermCriteria& termCrit=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
EM::DEFAULT_MAX_ITERS, FLT_EPSILON));
virtual ~EM();
CV_WRAP virtual void clear();
CV_WRAP virtual bool train(InputArray samples,
OutputArray logLikelihoods=noArray(),
OutputArray labels=noArray(),
OutputArray probs=noArray());
CV_WRAP virtual bool trainE(InputArray samples,
InputArray means0,
InputArray covs0=noArray(),
InputArray weights0=noArray(),
OutputArray logLikelihoods=noArray(),
OutputArray labels=noArray(),
OutputArray probs=noArray());
CV_WRAP virtual bool trainM(InputArray samples,
InputArray probs0,
OutputArray logLikelihoods=noArray(),
OutputArray labels=noArray(),
OutputArray probs=noArray());
CV_WRAP Vec2d predict(InputArray sample,
OutputArray probs=noArray()) const;
CV_WRAP bool isTrained() const;
AlgorithmInfo* info() const;
virtual void read(const FileNode& fn);
protected:
virtual void setTrainData(int startStep, const Mat& samples,
const Mat* probs0,
const Mat* means0,
const std::vector<Mat>* covs0,
const Mat* weights0);
bool doTrain(int startStep,
OutputArray logLikelihoods,
OutputArray labels,
OutputArray probs);
virtual void eStep();
virtual void mStep();
void clusterTrainSamples();
void decomposeCovs();
void computeLogWeightDivDet();
Vec2d computeProbabilities(const Mat& sample, Mat* probs) const;
// all inner matrices have type CV_64FC1
CV_PROP_RW int nclusters;
CV_PROP_RW int covMatType;
CV_PROP_RW int maxIters;
CV_PROP_RW double epsilon;
Mat trainSamples;
Mat trainProbs;
Mat trainLogLikelihoods;
Mat trainLabels;
CV_PROP Mat weights;
CV_PROP Mat means;
CV_PROP std::vector<Mat> covs;
std::vector<Mat> covsEigenValues;
std::vector<Mat> covsRotateMats;
std::vector<Mat> invCovsEigenValues;
Mat logWeightDivDet;
};
} // namespace cv
/****************************************************************************************\
* Decision Tree *
\****************************************************************************************/\
......@@ -2155,8 +2060,6 @@ typedef CvGBTreesParams GradientBoostingTreeParams;
typedef CvGBTrees GradientBoostingTrees;
template<> void DefaultDeleter<CvDTreeSplit>::operator ()(CvDTreeSplit* obj) const;
bool initModule_ml(void);
}
#endif // __cplusplus
......
......@@ -100,7 +100,7 @@ RECURSIVE = YES
EXCLUDE =
EXCLUDE_SYMLINKS = NO
EXCLUDE_PATTERNS = *.inl.hpp *.impl.hpp *_detail.hpp */cudev/**/detail/*.hpp
EXCLUDE_SYMBOLS = cv::DataType<*> int
EXCLUDE_SYMBOLS = cv::DataType<*> int void
EXAMPLE_PATH = @CMAKE_DOXYGEN_EXAMPLE_PATH@
EXAMPLE_PATTERNS = *
EXAMPLE_RECURSIVE = YES
......@@ -243,7 +243,11 @@ PREDEFINED = __cplusplus=1 \
CV_NORETURN= \
CV_DEFAULT(x)=" = x" \
CV_NEON=1 \
FLANN_DEPRECATED=
FLANN_DEPRECATED= \
"CV_PURE_PROPERTY(type, name)= /** \@see set##name */ virtual type get##name() const = 0; /** \@copybrief get##name \@see get##name */ virtual void set##name(type val) = 0;" \
"CV_IMPL_PROPERTY(type, name, x)= /** \@see set##name */ virtual type get##name() const = 0; /** \@copybrief get##name \@see get##name */ virtual void set##name(type val) = 0;" \
"CV_IMPL_PROPERTY_S(type, name, x)= /** \@see set##name */ virtual type get##name() const = 0; /** \@copybrief get##name \@see get##name */ virtual void set##name(const type & val);" \
"CV_IMPL_PROPERTY_RO(type, name, x)= virtual type get##name() const;"
EXPAND_AS_DEFINED =
SKIP_FUNCTION_MACROS = YES
TAGFILES =
......
......@@ -31,3 +31,7 @@ div.contents {
span.arrow {
height: 13px;
}
div.image img{
max-width: 900px;
}
Introduction to Support Vector Machines {#tutorial_introduction_to_svm}
=======================================
@todo update this tutorial
Goal
----
......@@ -31,13 +29,11 @@ understand that this is done only because our intuition is better built from exa
to imagine. However, the same concepts apply to tasks where the examples to classify lie in a space
whose dimension is higher than two.
In the above picture you can see that there exists multiple
lines that offer a solution to the problem. Is any of them better than the others? We can
intuitively define a criterion to estimate the worth of the lines:
- A line is bad if it passes too close to the points because it will be noise sensitive and it will
not generalize correctly. Therefore, our goal should be to find the line passing as far as
possible from all points.
In the above picture you can see that there exists multiple lines that offer a solution to the
problem. Is any of them better than the others? We can intuitively define a criterion to estimate
the worth of the lines: <em> A line is bad if it passes too close to the points because it will be
noise sensitive and it will not generalize correctly. </em> Therefore, our goal should be to find
the line passing as far as possible from all points.
Then, the operation of the SVM algorithm is based on finding the hyperplane that gives the largest
minimum distance to the training examples. Twice, this distance receives the important name of
......@@ -57,7 +53,7 @@ where \f$\beta\f$ is known as the *weight vector* and \f$\beta_{0}\f$ as the *bi
@sa A more in depth description of this and hyperplanes you can find in the section 4.5 (*Seperating
Hyperplanes*) of the book: *Elements of Statistical Learning* by T. Hastie, R. Tibshirani and J. H.
Friedman.
Friedman (@cite HTF01).
The optimal hyperplane can be represented in an infinite number of different ways by
scaling of \f$\beta\f$ and \f$\beta_{0}\f$. As a matter of convention, among all the possible
......@@ -107,17 +103,14 @@ Explanation
The training data of this exercise is formed by a set of labeled 2D-points that belong to one of
two different classes; one of the classes consists of one point and the other of three points.
@code{.cpp}
float labels[4] = {1.0, -1.0, -1.0, -1.0};
float trainingData[4][2] = {{501, 10}, {255, 10}, {501, 255}, {10, 501}};
@endcode
@snippet cpp/tutorial_code/ml/introduction_to_svm/introduction_to_svm.cpp setup1
The function @ref cv::ml::SVM::train that will be used afterwards requires the training data to be
stored as @ref cv::Mat objects of floats. Therefore, we create these objects from the arrays
defined above:
@code{.cpp}
Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
Mat labelsMat (4, 1, CV_32FC1, labels);
@endcode
@snippet cpp/tutorial_code/ml/introduction_to_svm/introduction_to_svm.cpp setup2
-# **Set up SVM's parameters**
......@@ -126,42 +119,35 @@ Explanation
used in a wide variety of problems (e.g. problems with non-linearly separable data, a SVM using
a kernel function to raise the dimensionality of the examples, etc). As a consequence of this,
we have to define some parameters before training the SVM. These parameters are stored in an
object of the class @ref cv::ml::SVM::Params .
@code{.cpp}
ml::SVM::Params params;
params.svmType = ml::SVM::C_SVC;
params.kernelType = ml::SVM::LINEAR;
params.termCrit = TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6);
@endcode
- *Type of SVM*. We choose here the type **ml::SVM::C_SVC** that can be used for n-class
classification (n \f$\geq\f$ 2). This parameter is defined in the attribute
*ml::SVM::Params.svmType*.
The important feature of the type of SVM **CvSVM::C_SVC** deals with imperfect separation of classes (i.e. when the training data is non-linearly separable). This feature is not important here since the data is linearly separable and we chose this SVM type only for being the most commonly used.
object of the class @ref cv::ml::SVM.
@snippet cpp/tutorial_code/ml/introduction_to_svm/introduction_to_svm.cpp init
Here:
- *Type of SVM*. We choose here the type @ref cv::ml::SVM::C_SVC "C_SVC" that can be used for
n-class classification (n \f$\geq\f$ 2). The important feature of this type is that it deals
with imperfect separation of classes (i.e. when the training data is non-linearly separable).
This feature is not important here since the data is linearly separable and we chose this SVM
type only for being the most commonly used.
- *Type of SVM kernel*. We have not talked about kernel functions since they are not
interesting for the training data we are dealing with. Nevertheless, let's explain briefly
now the main idea behind a kernel function. It is a mapping done to the training data to
improve its resemblance to a linearly separable set of data. This mapping consists of
increasing the dimensionality of the data and is done efficiently using a kernel function.
We choose here the type **ml::SVM::LINEAR** which means that no mapping is done. This
parameter is defined in the attribute *ml::SVMParams.kernel_type*.
interesting for the training data we are dealing with. Nevertheless, let's explain briefly now
the main idea behind a kernel function. It is a mapping done to the training data to improve
its resemblance to a linearly separable set of data. This mapping consists of increasing the
dimensionality of the data and is done efficiently using a kernel function. We choose here the
type @ref cv::ml::SVM::LINEAR "LINEAR" which means that no mapping is done. This parameter is
defined using cv::ml::SVM::setKernel.
- *Termination criteria of the algorithm*. The SVM training procedure is implemented solving a
constrained quadratic optimization problem in an **iterative** fashion. Here we specify a
maximum number of iterations and a tolerance error so we allow the algorithm to finish in
less number of steps even if the optimal hyperplane has not been computed yet. This
parameter is defined in a structure @ref cv::cvTermCriteria .
parameter is defined in a structure @ref cv::TermCriteria .
-# **Train the SVM**
We call the method @ref cv::ml::SVM::train to build the SVM model.
We call the method
[CvSVM::train](http://docs.opencv.org/modules/ml/doc/support_vector_machines.html#cvsvm-train)
to build the SVM model.
@code{.cpp}
CvSVM SVM;
SVM.train(trainingDataMat, labelsMat, Mat(), Mat(), params);
@endcode
@snippet cpp/tutorial_code/ml/introduction_to_svm/introduction_to_svm.cpp train
-# **Regions classified by the SVM**
......@@ -170,22 +156,8 @@ Explanation
by the SVM. In other words, an image is traversed interpreting its pixels as points of the
Cartesian plane. Each of the points is colored depending on the class predicted by the SVM; in
green if it is the class with label 1 and in blue if it is the class with label -1.
@code{.cpp}
Vec3b green(0,255,0), blue (255,0,0);
for (int i = 0; i < image.rows; ++i)
for (int j = 0; j < image.cols; ++j)
{
Mat sampleMat = (Mat_<float>(1,2) << i,j);
float response = SVM.predict(sampleMat);
if (response == 1)
image.at<Vec3b>(j, i) = green;
else
if (response == -1)
image.at<Vec3b>(j, i) = blue;
}
@endcode
@snippet cpp/tutorial_code/ml/introduction_to_svm/introduction_to_svm.cpp show
-# **Support vectors**
......@@ -193,15 +165,8 @@ Explanation
The method @ref cv::ml::SVM::getSupportVectors obtain all of the support
vectors. We have used this methods here to find the training examples that are
support vectors and highlight them.
@code{.cpp}
int c = SVM.get_support_vector_count();
for (int i = 0; i < c; ++i)
{
const float* v = SVM.get_support_vector(i); // get and then highlight with grayscale
circle( image, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thickness, lineType);
}
@endcode
@snippet cpp/tutorial_code/ml/introduction_to_svm/introduction_to_svm.cpp show_vectors
Results
-------
......
......@@ -200,8 +200,6 @@ public:
void setCallback(const Ptr<LMSolver::Callback>& _cb) { cb = _cb; }
AlgorithmInfo* info() const;
Ptr<LMSolver::Callback> cb;
double epsx;
......@@ -211,15 +209,8 @@ public:
};
CV_INIT_ALGORITHM(LMSolverImpl, "LMSolver",
obj.info()->addParam(obj, "epsx", obj.epsx);
obj.info()->addParam(obj, "epsf", obj.epsf);
obj.info()->addParam(obj, "maxIters", obj.maxIters);
obj.info()->addParam(obj, "printInterval", obj.printInterval))
Ptr<LMSolver> createLMSolver(const Ptr<LMSolver::Callback>& cb, int maxIters)
{
CV_Assert( !LMSolverImpl_info_auto.name().empty() );
return makePtr<LMSolverImpl>(cb, maxIters);
}
......
......@@ -256,8 +256,6 @@ public:
void setCallback(const Ptr<PointSetRegistrator::Callback>& _cb) { cb = _cb; }
AlgorithmInfo* info() const;
Ptr<PointSetRegistrator::Callback> cb;
int modelPoints;
bool checkPartialSubsets;
......@@ -378,25 +376,12 @@ public:
return result;
}
AlgorithmInfo* info() const;
};
CV_INIT_ALGORITHM(RANSACPointSetRegistrator, "PointSetRegistrator.RANSAC",
obj.info()->addParam(obj, "threshold", obj.threshold);
obj.info()->addParam(obj, "confidence", obj.confidence);
obj.info()->addParam(obj, "maxIters", obj.maxIters))
CV_INIT_ALGORITHM(LMeDSPointSetRegistrator, "PointSetRegistrator.LMeDS",
obj.info()->addParam(obj, "confidence", obj.confidence);
obj.info()->addParam(obj, "maxIters", obj.maxIters))
Ptr<PointSetRegistrator> createRANSACPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb,
int _modelPoints, double _threshold,
double _confidence, int _maxIters)
{
CV_Assert( !RANSACPointSetRegistrator_info_auto.name().empty() );
return Ptr<PointSetRegistrator>(
new RANSACPointSetRegistrator(_cb, _modelPoints, _threshold, _confidence, _maxIters));
}
......@@ -405,7 +390,6 @@ Ptr<PointSetRegistrator> createRANSACPointSetRegistrator(const Ptr<PointSetRegis
Ptr<PointSetRegistrator> createLMeDSPointSetRegistrator(const Ptr<PointSetRegistrator::Callback>& _cb,
int _modelPoints, double _confidence, int _maxIters)
{
CV_Assert( !LMeDSPointSetRegistrator_info_auto.name().empty() );
return Ptr<PointSetRegistrator>(
new LMeDSPointSetRegistrator(_cb, _modelPoints, _confidence, _maxIters));
}
......
......@@ -1010,8 +1010,6 @@ public:
disp.convertTo(disp0, disp0.type(), 1./(1 << DISPARITY_SHIFT), 0);
}
AlgorithmInfo* info() const { return 0; }
int getMinDisparity() const { return params.minDisparity; }
void setMinDisparity(int minDisparity) { params.minDisparity = minDisparity; }
......
......@@ -865,8 +865,6 @@ public:
StereoMatcher::DISP_SCALE*params.speckleRange, buffer);
}
AlgorithmInfo* info() const { return 0; }
int getMinDisparity() const { return params.minDisparity; }
void setMinDisparity(int minDisparity) { params.minDisparity = minDisparity; }
......
This diff is collapsed.
......@@ -412,84 +412,6 @@ int print(const Matx<_Tp, m, n>& matx, FILE* stream = stdout)
return print(Formatter::get()->format(cv::Mat(matx)), stream);
}
////////////////////////////////////////// Algorithm //////////////////////////////////////////
template<typename _Tp> inline
Ptr<_Tp> Algorithm::create(const String& name)
{
return _create(name).dynamicCast<_Tp>();
}
template<typename _Tp> inline
void Algorithm::set(const char* _name, const Ptr<_Tp>& value)
{
Ptr<Algorithm> algo_ptr = value. template dynamicCast<cv::Algorithm>();
if (!algo_ptr) {
CV_Error( Error::StsUnsupportedFormat, "unknown/unsupported Ptr type of the second parameter of the method Algorithm::set");
}
info()->set(this, _name, ParamType<Algorithm>::type, &algo_ptr);
}
template<typename _Tp> inline
void Algorithm::set(const String& _name, const Ptr<_Tp>& value)
{
this->set<_Tp>(_name.c_str(), value);
}
template<typename _Tp> inline
void Algorithm::setAlgorithm(const char* _name, const Ptr<_Tp>& value)
{
Ptr<Algorithm> algo_ptr = value. template ptr<cv::Algorithm>();
if (!algo_ptr) {
CV_Error( Error::StsUnsupportedFormat, "unknown/unsupported Ptr type of the second parameter of the method Algorithm::set");
}
info()->set(this, _name, ParamType<Algorithm>::type, &algo_ptr);
}
template<typename _Tp> inline
void Algorithm::setAlgorithm(const String& _name, const Ptr<_Tp>& value)
{
this->set<_Tp>(_name.c_str(), value);
}
template<typename _Tp> inline
typename ParamType<_Tp>::member_type Algorithm::get(const String& _name) const
{
typename ParamType<_Tp>::member_type value;
info()->get(this, _name.c_str(), ParamType<_Tp>::type, &value);
return value;
}
template<typename _Tp> inline
typename ParamType<_Tp>::member_type Algorithm::get(const char* _name) const
{
typename ParamType<_Tp>::member_type value;
info()->get(this, _name, ParamType<_Tp>::type, &value);
return value;
}
template<typename _Tp, typename _Base> inline
void AlgorithmInfo::addParam(Algorithm& algo, const char* parameter, Ptr<_Tp>& value, bool readOnly,
Ptr<_Tp> (Algorithm::*getter)(), void (Algorithm::*setter)(const Ptr<_Tp>&),
const String& help)
{
//TODO: static assert: _Tp inherits from _Base
addParam_(algo, parameter, ParamType<_Base>::type, &value, readOnly,
(Algorithm::Getter)getter, (Algorithm::Setter)setter, help);
}
template<typename _Tp> inline
void AlgorithmInfo::addParam(Algorithm& algo, const char* parameter, Ptr<_Tp>& value, bool readOnly,
Ptr<_Tp> (Algorithm::*getter)(), void (Algorithm::*setter)(const Ptr<_Tp>&),
const String& help)
{
//TODO: static assert: _Tp inherits from Algorithm
addParam_(algo, parameter, ParamType<Algorithm>::type, &value, readOnly,
(Algorithm::Getter)getter, (Algorithm::Setter)setter, help);
}
//! @endcond
/****************************************************************************************\
......
......@@ -129,40 +129,6 @@ namespace cv
CV_EXPORTS const char* currentParallelFramework();
} //namespace cv
#define CV_INIT_ALGORITHM(classname, algname, memberinit) \
static inline ::cv::Algorithm* create##classname##_hidden() \
{ \
return new classname; \
} \
\
static inline ::cv::Ptr< ::cv::Algorithm> create##classname##_ptr_hidden() \
{ \
return ::cv::makePtr<classname>(); \
} \
\
static inline ::cv::AlgorithmInfo& classname##_info() \
{ \
static ::cv::AlgorithmInfo classname##_info_var(algname, create##classname##_hidden); \
return classname##_info_var; \
} \
\
static ::cv::AlgorithmInfo& classname##_info_auto = classname##_info(); \
\
::cv::AlgorithmInfo* classname::info() const \
{ \
static volatile bool initialized = false; \
\
if( !initialized ) \
{ \
initialized = true; \
classname obj; \
memberinit; \
} \
return &classname##_info(); \
}
/****************************************************************************************\
* Common declarations *
\****************************************************************************************/
......
This diff is collapsed.
......@@ -140,8 +140,6 @@ namespace
public:
CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8);
cv::AlgorithmInfo* info() const;
void apply(cv::InputArray src, cv::OutputArray dst);
void apply(InputArray src, OutputArray dst, Stream& stream);
......@@ -167,11 +165,6 @@ namespace
{
}
CV_INIT_ALGORITHM(CLAHE_Impl, "CLAHE_CUDA",
obj.info()->addParam(obj, "clipLimit", obj.clipLimit_);
obj.info()->addParam(obj, "tilesX", obj.tilesX_);
obj.info()->addParam(obj, "tilesY", obj.tilesY_))
void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst)
{
apply(_src, _dst, Stream::Null());
......
......@@ -310,10 +310,10 @@ PERF_TEST_P(ImagePair, OpticalFlowDual_TVL1,
{
cv::Mat flow;
cv::Ptr<cv::DenseOpticalFlow> alg = cv::createOptFlow_DualTVL1();
alg->set("medianFiltering", 1);
alg->set("innerIterations", 1);
alg->set("outerIterations", 300);
cv::Ptr<cv::DualTVL1OpticalFlow> alg = cv::createOptFlow_DualTVL1();
alg->setMedianFiltering(1);
alg->setInnerIterations(1);
alg->setOuterIterations(300);
TEST_CYCLE() alg->calc(frame0, frame1, flow);
CPU_SANITY_CHECK(flow);
......
......@@ -369,11 +369,11 @@ CUDA_TEST_P(OpticalFlowDual_TVL1, Accuracy)
cv::cuda::GpuMat d_flow;
d_alg->calc(loadMat(frame0), loadMat(frame1), d_flow);
cv::Ptr<cv::DenseOpticalFlow> alg = cv::createOptFlow_DualTVL1();
alg->set("medianFiltering", 1);
alg->set("innerIterations", 1);
alg->set("outerIterations", d_alg->getNumIterations());
alg->set("gamma", gamma);
cv::Ptr<cv::DualTVL1OpticalFlow> alg = cv::createOptFlow_DualTVL1();
alg->setMedianFiltering(1);
alg->setInnerIterations(1);
alg->setOuterIterations(d_alg->getNumIterations());
alg->setGamma(gamma);
cv::Mat flow;
alg->calc(frame0, frame1, flow);
......
......@@ -320,8 +320,6 @@ namespace
public:
CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8);
cv::AlgorithmInfo* info() const;
void apply(cv::InputArray src, cv::OutputArray dst);
void setClipLimit(double clipLimit);
......@@ -351,11 +349,6 @@ namespace
{
}
CV_INIT_ALGORITHM(CLAHE_Impl, "CLAHE",
obj.info()->addParam(obj, "clipLimit", obj.clipLimit_);
obj.info()->addParam(obj, "tilesX", obj.tilesX_);
obj.info()->addParam(obj, "tilesY", obj.tilesY_))
void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst)
{
CV_Assert( _src.type() == CV_8UC1 || _src.type() == CV_16UC1 );
......
......@@ -449,40 +449,33 @@ classes 0 and 1, one can determine that the given data instance belongs to class
\geq 0.5\f$ or class 0 if \f$h_\theta(x) < 0.5\f$ .
In Logistic Regression, choosing the right parameters is of utmost importance for reducing the
training error and ensuring high training accuracy. cv::ml::LogisticRegression::Params is the
structure that defines parameters that are required to train a Logistic Regression classifier.
The learning rate is determined by cv::ml::LogisticRegression::Params.alpha. It determines how fast
we approach the solution. It is a positive real number.
Optimization algorithms like Batch Gradient Descent and Mini-Batch Gradient Descent are supported in
LogisticRegression. It is important that we mention the number of iterations these optimization
algorithms have to run. The number of iterations are mentioned by
cv::ml::LogisticRegression::Params.num_iters. The number of iterations can be thought as number of
steps taken and learning rate specifies if it is a long step or a short step. These two parameters
define how fast we arrive at a possible solution.
In order to compensate for overfitting regularization is performed, which can be enabled by setting
cv::ml::LogisticRegression::Params.regularized to a positive integer (greater than zero). One can
specify what kind of regularization has to be performed by setting
cv::ml::LogisticRegression::Params.norm to REG_L1 or REG_L2 values.
LogisticRegression provides a choice of 2 training methods with Batch Gradient Descent or the Mini-
Batch Gradient Descent. To specify this, set cv::ml::LogisticRegression::Params::train_method to
either BATCH or MINI_BATCH. If training method is set to MINI_BATCH, the size of the mini batch has
to be to a postive integer using cv::ml::LogisticRegression::Params::mini_batch_size.
A sample set of training parameters for the Logistic Regression classifier can be initialized as
follows:
@code{.cpp}
using namespace cv::ml;
LogisticRegression::Params params;
params.alpha = 0.5;
params.num_iters = 10000;
params.norm = LogisticRegression::REG_L2;
params.regularized = 1;
params.train_method = LogisticRegression::MINI_BATCH;
params.mini_batch_size = 10;
@endcode
training error and ensuring high training accuracy:
- The learning rate can be set with @ref cv::ml::LogisticRegression::setLearningRate "setLearningRate"
method. It determines how fast we approach the solution. It is a positive real number.
- Optimization algorithms like Batch Gradient Descent and Mini-Batch Gradient Descent are supported
in LogisticRegression. It is important that we mention the number of iterations these optimization
algorithms have to run. The number of iterations can be set with @ref
cv::ml::LogisticRegression::setIterations "setIterations". This parameter can be thought
as number of steps taken and learning rate specifies if it is a long step or a short step. This
and previous parameter define how fast we arrive at a possible solution.
- In order to compensate for overfitting regularization is performed, which can be enabled with
@ref cv::ml::LogisticRegression::setRegularization "setRegularization". One can specify what
kind of regularization has to be performed by passing one of @ref
cv::ml::LogisticRegression::RegKinds "regularization kinds" to this method.
- Logistic regression implementation provides a choice of 2 training methods with Batch Gradient
Descent or the MiniBatch Gradient Descent. To specify this, call @ref
cv::ml::LogisticRegression::setTrainMethod "setTrainMethod" with either @ref
cv::ml::LogisticRegression::BATCH "LogisticRegression::BATCH" or @ref
cv::ml::LogisticRegression::MINI_BATCH "LogisticRegression::MINI_BATCH". If training method is
set to @ref cv::ml::LogisticRegression::MINI_BATCH "MINI_BATCH", the size of the mini batch has
to be to a postive integer set with @ref cv::ml::LogisticRegression::setMiniBatchSize
"setMiniBatchSize".
A sample set of training parameters for the Logistic Regression classifier can be initialized as follows:
@snippet samples/cpp/logistic_regression.cpp init
@sa cv::ml::LogisticRegression
This diff is collapsed.
......@@ -42,84 +42,57 @@
namespace cv { namespace ml {
ANN_MLP::Params::Params()
struct AnnParams
{
layerSizes = Mat();
activateFunc = SIGMOID_SYM;
fparam1 = fparam2 = 0;
termCrit = TermCriteria( TermCriteria::COUNT + TermCriteria::EPS, 1000, 0.01 );
trainMethod = RPROP;
bpDWScale = bpMomentScale = 0.1;
rpDW0 = 0.1; rpDWPlus = 1.2; rpDWMinus = 0.5;
rpDWMin = FLT_EPSILON; rpDWMax = 50.;
}
AnnParams()
{
termCrit = TermCriteria( TermCriteria::COUNT + TermCriteria::EPS, 1000, 0.01 );
trainMethod = ANN_MLP::RPROP;
bpDWScale = bpMomentScale = 0.1;
rpDW0 = 0.1; rpDWPlus = 1.2; rpDWMinus = 0.5;
rpDWMin = FLT_EPSILON; rpDWMax = 50.;
}
TermCriteria termCrit;
int trainMethod;
double bpDWScale;
double bpMomentScale;
double rpDW0;
double rpDWPlus;
double rpDWMinus;
double rpDWMin;
double rpDWMax;
};
ANN_MLP::Params::Params( const Mat& _layerSizes, int _activateFunc, double _fparam1, double _fparam2,
TermCriteria _termCrit, int _trainMethod, double _param1, double _param2 )
template <typename T>
inline T inBounds(T val, T min_val, T max_val)
{
layerSizes = _layerSizes;
activateFunc = _activateFunc;
fparam1 = _fparam1;
fparam2 = _fparam2;
termCrit = _termCrit;
trainMethod = _trainMethod;
bpDWScale = bpMomentScale = 0.1;
rpDW0 = 1.; rpDWPlus = 1.2; rpDWMinus = 0.5;
rpDWMin = FLT_EPSILON; rpDWMax = 50.;
if( trainMethod == RPROP )
{
rpDW0 = _param1;
if( rpDW0 < FLT_EPSILON )
rpDW0 = 1.;
rpDWMin = _param2;
rpDWMin = std::max( rpDWMin, 0. );
}
else if( trainMethod == BACKPROP )
{
bpDWScale = _param1;
if( bpDWScale <= 0 )
bpDWScale = 0.1;
bpDWScale = std::max( bpDWScale, 1e-3 );
bpDWScale = std::min( bpDWScale, 1. );
bpMomentScale = _param2;
if( bpMomentScale < 0 )
bpMomentScale = 0.1;
bpMomentScale = std::min( bpMomentScale, 1. );
}
else
trainMethod = RPROP;
return std::min(std::max(val, min_val), max_val);
}
class ANN_MLPImpl : public ANN_MLP
{
public:
ANN_MLPImpl()
{
clear();
}
ANN_MLPImpl( const Params& p )
{
clear();
setParams(p);
setActivationFunction( SIGMOID_SYM, 0, 0 );
setLayerSizes(Mat());
setTrainMethod(ANN_MLP::RPROP, 0.1, FLT_EPSILON);
}
virtual ~ANN_MLPImpl() {}
void setParams(const Params& p)
{
params = p;
create( params.layerSizes );
set_activ_func( params.activateFunc, params.fparam1, params.fparam2 );
}
Params getParams() const
{
return params;
}
CV_IMPL_PROPERTY(TermCriteria, TermCriteria, params.termCrit)
CV_IMPL_PROPERTY(double, BackpropWeightScale, params.bpDWScale)
CV_IMPL_PROPERTY(double, BackpropMomentumScale, params.bpMomentScale)
CV_IMPL_PROPERTY(double, RpropDW0, params.rpDW0)
CV_IMPL_PROPERTY(double, RpropDWPlus, params.rpDWPlus)
CV_IMPL_PROPERTY(double, RpropDWMinus, params.rpDWMinus)
CV_IMPL_PROPERTY(double, RpropDWMin, params.rpDWMin)
CV_IMPL_PROPERTY(double, RpropDWMax, params.rpDWMax)
void clear()
{
......@@ -132,7 +105,35 @@ public:
int layer_count() const { return (int)layer_sizes.size(); }
void set_activ_func( int _activ_func, double _f_param1, double _f_param2 )
void setTrainMethod(int method, double param1, double param2)
{
if (method != ANN_MLP::RPROP && method != ANN_MLP::BACKPROP)
method = ANN_MLP::RPROP;
params.trainMethod = method;
if(method == ANN_MLP::RPROP )
{
if( param1 < FLT_EPSILON )
param1 = 1.;
params.rpDW0 = param1;
params.rpDWMin = std::max( param2, 0. );
}
else if(method == ANN_MLP::BACKPROP )
{
if( param1 <= 0 )
param1 = 0.1;
params.bpDWScale = inBounds<double>(param1, 1e-3, 1.);
if( param2 < 0 )
param2 = 0.1;
params.bpMomentScale = std::min( param2, 1. );
}
}
int getTrainMethod() const
{
return params.trainMethod;
}
void setActivationFunction(int _activ_func, double _f_param1, double _f_param2 )
{
if( _activ_func < 0 || _activ_func > GAUSSIAN )
CV_Error( CV_StsOutOfRange, "Unknown activation function" );
......@@ -201,7 +202,12 @@ public:
}
}
void create( InputArray _layer_sizes )
Mat getLayerSizes() const
{
return Mat_<int>(layer_sizes, true);
}
void setLayerSizes( InputArray _layer_sizes )
{
clear();
......@@ -700,7 +706,7 @@ public:
termcrit.maxCount = std::max((params.termCrit.type & CV_TERMCRIT_ITER ? params.termCrit.maxCount : MAX_ITER), 1);
termcrit.epsilon = std::max((params.termCrit.type & CV_TERMCRIT_EPS ? params.termCrit.epsilon : DEFAULT_EPSILON), DBL_EPSILON);
int iter = params.trainMethod == Params::BACKPROP ?
int iter = params.trainMethod == ANN_MLP::BACKPROP ?
train_backprop( inputs, outputs, sw, termcrit ) :
train_rprop( inputs, outputs, sw, termcrit );
......@@ -1113,13 +1119,13 @@ public:
fs << "min_val" << min_val << "max_val" << max_val << "min_val1" << min_val1 << "max_val1" << max_val1;
fs << "training_params" << "{";
if( params.trainMethod == Params::BACKPROP )
if( params.trainMethod == ANN_MLP::BACKPROP )
{
fs << "train_method" << "BACKPROP";
fs << "dw_scale" << params.bpDWScale;
fs << "moment_scale" << params.bpMomentScale;
}
else if( params.trainMethod == Params::RPROP )
else if( params.trainMethod == ANN_MLP::RPROP )
{
fs << "train_method" << "RPROP";
fs << "dw0" << params.rpDW0;
......@@ -1186,7 +1192,7 @@ public:
f_param1 = (double)fn["f_param1"];
f_param2 = (double)fn["f_param2"];
set_activ_func( activ_func, f_param1, f_param2 );
setActivationFunction( activ_func, f_param1, f_param2 );
min_val = (double)fn["min_val"];
max_val = (double)fn["max_val"];
......@@ -1194,7 +1200,7 @@ public:
max_val1 = (double)fn["max_val1"];
FileNode tpn = fn["training_params"];
params = Params();
params = AnnParams();
if( !tpn.empty() )
{
......@@ -1202,13 +1208,13 @@ public:
if( tmethod_name == "BACKPROP" )
{
params.trainMethod = Params::BACKPROP;
params.trainMethod = ANN_MLP::BACKPROP;
params.bpDWScale = (double)tpn["dw_scale"];
params.bpMomentScale = (double)tpn["moment_scale"];
}
else if( tmethod_name == "RPROP" )
{
params.trainMethod = Params::RPROP;
params.trainMethod = ANN_MLP::RPROP;
params.rpDW0 = (double)tpn["dw0"];
params.rpDWPlus = (double)tpn["dw_plus"];
params.rpDWMinus = (double)tpn["dw_minus"];
......@@ -1244,7 +1250,7 @@ public:
vector<int> _layer_sizes;
readVectorOrMat(fn["layer_sizes"], _layer_sizes);
create( _layer_sizes );
setLayerSizes( _layer_sizes );
int i, l_count = layer_count();
read_params(fn);
......@@ -1267,11 +1273,6 @@ public:
trained = true;
}
Mat getLayerSizes() const
{
return Mat_<int>(layer_sizes, true);
}
Mat getWeights(int layerIdx) const
{
CV_Assert( 0 <= layerIdx && layerIdx < (int)weights.size() );
......@@ -1304,17 +1305,16 @@ public:
double min_val, max_val, min_val1, max_val1;
int activ_func;
int max_lsize, max_buf_sz;
Params params;
AnnParams params;
RNG rng;
Mutex mtx;
bool trained;
};
Ptr<ANN_MLP> ANN_MLP::create(const ANN_MLP::Params& params)
Ptr<ANN_MLP> ANN_MLP::create()
{
Ptr<ANN_MLPImpl> ann = makePtr<ANN_MLPImpl>(params);
return ann;
return makePtr<ANN_MLPImpl>();
}
}}
......
......@@ -54,47 +54,32 @@ log_ratio( double val )
}
Boost::Params::Params()
BoostTreeParams::BoostTreeParams()
{
boostType = Boost::REAL;
weakCount = 100;
weightTrimRate = 0.95;
CVFolds = 0;
maxDepth = 1;
}
Boost::Params::Params( int _boostType, int _weak_count,
double _weightTrimRate, int _maxDepth,
bool _use_surrogates, const Mat& _priors )
BoostTreeParams::BoostTreeParams( int _boostType, int _weak_count,
double _weightTrimRate)
{
boostType = _boostType;
weakCount = _weak_count;
weightTrimRate = _weightTrimRate;
CVFolds = 0;
maxDepth = _maxDepth;
useSurrogates = _use_surrogates;
priors = _priors;
}
class DTreesImplForBoost : public DTreesImpl
{
public:
DTreesImplForBoost() {}
virtual ~DTreesImplForBoost() {}
bool isClassifier() const { return true; }
void setBParams(const Boost::Params& p)
DTreesImplForBoost()
{
bparams = p;
params.setCVFolds(0);
params.setMaxDepth(1);
}
virtual ~DTreesImplForBoost() {}
Boost::Params getBParams() const
{
return bparams;
}
bool isClassifier() const { return true; }
void clear()
{
......@@ -199,10 +184,6 @@ public:
bool train( const Ptr<TrainData>& trainData, int flags )
{
Params dp(bparams.maxDepth, bparams.minSampleCount, bparams.regressionAccuracy,
bparams.useSurrogates, bparams.maxCategories, 0,
false, false, bparams.priors);
setDParams(dp);
startTraining(trainData, flags);
int treeidx, ntrees = bparams.weakCount >= 0 ? bparams.weakCount : 10000;
vector<int> sidx = w->sidx;
......@@ -426,12 +407,6 @@ public:
void readParams( const FileNode& fn )
{
DTreesImpl::readParams(fn);
bparams.maxDepth = params0.maxDepth;
bparams.minSampleCount = params0.minSampleCount;
bparams.regressionAccuracy = params0.regressionAccuracy;
bparams.useSurrogates = params0.useSurrogates;
bparams.maxCategories = params0.maxCategories;
bparams.priors = params0.priors;
FileNode tparams_node = fn["training_params"];
// check for old layout
......@@ -465,7 +440,7 @@ public:
}
}
Boost::Params bparams;
BoostTreeParams bparams;
vector<double> sumResult;
};
......@@ -476,6 +451,20 @@ public:
BoostImpl() {}
virtual ~BoostImpl() {}
CV_IMPL_PROPERTY(int, BoostType, impl.bparams.boostType)
CV_IMPL_PROPERTY(int, WeakCount, impl.bparams.weakCount)
CV_IMPL_PROPERTY(double, WeightTrimRate, impl.bparams.weightTrimRate)
CV_WRAP_SAME_PROPERTY(int, MaxCategories, impl.params)
CV_WRAP_SAME_PROPERTY(int, MaxDepth, impl.params)
CV_WRAP_SAME_PROPERTY(int, MinSampleCount, impl.params)
CV_WRAP_SAME_PROPERTY(int, CVFolds, impl.params)
CV_WRAP_SAME_PROPERTY(bool, UseSurrogates, impl.params)
CV_WRAP_SAME_PROPERTY(bool, Use1SERule, impl.params)
CV_WRAP_SAME_PROPERTY(bool, TruncatePrunedTree, impl.params)
CV_WRAP_SAME_PROPERTY(float, RegressionAccuracy, impl.params)
CV_WRAP_SAME_PROPERTY_S(cv::Mat, Priors, impl.params)
String getDefaultModelName() const { return "opencv_ml_boost"; }
bool train( const Ptr<TrainData>& trainData, int flags )
......@@ -498,9 +487,6 @@ public:
impl.read(fn);
}
void setBParams(const Params& p) { impl.setBParams(p); }
Params getBParams() const { return impl.getBParams(); }
int getVarCount() const { return impl.getVarCount(); }
bool isTrained() const { return impl.isTrained(); }
......@@ -515,11 +501,9 @@ public:
};
Ptr<Boost> Boost::create(const Params& params)
Ptr<Boost> Boost::create()
{
Ptr<BoostImpl> p = makePtr<BoostImpl>();
p->setBParams(params);
return p;
return makePtr<BoostImpl>();
}
}}
......
This diff is collapsed.
......@@ -50,46 +50,33 @@
namespace cv {
namespace ml {
KNearest::Params::Params(int k, bool isclassifier_, int Emax_, int algorithmType_) :
defaultK(k),
isclassifier(isclassifier_),
Emax(Emax_),
algorithmType(algorithmType_)
{
}
const String NAME_BRUTE_FORCE = "opencv_ml_knn";
const String NAME_KDTREE = "opencv_ml_knn_kd";
class KNearestImpl : public KNearest
class Impl
{
public:
KNearestImpl(const Params& p)
{
params = p;
}
virtual ~KNearestImpl() {}
Params getParams() const { return params; }
void setParams(const Params& p) { params = p; }
bool isClassifier() const { return params.isclassifier; }
bool isTrained() const { return !samples.empty(); }
String getDefaultModelName() const { return "opencv_ml_knn"; }
void clear()
Impl()
{
samples.release();
responses.release();
defaultK = 10;
isclassifier = true;
Emax = INT_MAX;
}
int getVarCount() const { return samples.cols; }
virtual ~Impl() {}
virtual String getModelName() const = 0;
virtual int getType() const = 0;
virtual float findNearest( InputArray _samples, int k,
OutputArray _results,
OutputArray _neighborResponses,
OutputArray _dists ) const = 0;
bool train( const Ptr<TrainData>& data, int flags )
{
Mat new_samples = data->getTrainSamples(ROW_SAMPLE);
Mat new_responses;
data->getTrainResponses().convertTo(new_responses, CV_32F);
bool update = (flags & UPDATE_MODEL) != 0 && !samples.empty();
bool update = (flags & ml::KNearest::UPDATE_MODEL) != 0 && !samples.empty();
CV_Assert( new_samples.type() == CV_32F );
......@@ -106,9 +93,53 @@ public:
samples.push_back(new_samples);
responses.push_back(new_responses);
doTrain(samples);
return true;
}
virtual void doTrain(InputArray points) { (void)points; }
void clear()
{
samples.release();
responses.release();
}
void read( const FileNode& fn )
{
clear();
isclassifier = (int)fn["is_classifier"] != 0;
defaultK = (int)fn["default_k"];
fn["samples"] >> samples;
fn["responses"] >> responses;
}
void write( FileStorage& fs ) const
{
fs << "is_classifier" << (int)isclassifier;
fs << "default_k" << defaultK;
fs << "samples" << samples;
fs << "responses" << responses;
}
public:
int defaultK;
bool isclassifier;
int Emax;
Mat samples;
Mat responses;
};
class BruteForceImpl : public Impl
{
public:
String getModelName() const { return NAME_BRUTE_FORCE; }
int getType() const { return ml::KNearest::BRUTE_FORCE; }
void findNearestCore( const Mat& _samples, int k0, const Range& range,
Mat* results, Mat* neighbor_responses,
Mat* dists, float* presult ) const
......@@ -199,7 +230,7 @@ public:
if( results || testidx+range.start == 0 )
{
if( !params.isclassifier || k == 1 )
if( !isclassifier || k == 1 )
{
float s = 0.f;
for( j = 0; j < k; j++ )
......@@ -251,7 +282,7 @@ public:
struct findKNearestInvoker : public ParallelLoopBody
{
findKNearestInvoker(const KNearestImpl* _p, int _k, const Mat& __samples,
findKNearestInvoker(const BruteForceImpl* _p, int _k, const Mat& __samples,
Mat* __results, Mat* __neighbor_responses, Mat* __dists, float* _presult)
{
p = _p;
......@@ -273,7 +304,7 @@ public:
}
}
const KNearestImpl* p;
const BruteForceImpl* p;
int k;
const Mat* _samples;
Mat* _results;
......@@ -324,88 +355,18 @@ public:
//invoker(Range(0, testcount));
return result;
}
float predict(InputArray inputs, OutputArray outputs, int) const
{
return findNearest( inputs, params.defaultK, outputs, noArray(), noArray() );
}
void write( FileStorage& fs ) const
{
fs << "is_classifier" << (int)params.isclassifier;
fs << "default_k" << params.defaultK;
fs << "samples" << samples;
fs << "responses" << responses;
}
void read( const FileNode& fn )
{
clear();
params.isclassifier = (int)fn["is_classifier"] != 0;
params.defaultK = (int)fn["default_k"];
fn["samples"] >> samples;
fn["responses"] >> responses;
}
Mat samples;
Mat responses;
Params params;
};
class KNearestKDTreeImpl : public KNearest
class KDTreeImpl : public Impl
{
public:
KNearestKDTreeImpl(const Params& p)
{
params = p;
}
virtual ~KNearestKDTreeImpl() {}
Params getParams() const { return params; }
void setParams(const Params& p) { params = p; }
bool isClassifier() const { return params.isclassifier; }
bool isTrained() const { return !samples.empty(); }
String getModelName() const { return NAME_KDTREE; }
int getType() const { return ml::KNearest::KDTREE; }
String getDefaultModelName() const { return "opencv_ml_knn_kd"; }
void clear()
{
samples.release();
responses.release();
}
int getVarCount() const { return samples.cols; }
bool train( const Ptr<TrainData>& data, int flags )
void doTrain(InputArray points)
{
Mat new_samples = data->getTrainSamples(ROW_SAMPLE);
Mat new_responses;
data->getTrainResponses().convertTo(new_responses, CV_32F);
bool update = (flags & UPDATE_MODEL) != 0 && !samples.empty();
CV_Assert( new_samples.type() == CV_32F );
if( !update )
{
clear();
}
else
{
CV_Assert( new_samples.cols == samples.cols &&
new_responses.cols == responses.cols );
}
samples.push_back(new_samples);
responses.push_back(new_responses);
tr.build(samples);
return true;
tr.build(points);
}
float findNearest( InputArray _samples, int k,
......@@ -460,51 +421,97 @@ public:
{
_d = d.row(i);
}
tr.findNearest(test_samples.row(i), k, params.Emax, _res, _nr, _d, noArray());
tr.findNearest(test_samples.row(i), k, Emax, _res, _nr, _d, noArray());
}
return result; // currently always 0
}
float predict(InputArray inputs, OutputArray outputs, int) const
KDTree tr;
};
//================================================================
class KNearestImpl : public KNearest
{
CV_IMPL_PROPERTY(int, DefaultK, impl->defaultK)
CV_IMPL_PROPERTY(bool, IsClassifier, impl->isclassifier)
CV_IMPL_PROPERTY(int, Emax, impl->Emax)
public:
int getAlgorithmType() const
{
return impl->getType();
}
void setAlgorithmType(int val)
{
return findNearest( inputs, params.defaultK, outputs, noArray(), noArray() );
if (val != BRUTE_FORCE && val != KDTREE)
val = BRUTE_FORCE;
initImpl(val);
}
void write( FileStorage& fs ) const
public:
KNearestImpl()
{
initImpl(BRUTE_FORCE);
}
~KNearestImpl()
{
fs << "is_classifier" << (int)params.isclassifier;
fs << "default_k" << params.defaultK;
}
fs << "samples" << samples;
fs << "responses" << responses;
bool isClassifier() const { return impl->isclassifier; }
bool isTrained() const { return !impl->samples.empty(); }
int getVarCount() const { return impl->samples.cols; }
void write( FileStorage& fs ) const
{
impl->write(fs);
}
void read( const FileNode& fn )
{
clear();
params.isclassifier = (int)fn["is_classifier"] != 0;
params.defaultK = (int)fn["default_k"];
int algorithmType = BRUTE_FORCE;
if (fn.name() == NAME_KDTREE)
algorithmType = KDTREE;
initImpl(algorithmType);
impl->read(fn);
}
fn["samples"] >> samples;
fn["responses"] >> responses;
float findNearest( InputArray samples, int k,
OutputArray results,
OutputArray neighborResponses=noArray(),
OutputArray dist=noArray() ) const
{
return impl->findNearest(samples, k, results, neighborResponses, dist);
}
KDTree tr;
float predict(InputArray inputs, OutputArray outputs, int) const
{
return impl->findNearest( inputs, impl->defaultK, outputs, noArray(), noArray() );
}
Mat samples;
Mat responses;
Params params;
};
bool train( const Ptr<TrainData>& data, int flags )
{
return impl->train(data, flags);
}
Ptr<KNearest> KNearest::create(const Params& p)
{
if (KDTREE==p.algorithmType)
String getDefaultModelName() const { return impl->getModelName(); }
protected:
void initImpl(int algorithmType)
{
return makePtr<KNearestKDTreeImpl>(p);
if (algorithmType != KDTREE)
impl = makePtr<BruteForceImpl>();
else
impl = makePtr<KDTreeImpl>();
}
Ptr<Impl> impl;
};
return makePtr<KNearestImpl>(p);
Ptr<KNearest> KNearest::create()
{
return makePtr<KNearestImpl>();
}
}
......
......@@ -60,31 +60,41 @@ using namespace std;
namespace cv {
namespace ml {
LogisticRegression::Params::Params(double learning_rate,
int iters,
int method,
int normlization,
int reg,
int batch_size)
class LrParams
{
alpha = learning_rate;
num_iters = iters;
norm = normlization;
regularized = reg;
train_method = method;
mini_batch_size = batch_size;
term_crit = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, num_iters, alpha);
}
public:
LrParams()
{
alpha = 0.001;
num_iters = 1000;
norm = LogisticRegression::REG_L2;
train_method = LogisticRegression::BATCH;
mini_batch_size = 1;
term_crit = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, num_iters, alpha);
}
double alpha; //!< learning rate.
int num_iters; //!< number of iterations.
int norm;
int train_method;
int mini_batch_size;
TermCriteria term_crit;
};
class LogisticRegressionImpl : public LogisticRegression
{
public:
LogisticRegressionImpl(const Params& pms)
: params(pms)
{
}
LogisticRegressionImpl() { }
virtual ~LogisticRegressionImpl() {}
CV_IMPL_PROPERTY(double, LearningRate, params.alpha)
CV_IMPL_PROPERTY(int, Iterations, params.num_iters)
CV_IMPL_PROPERTY(int, Regularization, params.norm)
CV_IMPL_PROPERTY(int, TrainMethod, params.train_method)
CV_IMPL_PROPERTY(int, MiniBatchSize, params.mini_batch_size)
CV_IMPL_PROPERTY(TermCriteria, TermCriteria, params.term_crit)
virtual bool train( const Ptr<TrainData>& trainData, int=0 );
virtual float predict(InputArray samples, OutputArray results, int) const;
virtual void clear();
......@@ -103,7 +113,7 @@ protected:
bool set_label_map(const Mat& _labels_i);
Mat remap_labels(const Mat& _labels_i, const map<int, int>& lmap) const;
protected:
Params params;
LrParams params;
Mat learnt_thetas;
map<int, int> forward_mapper;
map<int, int> reverse_mapper;
......@@ -111,9 +121,9 @@ protected:
Mat labels_n;
};
Ptr<LogisticRegression> LogisticRegression::create(const Params& params)
Ptr<LogisticRegression> LogisticRegression::create()
{
return makePtr<LogisticRegressionImpl>(params);
return makePtr<LogisticRegressionImpl>();
}
bool LogisticRegressionImpl::train(const Ptr<TrainData>& trainData, int)
......@@ -312,7 +322,7 @@ double LogisticRegressionImpl::compute_cost(const Mat& _data, const Mat& _labels
theta_b = _init_theta(Range(1, n), Range::all());
multiply(theta_b, theta_b, theta_c, 1);
if(this->params.regularized > 0)
if(params.norm != REG_NONE)
{
llambda = 1;
}
......@@ -367,7 +377,7 @@ Mat LogisticRegressionImpl::compute_batch_gradient(const Mat& _data, const Mat&
m = _data.rows;
n = _data.cols;
if(this->params.regularized > 0)
if(params.norm != REG_NONE)
{
llambda = 1;
}
......@@ -439,7 +449,7 @@ Mat LogisticRegressionImpl::compute_mini_batch_gradient(const Mat& _data, const
Mat data_d;
Mat labels_l;
if(this->params.regularized > 0)
if(params.norm != REG_NONE)
{
lambda_l = 1;
}
......@@ -570,7 +580,6 @@ void LogisticRegressionImpl::write(FileStorage& fs) const
fs<<"alpha"<<this->params.alpha;
fs<<"iterations"<<this->params.num_iters;
fs<<"norm"<<this->params.norm;
fs<<"regularized"<<this->params.regularized;
fs<<"train_method"<<this->params.train_method;
if(this->params.train_method == LogisticRegression::MINI_BATCH)
{
......@@ -592,7 +601,6 @@ void LogisticRegressionImpl::read(const FileNode& fn)
this->params.alpha = (double)fn["alpha"];
this->params.num_iters = (int)fn["iterations"];
this->params.norm = (int)fn["norm"];
this->params.regularized = (int)fn["regularized"];
this->params.train_method = (int)fn["train_method"];
if(this->params.train_method == LogisticRegression::MINI_BATCH)
......
......@@ -43,7 +43,6 @@
namespace cv {
namespace ml {
NormalBayesClassifier::Params::Params() {}
class NormalBayesClassifierImpl : public NormalBayesClassifier
{
......@@ -53,9 +52,6 @@ public:
nallvars = 0;
}
void setParams(const Params&) {}
Params getParams() const { return Params(); }
bool train( const Ptr<TrainData>& trainData, int flags )
{
const float min_variation = FLT_EPSILON;
......@@ -455,7 +451,7 @@ public:
};
Ptr<NormalBayesClassifier> NormalBayesClassifier::create(const Params&)
Ptr<NormalBayesClassifier> NormalBayesClassifier::create()
{
Ptr<NormalBayesClassifierImpl> p = makePtr<NormalBayesClassifierImpl>();
return p;
......
......@@ -120,6 +120,91 @@ namespace ml
return termCrit;
}
struct TreeParams
{
TreeParams();
TreeParams( int maxDepth, int minSampleCount,
double regressionAccuracy, bool useSurrogates,
int maxCategories, int CVFolds,
bool use1SERule, bool truncatePrunedTree,
const Mat& priors );
inline void setMaxCategories(int val)
{
if( val < 2 )
CV_Error( CV_StsOutOfRange, "max_categories should be >= 2" );
maxCategories = std::min(val, 15 );
}
inline void setMaxDepth(int val)
{
if( val < 0 )
CV_Error( CV_StsOutOfRange, "max_depth should be >= 0" );
maxDepth = std::min( val, 25 );
}
inline void setMinSampleCount(int val)
{
minSampleCount = std::max(val, 1);
}
inline void setCVFolds(int val)
{
if( val < 0 )
CV_Error( CV_StsOutOfRange,
"params.CVFolds should be =0 (the tree is not pruned) "
"or n>0 (tree is pruned using n-fold cross-validation)" );
if( val == 1 )
val = 0;
CVFolds = val;
}
inline void setRegressionAccuracy(float val)
{
if( val < 0 )
CV_Error( CV_StsOutOfRange, "params.regression_accuracy should be >= 0" );
regressionAccuracy = val;
}
inline int getMaxCategories() const { return maxCategories; }
inline int getMaxDepth() const { return maxDepth; }
inline int getMinSampleCount() const { return minSampleCount; }
inline int getCVFolds() const { return CVFolds; }
inline float getRegressionAccuracy() const { return regressionAccuracy; }
CV_IMPL_PROPERTY(bool, UseSurrogates, useSurrogates)
CV_IMPL_PROPERTY(bool, Use1SERule, use1SERule)
CV_IMPL_PROPERTY(bool, TruncatePrunedTree, truncatePrunedTree)
CV_IMPL_PROPERTY_S(cv::Mat, Priors, priors)
public:
bool useSurrogates;
bool use1SERule;
bool truncatePrunedTree;
Mat priors;
protected:
int maxCategories;
int maxDepth;
int minSampleCount;
int CVFolds;
float regressionAccuracy;
};
struct RTreeParams
{
RTreeParams();
RTreeParams(bool calcVarImportance, int nactiveVars, TermCriteria termCrit );
bool calcVarImportance;
int nactiveVars;
TermCriteria termCrit;
};
struct BoostTreeParams
{
BoostTreeParams();
BoostTreeParams(int boostType, int weakCount, double weightTrimRate);
int boostType;
int weakCount;
double weightTrimRate;
};
class DTreesImpl : public DTrees
{
public:
......@@ -191,6 +276,16 @@ namespace ml
int maxSubsetSize;
};
CV_WRAP_SAME_PROPERTY(int, MaxCategories, params)
CV_WRAP_SAME_PROPERTY(int, MaxDepth, params)
CV_WRAP_SAME_PROPERTY(int, MinSampleCount, params)
CV_WRAP_SAME_PROPERTY(int, CVFolds, params)
CV_WRAP_SAME_PROPERTY(bool, UseSurrogates, params)
CV_WRAP_SAME_PROPERTY(bool, Use1SERule, params)
CV_WRAP_SAME_PROPERTY(bool, TruncatePrunedTree, params)
CV_WRAP_SAME_PROPERTY(float, RegressionAccuracy, params)
CV_WRAP_SAME_PROPERTY_S(cv::Mat, Priors, params)
DTreesImpl();
virtual ~DTreesImpl();
virtual void clear();
......@@ -202,8 +297,7 @@ namespace ml
int getCatCount(int vi) const { return catOfs[vi][1] - catOfs[vi][0]; }
int getSubsetSize(int vi) const { return (getCatCount(vi) + 31)/32; }
virtual void setDParams(const Params& _params);
virtual Params getDParams() const;
virtual void setDParams(const TreeParams& _params);
virtual void startTraining( const Ptr<TrainData>& trainData, int flags );
virtual void endTraining();
virtual void initCompVarIdx();
......@@ -250,7 +344,7 @@ namespace ml
virtual const std::vector<Split>& getSplits() const { return splits; }
virtual const std::vector<int>& getSubsets() const { return subsets; }
Params params0, params;
TreeParams params;
vector<int> varIdx;
vector<int> compVarIdx;
......
......@@ -48,21 +48,16 @@ namespace ml {
//////////////////////////////////////////////////////////////////////////////////////////
// Random trees //
//////////////////////////////////////////////////////////////////////////////////////////
RTrees::Params::Params()
: DTrees::Params(5, 10, 0.f, false, 10, 0, false, false, Mat())
RTreeParams::RTreeParams()
{
calcVarImportance = false;
nactiveVars = 0;
termCrit = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 50, 0.1);
}
RTrees::Params::Params( int _maxDepth, int _minSampleCount,
double _regressionAccuracy, bool _useSurrogates,
int _maxCategories, const Mat& _priors,
bool _calcVarImportance, int _nactiveVars,
TermCriteria _termCrit )
: DTrees::Params(_maxDepth, _minSampleCount, _regressionAccuracy, _useSurrogates,
_maxCategories, 0, false, false, _priors)
RTreeParams::RTreeParams(bool _calcVarImportance,
int _nactiveVars,
TermCriteria _termCrit )
{
calcVarImportance = _calcVarImportance;
nactiveVars = _nactiveVars;
......@@ -73,18 +68,19 @@ RTrees::Params::Params( int _maxDepth, int _minSampleCount,
class DTreesImplForRTrees : public DTreesImpl
{
public:
DTreesImplForRTrees() {}
virtual ~DTreesImplForRTrees() {}
void setRParams(const RTrees::Params& p)
{
rparams = p;
}
RTrees::Params getRParams() const
DTreesImplForRTrees()
{
return rparams;
params.setMaxDepth(5);
params.setMinSampleCount(10);
params.setRegressionAccuracy(0.f);
params.useSurrogates = false;
params.setMaxCategories(10);
params.setCVFolds(0);
params.use1SERule = false;
params.truncatePrunedTree = false;
params.priors = Mat();
}
virtual ~DTreesImplForRTrees() {}
void clear()
{
......@@ -129,10 +125,6 @@ public:
bool train( const Ptr<TrainData>& trainData, int flags )
{
Params dp(rparams.maxDepth, rparams.minSampleCount, rparams.regressionAccuracy,
rparams.useSurrogates, rparams.maxCategories, rparams.CVFolds,
rparams.use1SERule, rparams.truncatePrunedTree, rparams.priors);
setDParams(dp);
startTraining(trainData, flags);
int treeidx, ntrees = (rparams.termCrit.type & TermCriteria::COUNT) != 0 ?
rparams.termCrit.maxCount : 10000;
......@@ -326,12 +318,6 @@ public:
void readParams( const FileNode& fn )
{
DTreesImpl::readParams(fn);
rparams.maxDepth = params0.maxDepth;
rparams.minSampleCount = params0.minSampleCount;
rparams.regressionAccuracy = params0.regressionAccuracy;
rparams.useSurrogates = params0.useSurrogates;
rparams.maxCategories = params0.maxCategories;
rparams.priors = params0.priors;
FileNode tparams_node = fn["training_params"];
rparams.nactiveVars = (int)tparams_node["nactive_vars"];
......@@ -361,7 +347,7 @@ public:
}
}
RTrees::Params rparams;
RTreeParams rparams;
double oobError;
vector<float> varImportance;
vector<int> allVars, activeVars;
......@@ -372,6 +358,20 @@ public:
class RTreesImpl : public RTrees
{
public:
CV_IMPL_PROPERTY(bool, CalculateVarImportance, impl.rparams.calcVarImportance)
CV_IMPL_PROPERTY(int, ActiveVarCount, impl.rparams.nactiveVars)
CV_IMPL_PROPERTY_S(TermCriteria, TermCriteria, impl.rparams.termCrit)
CV_WRAP_SAME_PROPERTY(int, MaxCategories, impl.params)
CV_WRAP_SAME_PROPERTY(int, MaxDepth, impl.params)
CV_WRAP_SAME_PROPERTY(int, MinSampleCount, impl.params)
CV_WRAP_SAME_PROPERTY(int, CVFolds, impl.params)
CV_WRAP_SAME_PROPERTY(bool, UseSurrogates, impl.params)
CV_WRAP_SAME_PROPERTY(bool, Use1SERule, impl.params)
CV_WRAP_SAME_PROPERTY(bool, TruncatePrunedTree, impl.params)
CV_WRAP_SAME_PROPERTY(float, RegressionAccuracy, impl.params)
CV_WRAP_SAME_PROPERTY_S(cv::Mat, Priors, impl.params)
RTreesImpl() {}
virtual ~RTreesImpl() {}
......@@ -397,9 +397,6 @@ public:
impl.read(fn);
}
void setRParams(const Params& p) { impl.setRParams(p); }
Params getRParams() const { return impl.getRParams(); }
Mat getVarImportance() const { return Mat_<float>(impl.varImportance, true); }
int getVarCount() const { return impl.getVarCount(); }
......@@ -415,11 +412,9 @@ public:
};
Ptr<RTrees> RTrees::create(const Params& params)
Ptr<RTrees> RTrees::create()
{
Ptr<RTreesImpl> p = makePtr<RTreesImpl>();
p->setRParams(params);
return p;
return makePtr<RTreesImpl>();
}
}}
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
......@@ -95,16 +95,13 @@ void CV_LRTest::run( int /*start_from*/ )
string dataFileName = ts->get_data_path() + "iris.data";
Ptr<TrainData> tdata = TrainData::loadFromCSV(dataFileName, 0);
LogisticRegression::Params params = LogisticRegression::Params();
params.alpha = 1.0;
params.num_iters = 10001;
params.norm = LogisticRegression::REG_L2;
params.regularized = 1;
params.train_method = LogisticRegression::BATCH;
params.mini_batch_size = 10;
// run LR classifier train classifier
Ptr<LogisticRegression> p = LogisticRegression::create(params);
Ptr<LogisticRegression> p = LogisticRegression::create();
p->setLearningRate(1.0);
p->setIterations(10001);
p->setRegularization(LogisticRegression::REG_L2);
p->setTrainMethod(LogisticRegression::BATCH);
p->setMiniBatchSize(10);
p->train(tdata);
// predict using the same data
......@@ -157,20 +154,17 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ )
Mat responses1, responses2;
Mat learnt_mat1, learnt_mat2;
LogisticRegression::Params params1 = LogisticRegression::Params();
params1.alpha = 1.0;
params1.num_iters = 10001;
params1.norm = LogisticRegression::REG_L2;
params1.regularized = 1;
params1.train_method = LogisticRegression::BATCH;
params1.mini_batch_size = 10;
// train and save the classifier
String filename = tempfile(".xml");
try
{
// run LR classifier train classifier
Ptr<LogisticRegression> lr1 = LogisticRegression::create(params1);
Ptr<LogisticRegression> lr1 = LogisticRegression::create();
lr1->setLearningRate(1.0);
lr1->setIterations(10001);
lr1->setRegularization(LogisticRegression::REG_L2);
lr1->setTrainMethod(LogisticRegression::BATCH);
lr1->setMiniBatchSize(10);
lr1->train(tdata);
lr1->predict(tdata->getSamples(), responses1);
learnt_mat1 = lr1->get_learnt_thetas();
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment