Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
0e339dd1
Commit
0e339dd1
authored
12 years ago
by
Vladislav Vinogradov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
hog
parent
0ddd16cf
No related merge requests found
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
24 additions
and
83 deletions
+24
-83
hog.cu
modules/gpu/src/cuda/hog.cu
+24
-83
No files found.
modules/gpu/src/cuda/hog.cu
View file @
0e339dd1
...
...
@@ -42,7 +42,10 @@
#if !defined CUDA_DISABLER
#include "internal_shared.hpp"
#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/reduce.hpp"
#include "opencv2/gpu/device/functional.hpp"
#include "opencv2/gpu/device/warp_shuffle.hpp"
namespace cv { namespace gpu { namespace device
{
...
...
@@ -226,29 +229,30 @@ namespace cv { namespace gpu { namespace device
template<int size>
__device__ float reduce_smem(
volatile float* smem
)
__device__ float reduce_smem(
float* smem, float val
)
{
unsigned int tid = threadIdx.x;
float sum =
smem[tid]
;
float sum =
val
;
if (size >= 512) { if (tid < 256) smem[tid] = sum = sum + smem[tid + 256]; __syncthreads(); }
if (size >= 256) { if (tid < 128) smem[tid] = sum = sum + smem[tid + 128]; __syncthreads(); }
if (size >= 128) { if (tid < 64) smem[tid] = sum = sum + smem[tid + 64]; __syncthreads(); }
reduce<size>(smem, sum, tid, plus<float>());
if (
tid <
32)
if (
size ==
32)
{
if (size >= 64) smem[tid] = sum = sum + smem[tid + 32];
if (size >= 32) smem[tid] = sum = sum + smem[tid + 16];
if (size >= 16) smem[tid] = sum = sum + smem[tid + 8];
if (size >= 8) smem[tid] = sum = sum + smem[tid + 4];
if (size >= 4) smem[tid] = sum = sum + smem[tid + 2];
if (size >= 2) smem[tid] = sum = sum + smem[tid + 1];
#if __CUDA_ARCH__ >= 300
return shfl(sum, 0);
#else
return smem[0];
#endif
}
#if __CUDA_ARCH__ >= 300
if (threadIdx.x == 0)
smem[0] = sum;
#endif
__syncthreads();
sum = smem[0];
return s
um
;
return s
mem[0]
;
}
...
...
@@ -272,19 +276,13 @@ namespace cv { namespace gpu { namespace device
if (threadIdx.x < block_hist_size)
elem = hist[0];
squares[threadIdx.x] = elem * elem;
__syncthreads();
float sum = reduce_smem<nthreads>(squares);
float sum = reduce_smem<nthreads>(squares, elem * elem);
float scale = 1.0f / (::sqrtf(sum) + 0.1f * block_hist_size);
elem = ::min(elem * scale, threshold);
__syncthreads();
squares[threadIdx.x] = elem * elem;
sum = reduce_smem<nthreads>(squares, elem * elem);
__syncthreads();
sum = reduce_smem<nthreads>(squares);
scale = 1.0f / (::sqrtf(sum) + 1e-3f);
if (threadIdx.x < block_hist_size)
...
...
@@ -355,40 +353,11 @@ namespace cv { namespace gpu { namespace device
__shared__ float products[nthreads * nblocks];
const int tid = threadIdx.z * nthreads + threadIdx.x;
products[tid] = product;
__syncthreads();
if (nthreads >= 512)
{
if (threadIdx.x < 256) products[tid] = product = product + products[tid + 256];
__syncthreads();
}
if (nthreads >= 256)
{
if (threadIdx.x < 128) products[tid] = product = product + products[tid + 128];
__syncthreads();
}
if (nthreads >= 128)
{
if (threadIdx.x < 64) products[tid] = product = product + products[tid + 64];
__syncthreads();
}
if (threadIdx.x < 32)
{
volatile float* smem = products;
if (nthreads >= 64) smem[tid] = product = product + smem[tid + 32];
if (nthreads >= 32) smem[tid] = product = product + smem[tid + 16];
if (nthreads >= 16) smem[tid] = product = product + smem[tid + 8];
if (nthreads >= 8) smem[tid] = product = product + smem[tid + 4];
if (nthreads >= 4) smem[tid] = product = product + smem[tid + 2];
if (nthreads >= 2) smem[tid] = product = product + smem[tid + 1];
}
reduce<nthreads>(products, product, tid, plus<float>());
if (threadIdx.x == 0)
confidences[blockIdx.y * img_win_width + blockIdx.x * blockDim.z + win_x]
= (float)(product + free_coef);
confidences[blockIdx.y * img_win_width + blockIdx.x * blockDim.z + win_x] = product + free_coef;
}
...
...
@@ -446,36 +415,8 @@ namespace cv { namespace gpu { namespace device
__shared__ float products[nthreads * nblocks];
const int tid = threadIdx.z * nthreads + threadIdx.x;
products[tid] = product;
__syncthreads();
if (nthreads >= 512)
{
if (threadIdx.x < 256) products[tid] = product = product + products[tid + 256];
__syncthreads();
}
if (nthreads >= 256)
{
if (threadIdx.x < 128) products[tid] = product = product + products[tid + 128];
__syncthreads();
}
if (nthreads >= 128)
{
if (threadIdx.x < 64) products[tid] = product = product + products[tid + 64];
__syncthreads();
}
if (threadIdx.x < 32)
{
volatile float* smem = products;
if (nthreads >= 64) smem[tid] = product = product + smem[tid + 32];
if (nthreads >= 32) smem[tid] = product = product + smem[tid + 16];
if (nthreads >= 16) smem[tid] = product = product + smem[tid + 8];
if (nthreads >= 8) smem[tid] = product = product + smem[tid + 4];
if (nthreads >= 4) smem[tid] = product = product + smem[tid + 2];
if (nthreads >= 2) smem[tid] = product = product + smem[tid + 1];
}
reduce<nthreads>(products, product, tid, plus<float>());
if (threadIdx.x == 0)
labels[blockIdx.y * img_win_width + blockIdx.x * blockDim.z + win_x] = (product + free_coef >= threshold);
...
...
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment