Commit 0db69fbe authored by yao's avatar yao

Add blend, columnsum, pyrUp/down, matchTemplate for ocl module

parent 064d022a
......@@ -858,7 +858,44 @@ namespace cv
void benchmark_copy_vectorize(const oclMat &src, oclMat &dst);
void benchmark_copy_offset_stride(const oclMat &src, oclMat &dst);
void benchmark_ILP();
//! computes vertical sum, supports only CV_32FC1 images
CV_EXPORTS void columnSum(const oclMat& src, oclMat& sum);
//! performs linear blending of two images
//! to avoid accuracy errors sum of weigths shouldn't be very close to zero
// supports only CV_8UC1 source type
CV_EXPORTS void blendLinear(const oclMat& img1, const oclMat& img2, const oclMat& weights1, const oclMat& weights2, oclMat& result);
/////////////////////////////// Pyramid /////////////////////////////////////
CV_EXPORTS void pyrDown(const oclMat& src, oclMat& dst);
//! upsamples the source image and then smoothes it
CV_EXPORTS void pyrUp(const cv::ocl::oclMat& src,cv::ocl::oclMat& dst);
///////////////////////////////////////// match_template /////////////////////////////////////////////////////////////
struct CV_EXPORTS MatchTemplateBuf
{
Size user_block_size;
oclMat imagef, templf;
std::vector<oclMat> images;
std::vector<oclMat> image_sums;
std::vector<oclMat> image_sqsums;
};
//! computes the proximity map for the raster template and the image where the template is searched for
// Supports TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED for type 8UC1 and 8UC4
// Supports TM_SQDIFF, TM_CCORR for type 32FC1 and 32FC4
CV_EXPORTS void matchTemplate(const oclMat& image, const oclMat& templ, oclMat& result, int method);
//! computes the proximity map for the raster template and the image where the template is searched for
// Supports TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED for type 8UC1 and 8UC4
// Supports TM_SQDIFF, TM_CCORR for type 32FC1 and 32FC4
CV_EXPORTS void matchTemplate(const oclMat& image, const oclMat& templ, oclMat& result, int method, MatchTemplateBuf& buf);
}
}
#include "opencv2/ocl/matrix_operations.hpp"
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Nathan, liujun@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <iomanip>
using namespace cv;
using namespace cv::ocl;
using namespace std;
#if !defined (HAVE_OPENCL)
void cv::ocl::blendLinear(const oclMat& img1, const oclMat& img2, const oclMat& weights1, const oclMat& weights2,
oclMat& result){throw_nogpu();}
#else
namespace cv
{
namespace ocl
{
////////////////////////////////////OpenCL kernel strings//////////////////////////
extern const char *blend_linear;
}
}
void cv::ocl::blendLinear(const oclMat& img1, const oclMat& img2, const oclMat& weights1, const oclMat& weights2,
oclMat& result)
{
cv::ocl::Context *ctx = img1.clCxt;
assert(ctx == img2.clCxt && ctx == weights1.clCxt && ctx == weights2.clCxt);
int channels = img1.channels();
int depth = img1.depth();
int rows = img1.rows;
int cols = img1.cols;
int istep = img1.step;
int wstep = weights1.step;
size_t globalSize[] = {cols * channels, rows, 1};
size_t localSize[] = {16, 16, 1};
vector< pair<size_t, const void *> > args;
if(globalSize[0]!=0)
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&result.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&img1.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&img2.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&weights1.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&weights2.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&istep ));
args.push_back( make_pair( sizeof(cl_int), (void *)&wstep ));
std::string kernelName = "BlendLinear";
openCLExecuteKernel(ctx, &blend_linear, kernelName, globalSize, localSize, args, channels, depth);
}
}
#endif
\ No newline at end of file
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Chunpeng Zhang, chunpeng@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <iomanip>
#include "precomp.hpp"
using namespace cv;
using namespace cv::ocl;
using namespace std;
#if !defined(HAVE_OPENCL)
void cv::ocl::columnSum(const oclMat& src,oclMat& dst){ throw_nogpu(); }
#else /*!HAVE_OPENCL */
namespace cv
{
namespace ocl
{
extern const char* imgproc_columnsum;
}
}
void cv::ocl::columnSum(const oclMat& src,oclMat& dst)
{
CV_Assert(src.type() == CV_32FC1 && dst.type() == CV_32FC1 && src.size() == dst.size());
Context *clCxt = src.clCxt;
const std::string kernelName = "columnSum";
std::vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.step));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step));
size_t globalThreads[3] = {dst.cols, dst.rows, 1};
size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &imgproc_columnsum, kernelName, globalThreads, localThreads, args, src.channels(), src.depth());
}
#endif
\ No newline at end of file
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, MulticoreWare Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Liu Liujun, liujun@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
__kernel void BlendLinear_C1_D0(
__global uchar *dst,
__global uchar *img1,
__global uchar *img2,
__global float *weight1,
__global float *weight2,
int rows,
int cols,
int istep,
int wstep
)
{
int idx = get_global_id(0);
int idy = get_global_id(1);
if (idx < cols && idy < rows)
{
int pos = idy * istep + idx;
int wpos = idy * (wstep /sizeof(float)) + idx;
float w1 = weight1[wpos];
float w2 = weight2[wpos];
dst[pos] = (img1[pos] * w1 + img2[pos] * w2) / (w1 + w2 + 1e-5f);
}
}
__kernel void BlendLinear_C3_D0(
__global uchar *dst,
__global uchar *img1,
__global uchar *img2,
__global float *weight1,
__global float *weight2,
int rows,
int cols,
int istep,
int wstep
)
{
int idx = get_global_id(0);
int idy = get_global_id(1);
int x = idx / 3;
int y = idy;
if (x < cols && y < rows)
{
int pos = idy * istep + idx;
int wpos = idy * (wstep /sizeof(float)) + x;
float w1 = weight1[wpos];
float w2 = weight2[wpos];
dst[pos] = (img1[pos] * w1 + img2[pos] * w2) / (w1 + w2 + 1e-5f);
}
}
__kernel void BlendLinear_C4_D0(
__global uchar *dst,
__global uchar *img1,
__global uchar *img2,
__global float *weight1,
__global float *weight2,
int rows,
int cols,
int istep,
int wstep
)
{
int idx = get_global_id(0);
int idy = get_global_id(1);
int x = idx / 4;
int y = idy;
if (x < cols && y < rows)
{
int pos = idy * istep + idx;
int wpos = idy * (wstep /sizeof(float)) + x;
float w1 = weight1[wpos];
float w2 = weight2[wpos];
dst[pos] = (img1[pos] * w1 + img2[pos] * w2) / (w1 + w2 + 1e-5f);
}
}
__kernel void BlendLinear_C1_D5(
__global float *dst,
__global float *img1,
__global float *img2,
__global float *weight1,
__global float *weight2,
int rows,
int cols,
int istep,
int wstep
)
{
int idx = get_global_id(0);
int idy = get_global_id(1);
if (idx < cols && idy < rows)
{
int pos = idy * (istep / sizeof(float)) + idx;
int wpos = idy * (wstep /sizeof(float)) + idx;
float w1 = weight1[wpos];
float w2 = weight2[wpos];
dst[pos] = (img1[pos] * w1 + img2[pos] * w2) / (w1 + w2 + 1e-5f);
}
}
__kernel void BlendLinear_C3_D5(
__global float *dst,
__global float *img1,
__global float *img2,
__global float *weight1,
__global float *weight2,
int rows,
int cols,
int istep,
int wstep
)
{
int idx = get_global_id(0);
int idy = get_global_id(1);
int x = idx / 3;
int y = idy;
if (x < cols && y < rows)
{
int pos = idy * (istep / sizeof(float)) + idx;
int wpos = idy * (wstep /sizeof(float)) + x;
float w1 = weight1[wpos];
float w2 = weight2[wpos];
dst[pos] = (img1[pos] * w1 + img2[pos] * w2) / (w1 + w2 + 1e-5f);
}
}
__kernel void BlendLinear_C4_D5(
__global float *dst,
__global float *img1,
__global float *img2,
__global float *weight1,
__global float *weight2,
int rows,
int cols,
int istep,
int wstep
)
{
int idx = get_global_id(0);
int idy = get_global_id(1);
int x = idx / 4;
int y = idy;
if (x < cols && y < rows)
{
int pos = idy * (istep / sizeof(float)) + idx;
int wpos = idy * (wstep /sizeof(float)) + x;
float w1 = weight1[wpos];
float w2 = weight2[wpos];
dst[pos] = (img1[pos] * w1 + img2[pos] * w2) / (w1 + w2 + 1e-5f);
}
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Chunpeng Zhang chunpeng@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#pragma OPENCL EXTENSION cl_amd_printf : enable
#if defined (__ATI__)
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (__NVIDIA__)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
////////////////////////////////////////////////////////////////////
///////////////////////// columnSum ////////////////////////////////
////////////////////////////////////////////////////////////////////
/// CV_32FC1
__kernel void columnSum_C1_D5(__global float* src,__global float* dst,int srcCols,int srcRows,int srcStep,int dstStep)
{
const int x = get_global_id(0);
srcStep >>= 2;
dstStep >>= 2;
if (x < srcCols)
{
int srcIdx = x ;
int dstIdx = x ;
float sum = 0;
for (int y = 0; y < srcRows; ++y)
{
sum += src[srcIdx];
dst[dstIdx] = sum;
srcIdx += srcStep;
dstIdx += dstStep;
}
}
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#pragma OPENCL EXTENSION cl_amd_printf : enable
#if defined (__ATI__)
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (__NVIDIA__)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
#if !defined(USE_SQR_INTEGRAL) && (defined (__ATI__) || defined (__NVIDIA__))
#define TYPE_IMAGE_SQSUM double
#else
#define TYPE_IMAGE_SQSUM ulong
#endif
//////////////////////////////////////////////////
// utilities
#define SQSUMS_PTR(ox, oy) mad24(gidy + oy, img_sqsums_step, gidx + img_sqsums_offset + ox)
#define SUMS_PTR(ox, oy) mad24(gidy + oy, img_sums_step, gidx + img_sums_offset + ox)
// normAcc* are accurate normalization routines which make GPU matchTemplate
// consistent with CPU one
float normAcc(float num, float denum)
{
if(fabs(num) < denum)
{
return num / denum;
}
if(fabs(num) < denum * 1.125f)
{
return num > 0 ? 1 : -1;
}
return 0;
}
float normAcc_SQDIFF(float num, float denum)
{
if(fabs(num) < denum)
{
return num / denum;
}
if(fabs(num) < denum * 1.125f)
{
return num > 0 ? 1 : -1;
}
return 1;
}
//////////////////////////////////////////////////////////////////////
// normalize
__kernel
void normalizeKernel_C1_D0
(
__global const TYPE_IMAGE_SQSUM * img_sqsums,
__global float * res,
ulong tpl_sqsum,
int res_rows,
int res_cols,
int tpl_rows,
int tpl_cols,
int img_sqsums_offset,
int img_sqsums_step,
int res_offset,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
img_sqsums_step /= sizeof(*img_sqsums);
img_sqsums_offset /= sizeof(*img_sqsums);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
float image_sqsum_ = (float)(
(img_sqsums[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums[SQSUMS_PTR(tpl_cols, 0)]) -
(img_sqsums[SQSUMS_PTR(0, tpl_rows)] - img_sqsums[SQSUMS_PTR(0, 0)]));
res[res_idx] = normAcc(res[res_idx], sqrt(image_sqsum_ * tpl_sqsum));
}
}
__kernel
void matchTemplate_Prepared_SQDIFF_C1_D0
(
__global const TYPE_IMAGE_SQSUM * img_sqsums,
__global float * res,
ulong tpl_sqsum,
int res_rows,
int res_cols,
int tpl_rows,
int tpl_cols,
int img_sqsums_offset,
int img_sqsums_step,
int res_offset,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
img_sqsums_step /= sizeof(*img_sqsums);
img_sqsums_offset /= sizeof(*img_sqsums);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
float image_sqsum_ = (float)(
(img_sqsums[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums[SQSUMS_PTR(tpl_cols, 0)]) -
(img_sqsums[SQSUMS_PTR(0, tpl_rows)] - img_sqsums[SQSUMS_PTR(0, 0)]));
res[res_idx] = image_sqsum_ - 2.f * res[res_idx] + tpl_sqsum;
}
}
__kernel
void matchTemplate_Prepared_SQDIFF_NORMED_C1_D0
(
__global const TYPE_IMAGE_SQSUM * img_sqsums,
__global float * res,
ulong tpl_sqsum,
int res_rows,
int res_cols,
int tpl_rows,
int tpl_cols,
int img_sqsums_offset,
int img_sqsums_step,
int res_offset,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
img_sqsums_step /= sizeof(*img_sqsums);
img_sqsums_offset /= sizeof(*img_sqsums);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
float image_sqsum_ = (float)(
(img_sqsums[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums[SQSUMS_PTR(tpl_cols, 0)]) -
(img_sqsums[SQSUMS_PTR(0, tpl_rows)] - img_sqsums[SQSUMS_PTR(0, 0)]));
res[res_idx] = normAcc_SQDIFF(image_sqsum_ - 2.f * res[res_idx] + tpl_sqsum,
sqrt(image_sqsum_ * tpl_sqsum));
}
}
//////////////////////////////////////////////////
// SQDIFF
__kernel
void matchTemplate_Naive_SQDIFF_C1_D0
(
__global const uchar * img,
__global const uchar * tpl,
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int img_offset,
int tpl_offset,
int res_offset,
int img_step,
int tpl_step,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int i,j;
int delta;
int sum = 0;
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
for(i = 0; i < tpl_rows; i ++)
{
// get specific rows of img data
__global const uchar * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
__global const uchar * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
for(j = 0; j < tpl_cols; j ++)
{
delta = img_ptr[j] - tpl_ptr[j];
sum = mad24(delta, delta, sum);
}
}
res[res_idx] = sum;
}
}
__kernel
void matchTemplate_Naive_SQDIFF_C1_D5
(
__global const float * img,
__global const float * tpl,
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int img_offset,
int tpl_offset,
int res_offset,
int img_step,
int tpl_step,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int i,j;
float delta;
float sum = 0;
img_step /= sizeof(*img);
img_offset /= sizeof(*img);
tpl_step /= sizeof(*tpl);
tpl_offset /= sizeof(*tpl);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
for(i = 0; i < tpl_rows; i ++)
{
// get specific rows of img data
__global const float * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
__global const float * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
for(j = 0; j < tpl_cols; j ++)
{
delta = img_ptr[j] - tpl_ptr[j];
sum = mad(delta, delta, sum);
}
}
res[res_idx] = sum;
}
}
__kernel
void matchTemplate_Naive_SQDIFF_C4_D0
(
__global const uchar4 * img,
__global const uchar4 * tpl,
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int img_offset,
int tpl_offset,
int res_offset,
int img_step,
int tpl_step,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int i,j;
int4 delta;
int4 sum = (int4)(0, 0, 0, 0);
img_step /= sizeof(*img);
img_offset /= sizeof(*img);
tpl_step /= sizeof(*tpl);
tpl_offset /= sizeof(*tpl);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
for(i = 0; i < tpl_rows; i ++)
{
// get specific rows of img data
__global const uchar4 * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
__global const uchar4 * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
for(j = 0; j < tpl_cols; j ++)
{
//delta = convert_int4(img_ptr[j] - tpl_ptr[j]); // this alternative is incorrect
delta.x = img_ptr[j].x - tpl_ptr[j].x;
delta.y = img_ptr[j].y - tpl_ptr[j].y;
delta.z = img_ptr[j].z - tpl_ptr[j].z;
delta.w = img_ptr[j].w - tpl_ptr[j].w;
sum = mad24(delta, delta, sum);
}
}
res[res_idx] = sum.x + sum.y + sum.z + sum.w;
}
}
__kernel
void matchTemplate_Naive_SQDIFF_C4_D5
(
__global const float4 * img,
__global const float4 * tpl,
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int img_offset,
int tpl_offset,
int res_offset,
int img_step,
int tpl_step,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int i,j;
float4 delta;
float4 sum = (float4)(0, 0, 0, 0);
img_step /= sizeof(*img);
img_offset /= sizeof(*img);
tpl_step /= sizeof(*tpl);
tpl_offset /= sizeof(*tpl);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
for(i = 0; i < tpl_rows; i ++)
{
// get specific rows of img data
__global const float4 * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
__global const float4 * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
for(j = 0; j < tpl_cols; j ++)
{
//delta = convert_int4(img_ptr[j] - tpl_ptr[j]); // this alternative is incorrect
delta.x = img_ptr[j].x - tpl_ptr[j].x;
delta.y = img_ptr[j].y - tpl_ptr[j].y;
delta.z = img_ptr[j].z - tpl_ptr[j].z;
delta.w = img_ptr[j].w - tpl_ptr[j].w;
sum = mad(delta, delta, sum);
}
}
res[res_idx] = sum.x + sum.y + sum.z + sum.w;
}
}
//////////////////////////////////////////////////
// CCORR
__kernel
void matchTemplate_Naive_CCORR_C1_D0
(
__global const uchar * img,
__global const uchar * tpl,
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int img_offset,
int tpl_offset,
int res_offset,
int img_step,
int tpl_step,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int i,j;
int sum = 0;
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
for(i = 0; i < tpl_rows; i ++)
{
// get specific rows of img data
__global const uchar * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
__global const uchar * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
for(j = 0; j < tpl_cols; j ++)
{
sum = mad24(img_ptr[j], tpl_ptr[j], sum);
}
}
res[res_idx] = sum;
}
}
__kernel
void matchTemplate_Naive_CCORR_C1_D5
(
__global const float * img,
__global const float * tpl,
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int img_offset,
int tpl_offset,
int res_offset,
int img_step,
int tpl_step,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int i,j;
float sum = 0;
img_step /= sizeof(*img);
img_offset /= sizeof(*img);
tpl_step /= sizeof(*tpl);
tpl_offset /= sizeof(*tpl);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
for(i = 0; i < tpl_rows; i ++)
{
// get specific rows of img data
__global const float * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
__global const float * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
for(j = 0; j < tpl_cols; j ++)
{
sum = mad(img_ptr[j], tpl_ptr[j], sum);
}
}
res[res_idx] = sum;
}
}
__kernel
void matchTemplate_Naive_CCORR_C4_D0
(
__global const uchar4 * img,
__global const uchar4 * tpl,
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int img_offset,
int tpl_offset,
int res_offset,
int img_step,
int tpl_step,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int i,j;
int4 sum = (int4)(0, 0, 0, 0);
img_step /= sizeof(*img);
img_offset /= sizeof(*img);
tpl_step /= sizeof(*tpl);
tpl_offset /= sizeof(*tpl);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
for(i = 0; i < tpl_rows; i ++)
{
// get specific rows of img data
__global const uchar4 * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
__global const uchar4 * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
for(j = 0; j < tpl_cols; j ++)
{
sum = mad24(convert_int4(img_ptr[j]), convert_int4(tpl_ptr[j]), sum);
}
}
res[res_idx] = sum.x + sum.y + sum.z + sum.w;
}
}
__kernel
void matchTemplate_Naive_CCORR_C4_D5
(
__global const float4 * img,
__global const float4 * tpl,
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int img_offset,
int tpl_offset,
int res_offset,
int img_step,
int tpl_step,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int i,j;
float4 sum = (float4)(0, 0, 0, 0);
img_step /= sizeof(*img);
img_offset /= sizeof(*img);
tpl_step /= sizeof(*tpl);
tpl_offset /= sizeof(*tpl);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
for(i = 0; i < tpl_rows; i ++)
{
// get specific rows of img data
__global const float4 * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
__global const float4 * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
for(j = 0; j < tpl_cols; j ++)
{
sum = mad(convert_float4(img_ptr[j]), convert_float4(tpl_ptr[j]), sum);
}
}
res[res_idx] = sum.x + sum.y + sum.z + sum.w;
}
}
//////////////////////////////////////////////////
// CCOFF
__kernel
void matchTemplate_Prepared_CCOFF_C1_D0
(
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int res_offset,
int res_step,
__global const uint * img_sums,
int img_sums_offset,
int img_sums_step,
float tpl_sum
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
img_sums_offset /= sizeof(*img_sums);
img_sums_step /= sizeof(*img_sums);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
float sum = (float)(
(img_sums[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums[SUMS_PTR(tpl_cols, 0)])
- (img_sums[SUMS_PTR(0, tpl_rows)] - img_sums[SUMS_PTR(0, 0)]));
res[res_idx] -= sum * tpl_sum;
}
}
__kernel
void matchTemplate_Prepared_CCOFF_C4_D0
(
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int res_offset,
int res_step,
__global const uint * img_sums_c0,
__global const uint * img_sums_c1,
__global const uint * img_sums_c2,
__global const uint * img_sums_c3,
int img_sums_offset,
int img_sums_step,
float tpl_sum_c0,
float tpl_sum_c1,
float tpl_sum_c2,
float tpl_sum_c3
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
img_sums_offset /= sizeof(*img_sums_c0);
img_sums_step /= sizeof(*img_sums_c0);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
float ccorr = res[res_idx];
ccorr -= tpl_sum_c0*(float)(
(img_sums_c0[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c0[SUMS_PTR(tpl_cols, 0)])
- (img_sums_c0[SUMS_PTR(0, tpl_rows)] - img_sums_c0[SUMS_PTR(0, 0)]));
ccorr -= tpl_sum_c1*(float)(
(img_sums_c1[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c1[SUMS_PTR(tpl_cols, 0)])
- (img_sums_c1[SUMS_PTR(0, tpl_rows)] - img_sums_c1[SUMS_PTR(0, 0)]));
ccorr -= tpl_sum_c2*(float)(
(img_sums_c2[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c2[SUMS_PTR(tpl_cols, 0)])
- (img_sums_c2[SUMS_PTR(0, tpl_rows)] - img_sums_c2[SUMS_PTR(0, 0)]));
ccorr -= tpl_sum_c3*(float)(
(img_sums_c3[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c3[SUMS_PTR(tpl_cols, 0)])
- (img_sums_c3[SUMS_PTR(0, tpl_rows)] - img_sums_c3[SUMS_PTR(0, 0)]));
res[res_idx] = ccorr;
}
}
__kernel
void matchTemplate_Prepared_CCOFF_NORMED_C1_D0
(
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int res_offset,
int res_step,
float weight,
__global const uint * img_sums,
int img_sums_offset,
int img_sums_step,
__global const TYPE_IMAGE_SQSUM * img_sqsums,
int img_sqsums_offset,
int img_sqsums_step,
float tpl_sum,
float tpl_sqsum
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
img_sqsums_step /= sizeof(*img_sqsums);
img_sqsums_offset /= sizeof(*img_sqsums);
img_sums_offset /= sizeof(*img_sums);
img_sums_step /= sizeof(*img_sums);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
float image_sum_ = (float)(
(img_sums[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums[SUMS_PTR(tpl_cols, 0)])
- (img_sums[SUMS_PTR(0, tpl_rows)] - img_sums[SUMS_PTR(0, 0)]));
float image_sqsum_ = (float)(
(img_sqsums[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums[SQSUMS_PTR(tpl_cols, 0)]) -
(img_sqsums[SQSUMS_PTR(0, tpl_rows)] - img_sqsums[SQSUMS_PTR(0, 0)]));
res[res_idx] = normAcc(res[res_idx] - image_sum_ * tpl_sum,
sqrt(tpl_sqsum * (image_sqsum_ - weight * image_sum_ * image_sum_)));
}
}
__kernel
void matchTemplate_Prepared_CCOFF_NORMED_C4_D0
(
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int res_offset,
int res_step,
float weight,
__global const uint * img_sums_c0,
__global const uint * img_sums_c1,
__global const uint * img_sums_c2,
__global const uint * img_sums_c3,
int img_sums_offset,
int img_sums_step,
__global const TYPE_IMAGE_SQSUM * img_sqsums_c0,
__global const TYPE_IMAGE_SQSUM * img_sqsums_c1,
__global const TYPE_IMAGE_SQSUM * img_sqsums_c2,
__global const TYPE_IMAGE_SQSUM * img_sqsums_c3,
int img_sqsums_offset,
int img_sqsums_step,
float tpl_sum_c0,
float tpl_sum_c1,
float tpl_sum_c2,
float tpl_sum_c3,
float tpl_sqsum
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
img_sqsums_step /= sizeof(*img_sqsums_c0);
img_sqsums_offset /= sizeof(*img_sqsums_c0);
img_sums_offset /= sizeof(*img_sums_c0);
img_sums_step /= sizeof(*img_sums_c0);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
float image_sum_c0 = (float)(
(img_sums_c0[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c0[SUMS_PTR(tpl_cols, 0)])
- (img_sums_c0[SUMS_PTR(0, tpl_rows)] - img_sums_c0[SUMS_PTR(0, 0)]));
float image_sum_c1 = (float)(
(img_sums_c1[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c1[SUMS_PTR(tpl_cols, 0)])
- (img_sums_c1[SUMS_PTR(0, tpl_rows)] - img_sums_c1[SUMS_PTR(0, 0)]));
float image_sum_c2 = (float)(
(img_sums_c2[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c2[SUMS_PTR(tpl_cols, 0)])
- (img_sums_c2[SUMS_PTR(0, tpl_rows)] - img_sums_c2[SUMS_PTR(0, 0)]));
float image_sum_c3 = (float)(
(img_sums_c3[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c3[SUMS_PTR(tpl_cols, 0)])
- (img_sums_c3[SUMS_PTR(0, tpl_rows)] - img_sums_c3[SUMS_PTR(0, 0)]));
float image_sqsum_c0 = (float)(
(img_sqsums_c0[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums_c0[SQSUMS_PTR(tpl_cols, 0)]) -
(img_sqsums_c0[SQSUMS_PTR(0, tpl_rows)] - img_sqsums_c0[SQSUMS_PTR(0, 0)]));
float image_sqsum_c1 = (float)(
(img_sqsums_c1[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums_c1[SQSUMS_PTR(tpl_cols, 0)]) -
(img_sqsums_c1[SQSUMS_PTR(0, tpl_rows)] - img_sqsums_c1[SQSUMS_PTR(0, 0)]));
float image_sqsum_c2 = (float)(
(img_sqsums_c2[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums_c2[SQSUMS_PTR(tpl_cols, 0)]) -
(img_sqsums_c2[SQSUMS_PTR(0, tpl_rows)] - img_sqsums_c2[SQSUMS_PTR(0, 0)]));
float image_sqsum_c3 = (float)(
(img_sqsums_c3[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums_c3[SQSUMS_PTR(tpl_cols, 0)]) -
(img_sqsums_c3[SQSUMS_PTR(0, tpl_rows)] - img_sqsums_c3[SQSUMS_PTR(0, 0)]));
float num = res[res_idx] -
image_sum_c0 * tpl_sum_c0 -
image_sum_c1 * tpl_sum_c1 -
image_sum_c2 * tpl_sum_c2 -
image_sum_c3 * tpl_sum_c3;
float denum = sqrt( tpl_sqsum * (
image_sqsum_c0 - weight * image_sum_c0 * image_sum_c0 +
image_sqsum_c1 - weight * image_sum_c1 * image_sum_c1 +
image_sqsum_c2 - weight * image_sum_c2 * image_sum_c2 +
image_sqsum_c3 - weight * image_sum_c0 * image_sum_c3)
);
res[res_idx] = normAcc(num, denum);
}
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Dachuan Zhao, dachuan@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#pragma OPENCL EXTENSION cl_amd_printf : enable
uchar round_uchar_uchar(uchar v)
{
return v;
}
uchar round_uchar_int(int v)
{
return (uchar)((uint)v <= 255 ? v : v > 0 ? 255 : 0);
}
uchar round_uchar_float(float v)
{
if(v - convert_int_sat_rte(v) > 1e-6 || v - convert_int_sat_rte(v) < -1e-6)
{
if(((int)v + 1) - (v + 0.5f) < 1e-6 && ((int)v + 1) - (v + 0.5f) > -1e-6)
{
v = (int)v + 0.51f;
}
}
int iv = convert_int_sat_rte(v);
return round_uchar_int(iv);
}
uchar4 round_uchar4_uchar4(uchar4 v)
{
return v;
}
uchar4 round_uchar4_int4(int4 v)
{
uchar4 result;
result.x = (uchar)(v.x <= 255 ? v.x : v.x > 0 ? 255 : 0);
result.y = (uchar)(v.y <= 255 ? v.y : v.y > 0 ? 255 : 0);
result.z = (uchar)(v.z <= 255 ? v.z : v.z > 0 ? 255 : 0);
result.w = (uchar)(v.w <= 255 ? v.w : v.w > 0 ? 255 : 0);
return result;
}
uchar4 round_uchar4_float4(float4 v)
{
if(v.x - convert_int_sat_rte(v.x) > 1e-6 || v.x - convert_int_sat_rte(v.x) < -1e-6)
{
if(((int)(v.x) + 1) - (v.x + 0.5f) < 1e-6 && ((int)(v.x) + 1) - (v.x + 0.5f) > -1e-6)
{
v.x = (int)(v.x) + 0.51f;
}
}
if(v.y - convert_int_sat_rte(v.y) > 1e-6 || v.y - convert_int_sat_rte(v.y) < -1e-6)
{
if(((int)(v.y) + 1) - (v.y + 0.5f) < 1e-6 && ((int)(v.y) + 1) - (v.y + 0.5f) > -1e-6)
{
v.y = (int)(v.y) + 0.51f;
}
}
if(v.z - convert_int_sat_rte(v.z) > 1e-6 || v.z - convert_int_sat_rte(v.z) < -1e-6)
{
if(((int)(v.z) + 1) - (v.z + 0.5f) < 1e-6 && ((int)(v.z) + 1) - (v.z + 0.5f) > -1e-6)
{
v.z = (int)(v.z) + 0.51f;
}
}
if(v.w - convert_int_sat_rte(v.w) > 1e-6 || v.w - convert_int_sat_rte(v.w) < -1e-6)
{
if(((int)(v.w) + 1) - (v.w + 0.5f) < 1e-6 && ((int)(v.w) + 1) - (v.w + 0.5f) > -1e-6)
{
v.w = (int)(v.w) + 0.51f;
}
}
int4 iv = convert_int4_sat_rte(v);
return round_uchar4_int4(iv);
}
int idx_row_low(int y, int last_row)
{
if(y < 0)
{
y = -y;
}
return y % (last_row + 1);
}
int idx_row_high(int y, int last_row)
{
int i;
int j;
if(last_row - y < 0)
{
i = (y - last_row);
}
else
{
i = (last_row - y);
}
if(last_row - i < 0)
{
j = i - last_row;
}
else
{
j = last_row - i;
}
return j % (last_row + 1);
}
int idx_row(int y, int last_row)
{
return idx_row_low(idx_row_high(y, last_row), last_row);
}
int idx_col_low(int x, int last_col)
{
if(x < 0)
{
x = -x;
}
return x % (last_col + 1);
}
int idx_col_high(int x, int last_col)
{
int i;
int j;
if(last_col - x < 0)
{
i = (x - last_col);
}
else
{
i = (last_col - x);
}
if(last_col - i < 0)
{
j = i - last_col;
}
else
{
j = last_col - i;
}
return j % (last_col + 1);
}
int idx_col(int x, int last_col)
{
return idx_col_low(idx_col_high(x, last_col), last_col);
}
__kernel void pyrDown_C1_D0(__global uchar * srcData, int srcStep, int srcOffset, int srcRows, int srcCols, __global uchar *dst, int dstStep, int dstOffset, int dstCols)
{
const int x = get_group_id(0) * get_local_size(0) + get_local_id(0);
const int y = get_group_id(1);
__local float smem[256 + 4];
float sum;
const int src_y = 2*y;
const int last_row = srcRows - 1;
const int last_col = srcCols - 1;
sum = 0;
sum = sum + 0.0625f * round_uchar_uchar(((__global uchar*)((__global char*)srcData + idx_row(src_y - 2, last_row) * srcStep))[idx_col(x, last_col)]);
sum = sum + 0.25f * round_uchar_uchar(((__global uchar*)((__global char*)srcData + idx_row(src_y - 1, last_row) * srcStep))[idx_col(x, last_col)]);
sum = sum + 0.375f * round_uchar_uchar(((__global uchar*)((__global char*)srcData + idx_row(src_y , last_row) * srcStep))[idx_col(x, last_col)]);
sum = sum + 0.25f * round_uchar_uchar(((__global uchar*)((__global char*)srcData + idx_row(src_y + 1, last_row) * srcStep))[idx_col(x, last_col)]);
sum = sum + 0.0625f * round_uchar_uchar(((__global uchar*)((__global char*)srcData + idx_row(src_y + 2, last_row) * srcStep))[idx_col(x, last_col)]);
smem[2 + get_local_id(0)] = sum;
if (get_local_id(0) < 2)
{
const int left_x = x - 2;
sum = 0;
sum = sum + 0.0625f * round_uchar_uchar(((__global uchar*)((__global char*)srcData + idx_row(src_y - 2, last_row) * srcStep))[idx_col(left_x, last_col)]);
sum = sum + 0.25f * round_uchar_uchar(((__global uchar*)((__global char*)srcData + idx_row(src_y - 1, last_row) * srcStep))[idx_col(left_x, last_col)]);
sum = sum + 0.375f * round_uchar_uchar(((__global uchar*)((__global char*)srcData + idx_row(src_y , last_row) * srcStep))[idx_col(left_x, last_col)]);
sum = sum + 0.25f * round_uchar_uchar(((__global uchar*)((__global char*)srcData + idx_row(src_y + 1, last_row) * srcStep))[idx_col(left_x, last_col)]);
sum = sum + 0.0625f * round_uchar_uchar(((__global uchar*)((__global char*)srcData + idx_row(src_y + 2, last_row) * srcStep))[idx_col(left_x, last_col)]);
smem[get_local_id(0)] = sum;
}
if (get_local_id(0) > 253)
{
const int right_x = x + 2;
sum = 0;
sum = sum + 0.0625f * round_uchar_uchar(((__global uchar*)((__global char*)srcData + idx_row(src_y - 2, last_row) * srcStep))[idx_col(right_x, last_col)]);
sum = sum + 0.25f * round_uchar_uchar(((__global uchar*)((__global char*)srcData + idx_row(src_y - 1, last_row) * srcStep))[idx_col(right_x, last_col)]);
sum = sum + 0.375f * round_uchar_uchar(((__global uchar*)((__global char*)srcData + idx_row(src_y , last_row) * srcStep))[idx_col(right_x, last_col)]);
sum = sum + 0.25f * round_uchar_uchar(((__global uchar*)((__global char*)srcData + idx_row(src_y + 1, last_row) * srcStep))[idx_col(right_x, last_col)]);
sum = sum + 0.0625f * round_uchar_uchar(((__global uchar*)((__global char*)srcData + idx_row(src_y + 2, last_row) * srcStep))[idx_col(right_x, last_col)]);
smem[4 + get_local_id(0)] = sum;
}
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) < 128)
{
const int tid2 = get_local_id(0) * 2;
sum = 0;
sum = sum + 0.0625f * smem[2 + tid2 - 2];
sum = sum + 0.25f * smem[2 + tid2 - 1];
sum = sum + 0.375f * smem[2 + tid2 ];
sum = sum + 0.25f * smem[2 + tid2 + 1];
sum = sum + 0.0625f * smem[2 + tid2 + 2];
const int dst_x = (get_group_id(0) * get_local_size(0) + tid2) / 2;
if (dst_x < dstCols)
dst[y * dstStep + dst_x] = round_uchar_float(sum);
}
}
__kernel void pyrDown_C4_D0(__global uchar4 * srcData, int srcStep, int srcOffset, int srcRows, int srcCols, __global uchar4 *dst, int dstStep, int dstOffset, int dstCols)
{
const int x = get_group_id(0) * get_local_size(0) + get_local_id(0);
const int y = get_group_id(1);
__local float4 smem[256 + 4];
float4 sum;
const int src_y = 2*y;
const int last_row = srcRows - 1;
const int last_col = srcCols - 1;
float4 co1 = (float4)(0.375f, 0.375f, 0.375f, 0.375f);
float4 co2 = (float4)(0.25f, 0.25f, 0.25f, 0.25f);
float4 co3 = (float4)(0.0625f, 0.0625f, 0.0625f, 0.0625f);
sum = 0;
sum = sum + co3 * convert_float4(round_uchar4_uchar4(((__global uchar4*)((__global char4*)srcData + idx_row(src_y - 2, last_row) * srcStep / 4))[idx_col(x, last_col)]));
sum = sum + co2 * convert_float4(round_uchar4_uchar4(((__global uchar4*)((__global char4*)srcData + idx_row(src_y - 1, last_row) * srcStep / 4))[idx_col(x, last_col)]));
sum = sum + co1 * convert_float4(round_uchar4_uchar4(((__global uchar4*)((__global char4*)srcData + idx_row(src_y , last_row) * srcStep / 4))[idx_col(x, last_col)]));
sum = sum + co2 * convert_float4(round_uchar4_uchar4(((__global uchar4*)((__global char4*)srcData + idx_row(src_y + 1, last_row) * srcStep / 4))[idx_col(x, last_col)]));
sum = sum + co3 * convert_float4(round_uchar4_uchar4(((__global uchar4*)((__global char4*)srcData + idx_row(src_y + 2, last_row) * srcStep / 4))[idx_col(x, last_col)]));
smem[2 + get_local_id(0)] = sum;
if (get_local_id(0) < 2)
{
const int left_x = x - 2;
sum = 0;
sum = sum + co3 * convert_float4(round_uchar4_uchar4(((__global uchar4*)((__global char4*)srcData + idx_row(src_y - 2, last_row) * srcStep / 4))[idx_col(left_x, last_col)]));
sum = sum + co2 * convert_float4(round_uchar4_uchar4(((__global uchar4*)((__global char4*)srcData + idx_row(src_y - 1, last_row) * srcStep / 4))[idx_col(left_x, last_col)]));
sum = sum + co1 * convert_float4(round_uchar4_uchar4(((__global uchar4*)((__global char4*)srcData + idx_row(src_y , last_row) * srcStep / 4))[idx_col(left_x, last_col)]));
sum = sum + co2 * convert_float4(round_uchar4_uchar4(((__global uchar4*)((__global char4*)srcData + idx_row(src_y + 1, last_row) * srcStep / 4))[idx_col(left_x, last_col)]));
sum = sum + co3 * convert_float4(round_uchar4_uchar4(((__global uchar4*)((__global char4*)srcData + idx_row(src_y + 2, last_row) * srcStep / 4))[idx_col(left_x, last_col)]));
smem[get_local_id(0)] = sum;
}
if (get_local_id(0) > 253)
{
const int right_x = x + 2;
sum = 0;
sum = sum + co3 * convert_float4(round_uchar4_uchar4(((__global uchar4*)((__global char4*)srcData + idx_row(src_y - 2, last_row) * srcStep / 4))[idx_col(right_x, last_col)]));
sum = sum + co2 * convert_float4(round_uchar4_uchar4(((__global uchar4*)((__global char4*)srcData + idx_row(src_y - 1, last_row) * srcStep / 4))[idx_col(right_x, last_col)]));
sum = sum + co1 * convert_float4(round_uchar4_uchar4(((__global uchar4*)((__global char4*)srcData + idx_row(src_y , last_row) * srcStep / 4))[idx_col(right_x, last_col)]));
sum = sum + co2 * convert_float4(round_uchar4_uchar4(((__global uchar4*)((__global char4*)srcData + idx_row(src_y + 1, last_row) * srcStep / 4))[idx_col(right_x, last_col)]));
sum = sum + co3 * convert_float4(round_uchar4_uchar4(((__global uchar4*)((__global char4*)srcData + idx_row(src_y + 2, last_row) * srcStep / 4))[idx_col(right_x, last_col)]));
smem[4 + get_local_id(0)] = sum;
}
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) < 128)
{
const int tid2 = get_local_id(0) * 2;
sum = 0;
sum = sum + co3 * smem[2 + tid2 - 2];
sum = sum + co2 * smem[2 + tid2 - 1];
sum = sum + co1 * smem[2 + tid2 ];
sum = sum + co2 * smem[2 + tid2 + 1];
sum = sum + co3 * smem[2 + tid2 + 2];
const int dst_x = (get_group_id(0) * get_local_size(0) + tid2) / 2;
if (dst_x < dstCols)
dst[y * dstStep / 4 + dst_x] = round_uchar4_float4(sum);
}
}
__kernel void pyrDown_C1_D5(__global float * srcData, int srcStep, int srcOffset, int srcRows, int srcCols, __global float *dst, int dstStep, int dstOffset, int dstCols)
{
const int x = get_group_id(0) * get_local_size(0) + get_local_id(0);
const int y = get_group_id(1);
__local float smem[256 + 4];
float sum;
const int src_y = 2*y;
const int last_row = srcRows - 1;
const int last_col = srcCols - 1;
sum = 0;
sum = sum + 0.0625f * ((__global float*)((__global char*)srcData + idx_row(src_y - 2, last_row) * srcStep))[idx_col(x, last_col)];
sum = sum + 0.25f * ((__global float*)((__global char*)srcData + idx_row(src_y - 1, last_row) * srcStep))[idx_col(x, last_col)];
sum = sum + 0.375f * ((__global float*)((__global char*)srcData + idx_row(src_y , last_row) * srcStep))[idx_col(x, last_col)];
sum = sum + 0.25f * ((__global float*)((__global char*)srcData + idx_row(src_y + 1, last_row) * srcStep))[idx_col(x, last_col)];
sum = sum + 0.0625f * ((__global float*)((__global char*)srcData + idx_row(src_y + 2, last_row) * srcStep))[idx_col(x, last_col)];
smem[2 + get_local_id(0)] = sum;
if (get_local_id(0) < 2)
{
const int left_x = x - 2;
sum = 0;
sum = sum + 0.0625f * ((__global float*)((__global char*)srcData + idx_row(src_y - 2, last_row) * srcStep))[idx_col(left_x, last_col)];
sum = sum + 0.25f * ((__global float*)((__global char*)srcData + idx_row(src_y - 1, last_row) * srcStep))[idx_col(left_x, last_col)];
sum = sum + 0.375f * ((__global float*)((__global char*)srcData + idx_row(src_y , last_row) * srcStep))[idx_col(left_x, last_col)];
sum = sum + 0.25f * ((__global float*)((__global char*)srcData + idx_row(src_y + 1, last_row) * srcStep))[idx_col(left_x, last_col)];
sum = sum + 0.0625f * ((__global float*)((__global char*)srcData + idx_row(src_y + 2, last_row) * srcStep))[idx_col(left_x, last_col)];
smem[get_local_id(0)] = sum;
}
if (get_local_id(0) > 253)
{
const int right_x = x + 2;
sum = 0;
sum = sum + 0.0625f * ((__global float*)((__global char*)srcData + idx_row(src_y - 2, last_row) * srcStep))[idx_col(right_x, last_col)];
sum = sum + 0.25f * ((__global float*)((__global char*)srcData + idx_row(src_y - 1, last_row) * srcStep))[idx_col(right_x, last_col)];
sum = sum + 0.375f * ((__global float*)((__global char*)srcData + idx_row(src_y , last_row) * srcStep))[idx_col(right_x, last_col)];
sum = sum + 0.25f * ((__global float*)((__global char*)srcData + idx_row(src_y + 1, last_row) * srcStep))[idx_col(right_x, last_col)];
sum = sum + 0.0625f * ((__global float*)((__global char*)srcData + idx_row(src_y + 2, last_row) * srcStep))[idx_col(right_x, last_col)];
smem[4 + get_local_id(0)] = sum;
}
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) < 128)
{
const int tid2 = get_local_id(0) * 2;
sum = 0;
sum = sum + 0.0625f * smem[2 + tid2 - 2];
sum = sum + 0.25f * smem[2 + tid2 - 1];
sum = sum + 0.375f * smem[2 + tid2 ];
sum = sum + 0.25f * smem[2 + tid2 + 1];
sum = sum + 0.0625f * smem[2 + tid2 + 2];
const int dst_x = (get_group_id(0) * get_local_size(0) + tid2) / 2;
if (dst_x < dstCols)
dst[y * dstStep / 4 + dst_x] = sum;
}
}
__kernel void pyrDown_C4_D5(__global float4 * srcData, int srcStep, int srcOffset, int srcRows, int srcCols, __global float4 *dst, int dstStep, int dstOffset, int dstCols)
{
const int x = get_group_id(0) * get_local_size(0) + get_local_id(0);
const int y = get_group_id(1);
__local float4 smem[256 + 4];
float4 sum;
const int src_y = 2*y;
const int last_row = srcRows - 1;
const int last_col = srcCols - 1;
float4 co1 = (float4)(0.375f, 0.375f, 0.375f, 0.375f);
float4 co2 = (float4)(0.25f, 0.25f, 0.25f, 0.25f);
float4 co3 = (float4)(0.0625f, 0.0625f, 0.0625f, 0.0625f);
sum = 0;
sum = sum + co3 * ((__global float4*)((__global char4*)srcData + idx_row(src_y - 2, last_row) * srcStep / 4))[idx_col(x, last_col)];
sum = sum + co2 * ((__global float4*)((__global char4*)srcData + idx_row(src_y - 1, last_row) * srcStep / 4))[idx_col(x, last_col)];
sum = sum + co1 * ((__global float4*)((__global char4*)srcData + idx_row(src_y , last_row) * srcStep / 4))[idx_col(x, last_col)];
sum = sum + co2 * ((__global float4*)((__global char4*)srcData + idx_row(src_y + 1, last_row) * srcStep / 4))[idx_col(x, last_col)];
sum = sum + co3 * ((__global float4*)((__global char4*)srcData + idx_row(src_y + 2, last_row) * srcStep / 4))[idx_col(x, last_col)];
smem[2 + get_local_id(0)] = sum;
if (get_local_id(0) < 2)
{
const int left_x = x - 2;
sum = 0;
sum = sum + co3 * ((__global float4*)((__global char4*)srcData + idx_row(src_y - 2, last_row) * srcStep / 4))[idx_col(left_x, last_col)];
sum = sum + co2 * ((__global float4*)((__global char4*)srcData + idx_row(src_y - 1, last_row) * srcStep / 4))[idx_col(left_x, last_col)];
sum = sum + co1 * ((__global float4*)((__global char4*)srcData + idx_row(src_y , last_row) * srcStep / 4))[idx_col(left_x, last_col)];
sum = sum + co2 * ((__global float4*)((__global char4*)srcData + idx_row(src_y + 1, last_row) * srcStep / 4))[idx_col(left_x, last_col)];
sum = sum + co3 * ((__global float4*)((__global char4*)srcData + idx_row(src_y + 2, last_row) * srcStep / 4))[idx_col(left_x, last_col)];
smem[get_local_id(0)] = sum;
}
if (get_local_id(0) > 253)
{
const int right_x = x + 2;
sum = 0;
sum = sum + co3 * ((__global float4*)((__global char4*)srcData + idx_row(src_y - 2, last_row) * srcStep / 4))[idx_col(right_x, last_col)];
sum = sum + co2 * ((__global float4*)((__global char4*)srcData + idx_row(src_y - 1, last_row) * srcStep / 4))[idx_col(right_x, last_col)];
sum = sum + co1 * ((__global float4*)((__global char4*)srcData + idx_row(src_y , last_row) * srcStep / 4))[idx_col(right_x, last_col)];
sum = sum + co2 * ((__global float4*)((__global char4*)srcData + idx_row(src_y + 1, last_row) * srcStep / 4))[idx_col(right_x, last_col)];
sum = sum + co3 * ((__global float4*)((__global char4*)srcData + idx_row(src_y + 2, last_row) * srcStep / 4))[idx_col(right_x, last_col)];
smem[4 + get_local_id(0)] = sum;
}
barrier(CLK_LOCAL_MEM_FENCE);
if (get_local_id(0) < 128)
{
const int tid2 = get_local_id(0) * 2;
sum = 0;
sum = sum + co3 * smem[2 + tid2 - 2];
sum = sum + co2 * smem[2 + tid2 - 1];
sum = sum + co1 * smem[2 + tid2 ];
sum = sum + co2 * smem[2 + tid2 + 1];
sum = sum + co3 * smem[2 + tid2 + 2];
const int dst_x = (get_group_id(0) * get_local_size(0) + tid2) / 2;
if (dst_x < dstCols)
dst[y * dstStep / 16 + dst_x] = sum;
}
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Zhang Chunpeng chunpeng@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
//#pragma OPENCL EXTENSION cl_amd_printf : enable
uchar get_valid_uchar(uchar data)
{
return (uchar)(data <= 255 ? data : data > 0 ? 255 : 0);
}
///////////////////////////////////////////////////////////////////////
////////////////////////// CV_8UC1 //////////////////////////////////
///////////////////////////////////////////////////////////////////////
__kernel void pyrUp_C1_D0(__global uchar* src,__global uchar* dst,
int srcRows,int dstRows,int srcCols,int dstCols,
int srcOffset,int dstOffset,int srcStep,int dstStep)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
__local float s_srcPatch[10][10];
__local float s_dstPatch[20][16];
if( get_local_id(0) < 10 && get_local_id(1) < 10 )
{
int srcx = (int)(get_group_id(0) * get_local_size(0) / 2 + get_local_id(0)) - 1;
int srcy = (int)(get_group_id(1) * get_local_size(1) / 2 + get_local_id(1)) - 1;
srcx = abs(srcx);
srcx = min(srcCols - 1,srcx);
srcy = abs(srcy);
srcy = min(srcRows -1 ,srcy);
s_srcPatch[get_local_id(1)][get_local_id(0)] = (float)(src[srcx + srcy * srcStep]);
}
barrier(CLK_LOCAL_MEM_FENCE);
float sum = 0;
const int evenFlag = (int)((get_local_id(0) & 1) == 0);
const int oddFlag = (int)((get_local_id(0) & 1) != 0);
const bool eveny = ((get_local_id(1) & 1) == 0);
const int tidx = get_local_id(0);
if(eveny)
{
sum = sum + (evenFlag * 0.0625f) * s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx - 2) >> 1)];
sum = sum + ( oddFlag * 0.25f ) * s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx - 1) >> 1)];
sum = sum + (evenFlag * 0.375f ) * s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx ) >> 1)];
sum = sum + ( oddFlag * 0.25f ) * s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx + 1) >> 1)];
sum = sum + (evenFlag * 0.0625f) * s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx + 2) >> 1)];
}
s_dstPatch[2 + get_local_id(1)][get_local_id(0)] = sum;
if (get_local_id(1) < 2)
{
sum = 0;
if (eveny)
{
sum = sum + (evenFlag * 0.0625f) * s_srcPatch[0][1 + ((tidx - 2) >> 1)];
sum = sum + ( oddFlag * 0.25f ) * s_srcPatch[0][1 + ((tidx - 1) >> 1)];
sum = sum + (evenFlag * 0.375f ) * s_srcPatch[0][1 + ((tidx ) >> 1)];
sum = sum + ( oddFlag * 0.25f ) * s_srcPatch[0][1 + ((tidx + 1) >> 1)];
sum = sum + (evenFlag * 0.0625f) * s_srcPatch[0][1 + ((tidx + 2) >> 1)];
}
s_dstPatch[get_local_id(1)][get_local_id(0)] = sum;
}
if (get_local_id(1) > 13)
{
sum = 0;
if (eveny)
{
sum = sum + (evenFlag * 0.0625f) * s_srcPatch[9][1 + ((tidx - 2) >> 1)];
sum = sum + ( oddFlag * 0.25f ) * s_srcPatch[9][1 + ((tidx - 1) >> 1)];
sum = sum + (evenFlag * 0.375f ) * s_srcPatch[9][1 + ((tidx ) >> 1)];
sum = sum + ( oddFlag * 0.25f ) * s_srcPatch[9][1 + ((tidx + 1) >> 1)];
sum = sum + (evenFlag * 0.0625f) * s_srcPatch[9][1 + ((tidx + 2) >> 1)];
}
s_dstPatch[4 + get_local_id(1)][get_local_id(0)] = sum;
}
barrier(CLK_LOCAL_MEM_FENCE);
sum = 0;
const int tidy = get_local_id(1);
sum = sum + 0.0625f * s_dstPatch[2 + tidy - 2][get_local_id(0)];
sum = sum + 0.25f * s_dstPatch[2 + tidy - 1][get_local_id(0)];
sum = sum + 0.375f * s_dstPatch[2 + tidy ][get_local_id(0)];
sum = sum + 0.25f * s_dstPatch[2 + tidy + 1][get_local_id(0)];
sum = sum + 0.0625f * s_dstPatch[2 + tidy + 2][get_local_id(0)];
if ((x < dstCols) && (y < dstRows))
dst[x + y * dstStep] = (float)(4.0f * sum);
}
///////////////////////////////////////////////////////////////////////
////////////////////////// CV_16UC1 /////////////////////////////////
///////////////////////////////////////////////////////////////////////
__kernel void pyrUp_C1_D2(__global ushort* src,__global ushort* dst,
int srcRows,int dstRows,int srcCols,int dstCols,
int srcOffset,int dstOffset,int srcStep,int dstStep)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
__local float s_srcPatch[10][10];
__local float s_dstPatch[20][16];
srcStep = srcStep >> 1;
dstStep = dstStep >> 1;
srcOffset = srcOffset >> 1;
dstOffset = dstOffset >> 1;
if( get_local_id(0) < 10 && get_local_id(1) < 10 )
{
int srcx = (int)(get_group_id(0) * get_local_size(0) / 2 + get_local_id(0)) - 1;
int srcy = (int)(get_group_id(1) * get_local_size(1) / 2 + get_local_id(1)) - 1;
srcx = abs(srcx);
srcx = min(srcCols - 1,srcx);
srcy = abs(srcy);
srcy = min(srcRows -1 ,srcy);
s_srcPatch[get_local_id(1)][get_local_id(0)] = (float)(src[srcx + srcy * srcStep]);
}
barrier(CLK_LOCAL_MEM_FENCE);
float sum = 0;
const int evenFlag = (int)((get_local_id(0) & 1) == 0);
const int oddFlag = (int)((get_local_id(0) & 1) != 0);
const bool eveny = ((get_local_id(1) & 1) == 0);
const int tidx = get_local_id(0);
if(eveny)
{
sum = sum + (evenFlag * 0.0625f) * s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx - 2) >> 1)];
sum = sum + ( oddFlag * 0.25f ) * s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx - 1) >> 1)];
sum = sum + (evenFlag * 0.375f ) * s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx ) >> 1)];
sum = sum + ( oddFlag * 0.25f ) * s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx + 1) >> 1)];
sum = sum + (evenFlag * 0.0625f) * s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx + 2) >> 1)];
}
s_dstPatch[2 + get_local_id(1)][get_local_id(0)] = sum;
if (get_local_id(1) < 2)
{
sum = 0;
if (eveny)
{
sum = sum + (evenFlag * 0.0625f) * s_srcPatch[0][1 + ((tidx - 2) >> 1)];
sum = sum + ( oddFlag * 0.25f ) * s_srcPatch[0][1 + ((tidx - 1) >> 1)];
sum = sum + (evenFlag * 0.375f ) * s_srcPatch[0][1 + ((tidx ) >> 1)];
sum = sum + ( oddFlag * 0.25f ) * s_srcPatch[0][1 + ((tidx + 1) >> 1)];
sum = sum + (evenFlag * 0.0625f) * s_srcPatch[0][1 + ((tidx + 2) >> 1)];
}
s_dstPatch[get_local_id(1)][get_local_id(0)] = sum;
}
if (get_local_id(1) > 13)
{
sum = 0;
if (eveny)
{
sum = sum + (evenFlag * 0.0625f) * s_srcPatch[9][1 + ((tidx - 2) >> 1)];
sum = sum + ( oddFlag * 0.25f ) * s_srcPatch[9][1 + ((tidx - 1) >> 1)];
sum = sum + (evenFlag * 0.375f ) * s_srcPatch[9][1 + ((tidx ) >> 1)];
sum = sum + ( oddFlag * 0.25f ) * s_srcPatch[9][1 + ((tidx + 1) >> 1)];
sum = sum + (evenFlag * 0.0625f) * s_srcPatch[9][1 + ((tidx + 2) >> 1)];
}
s_dstPatch[4 + get_local_id(1)][get_local_id(0)] = sum;
}
barrier(CLK_LOCAL_MEM_FENCE);
sum = 0;
const int tidy = get_local_id(1);
sum = sum + 0.0625f * s_dstPatch[2 + tidy - 2][get_local_id(0)];
sum = sum + 0.25f * s_dstPatch[2 + tidy - 1][get_local_id(0)];
sum = sum + 0.375f * s_dstPatch[2 + tidy ][get_local_id(0)];
sum = sum + 0.25f * s_dstPatch[2 + tidy + 1][get_local_id(0)];
sum = sum + 0.0625f * s_dstPatch[2 + tidy + 2][get_local_id(0)];
if ((x < dstCols) && (y < dstRows))
dst[x + y * dstStep] = (float)(4.0f * sum);
}
///////////////////////////////////////////////////////////////////////
////////////////////////// CV_32FC1 /////////////////////////////////
///////////////////////////////////////////////////////////////////////
__kernel void pyrUp_C1_D5(__global float* src,__global float* dst,
int srcRows,int dstRows,int srcCols,int dstCols,
int srcOffset,int dstOffset,int srcStep,int dstStep)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
__local float s_srcPatch[10][10];
__local float s_dstPatch[20][16];
srcOffset = srcOffset >> 2;
dstOffset = dstOffset >> 2;
srcStep = srcStep >> 2;
dstStep = dstStep >> 2;
if( get_local_id(0) < 10 && get_local_id(1) < 10 )
{
int srcx = (int)(get_group_id(0) * get_local_size(0) / 2 + get_local_id(0)) - 1;
int srcy = (int)(get_group_id(1) * get_local_size(1) / 2 + get_local_id(1)) - 1;
srcx = abs(srcx);
srcx = min(srcCols - 1,srcx);
srcy = abs(srcy);
srcy = min(srcRows -1 ,srcy);
s_srcPatch[get_local_id(1)][get_local_id(0)] = (float)(src[srcx + srcy * srcStep]);
}
barrier(CLK_LOCAL_MEM_FENCE);
float sum = 0;
const int evenFlag = (int)((get_local_id(0) & 1) == 0);
const int oddFlag = (int)((get_local_id(0) & 1) != 0);
const bool eveny = ((get_local_id(1) & 1) == 0);
const int tidx = get_local_id(0);
if(eveny)
{
sum = sum + (evenFlag * 0.0625f) * s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx - 2) >> 1)];
sum = sum + ( oddFlag * 0.25f ) * s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx - 1) >> 1)];
sum = sum + (evenFlag * 0.375f ) * s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx ) >> 1)];
sum = sum + ( oddFlag * 0.25f ) * s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx + 1) >> 1)];
sum = sum + (evenFlag * 0.0625f) * s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx + 2) >> 1)];
}
s_dstPatch[2 + get_local_id(1)][get_local_id(0)] = sum;
if (get_local_id(1) < 2)
{
sum = 0;
if (eveny)
{
sum = sum + (evenFlag * 0.0625f) * s_srcPatch[0][1 + ((tidx - 2) >> 1)];
sum = sum + ( oddFlag * 0.25f ) * s_srcPatch[0][1 + ((tidx - 1) >> 1)];
sum = sum + (evenFlag * 0.375f ) * s_srcPatch[0][1 + ((tidx ) >> 1)];
sum = sum + ( oddFlag * 0.25f ) * s_srcPatch[0][1 + ((tidx + 1) >> 1)];
sum = sum + (evenFlag * 0.0625f) * s_srcPatch[0][1 + ((tidx + 2) >> 1)];
}
s_dstPatch[get_local_id(1)][get_local_id(0)] = sum;
}
if (get_local_id(1) > 13)
{
sum = 0;
if (eveny)
{
sum = sum + (evenFlag * 0.0625f) * s_srcPatch[9][1 + ((tidx - 2) >> 1)];
sum = sum + ( oddFlag * 0.25f ) * s_srcPatch[9][1 + ((tidx - 1) >> 1)];
sum = sum + (evenFlag * 0.375f ) * s_srcPatch[9][1 + ((tidx ) >> 1)];
sum = sum + ( oddFlag * 0.25f ) * s_srcPatch[9][1 + ((tidx + 1) >> 1)];
sum = sum + (evenFlag * 0.0625f) * s_srcPatch[9][1 + ((tidx + 2) >> 1)];
}
s_dstPatch[4 + get_local_id(1)][get_local_id(0)] = sum;
}
barrier(CLK_LOCAL_MEM_FENCE);
sum = 0;
const int tidy = get_local_id(1);
sum = sum + 0.0625f * s_dstPatch[2 + tidy - 2][get_local_id(0)];
sum = sum + 0.25f * s_dstPatch[2 + tidy - 1][get_local_id(0)];
sum = sum + 0.375f * s_dstPatch[2 + tidy ][get_local_id(0)];
sum = sum + 0.25f * s_dstPatch[2 + tidy + 1][get_local_id(0)];
sum = sum + 0.0625f * s_dstPatch[2 + tidy + 2][get_local_id(0)];
if ((x < dstCols) && (y < dstRows))
dst[x + y * dstStep] = (float)(4.0f * sum);
}
///////////////////////////////////////////////////////////////////////
////////////////////////// CV_8UC4 //////////////////////////////////
///////////////////////////////////////////////////////////////////////
float4 covert_uchar4_to_float4(uchar4 data)
{
float4 f4Data = {0,0,0,0};
f4Data.x = (float)data.x;
f4Data.y = (float)data.y;
f4Data.z = (float)data.z;
f4Data.w = (float)data.w;
return f4Data;
}
uchar4 convert_float4_to_uchar4(float4 data)
{
uchar4 u4Data;
u4Data.x = get_valid_uchar(data.x);
u4Data.y = get_valid_uchar(data.y);
u4Data.z = get_valid_uchar(data.z);
u4Data.w = get_valid_uchar(data.w);
return u4Data;
}
float4 int_x_float4(int leftOpr,float4 rightOpr)
{
float4 result = {0,0,0,0};
result.x = rightOpr.x * leftOpr;
result.y = rightOpr.y * leftOpr;
result.z = rightOpr.z * leftOpr;
result.w = rightOpr.w * leftOpr;
return result;
}
float4 float4_x_float4(float4 leftOpr,float4 rightOpr)
{
float4 result;
result.x = leftOpr.x * rightOpr.x;
result.y = leftOpr.y * rightOpr.y;
result.z = leftOpr.z * rightOpr.z;
result.w = leftOpr.w * rightOpr.w;
return result;
}
__kernel void pyrUp_C4_D0(__global uchar4* src,__global uchar4* dst,
int srcRows,int dstRows,int srcCols,int dstCols,
int srcOffset,int dstOffset,int srcStep,int dstStep)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
__local float4 s_srcPatch[10][10];
__local float4 s_dstPatch[20][16];
srcOffset >>= 2;
dstOffset >>= 2;
srcStep >>= 2;
dstStep >>= 2;
if( get_local_id(0) < 10 && get_local_id(1) < 10 )
{
int srcx = (int)(get_group_id(0) * get_local_size(0) / 2 + get_local_id(0)) - 1;
int srcy = (int)(get_group_id(1) * get_local_size(1) / 2 + get_local_id(1)) - 1;
srcx = abs(srcx);
srcx = min(srcCols - 1,srcx);
srcy = abs(srcy);
srcy = min(srcRows -1 ,srcy);
s_srcPatch[get_local_id(1)][get_local_id(0)] = covert_uchar4_to_float4(src[srcx + srcy * srcStep]);
}
barrier(CLK_LOCAL_MEM_FENCE);
float4 sum = (float4)(0,0,0,0);
const int evenFlag = (int)((get_local_id(0) & 1) == 0);
const int oddFlag = (int)((get_local_id(0) & 1) != 0);
const bool eveny = ((get_local_id(1) & 1) == 0);
const int tidx = get_local_id(0);
float4 co1 = (float4)(0.375f, 0.375f, 0.375f, 0.375f);
float4 co2 = (float4)(0.25f, 0.25f, 0.25f, 0.25f);
float4 co3 = (float4)(0.0625f, 0.0625f, 0.0625f, 0.0625f);
if(eveny)
{
sum = sum + float4_x_float4(int_x_float4( evenFlag, co3 ) , s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx - 2) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( oddFlag , co2 ) , s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx - 1) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( evenFlag, co1 ) , s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx ) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( oddFlag , co2 ) , s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx + 1) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( evenFlag, co3 ) , s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx + 2) >> 1)]);
}
s_dstPatch[2 + get_local_id(1)][get_local_id(0)] = sum;
if (get_local_id(1) < 2)
{
sum = 0;
if (eveny)
{
sum = sum + float4_x_float4(int_x_float4(evenFlag , co3) , s_srcPatch[0][1 + ((tidx - 2) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( oddFlag , co2 ) , s_srcPatch[0][1 + ((tidx - 1) >> 1)]);
sum = sum + float4_x_float4(int_x_float4(evenFlag , co1 ) , s_srcPatch[0][1 + ((tidx ) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( oddFlag , co2 ) , s_srcPatch[0][1 + ((tidx + 1) >> 1)]);
sum = sum + float4_x_float4(int_x_float4(evenFlag , co3) , s_srcPatch[0][1 + ((tidx + 2) >> 1)]);
}
s_dstPatch[get_local_id(1)][get_local_id(0)] = sum;
}
if (get_local_id(1) > 13)
{
sum = 0;
if (eveny)
{
sum = sum + float4_x_float4(int_x_float4(evenFlag , co3) , s_srcPatch[9][1 + ((tidx - 2) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( oddFlag , co2) , s_srcPatch[9][1 + ((tidx - 1) >> 1)]);
sum = sum + float4_x_float4(int_x_float4(evenFlag , co1) , s_srcPatch[9][1 + ((tidx ) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( oddFlag , co2) , s_srcPatch[9][1 + ((tidx + 1) >> 1)]);
sum = sum + float4_x_float4(int_x_float4(evenFlag , co3) , s_srcPatch[9][1 + ((tidx + 2) >> 1)]);
}
s_dstPatch[4 + get_local_id(1)][get_local_id(0)] = sum;
}
barrier(CLK_LOCAL_MEM_FENCE);
sum = 0;
const int tidy = get_local_id(1);
sum = sum + float4_x_float4(co3 , s_dstPatch[2 + tidy - 2][get_local_id(0)]);
sum = sum + float4_x_float4(co2 , s_dstPatch[2 + tidy - 1][get_local_id(0)]);
sum = sum + float4_x_float4(co1 , s_dstPatch[2 + tidy ][get_local_id(0)]);
sum = sum + float4_x_float4(co2 , s_dstPatch[2 + tidy + 1][get_local_id(0)]);
sum = sum + float4_x_float4(co3 , s_dstPatch[2 + tidy + 2][get_local_id(0)]);
if ((x < dstCols) && (y < dstRows))
{
dst[x + y * dstStep] = convert_float4_to_uchar4(int_x_float4(4.0f,sum));
}
}
///////////////////////////////////////////////////////////////////////
////////////////////////// CV_16UC4 //////////////////////////////////
///////////////////////////////////////////////////////////////////////
float4 covert_ushort4_to_float4(ushort4 data)
{
float4 f4Data = {0,0,0,0};
f4Data.x = (float)data.x;
f4Data.y = (float)data.y;
f4Data.z = (float)data.z;
f4Data.w = (float)data.w;
return f4Data;
}
ushort4 convert_float4_to_ushort4(float4 data)
{
ushort4 u4Data;
u4Data.x = (float)data.x;
u4Data.y = (float)data.y;
u4Data.z = (float)data.z;
u4Data.w = (float)data.w;
return u4Data;
}
__kernel void pyrUp_C4_D2(__global ushort4* src,__global ushort4* dst,
int srcRows,int dstRows,int srcCols,int dstCols,
int srcOffset,int dstOffset,int srcStep,int dstStep)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
__local float4 s_srcPatch[10][10];
__local float4 s_dstPatch[20][16];
srcOffset >>= 3;
dstOffset >>= 3;
srcStep >>= 3;
dstStep >>= 3;
if( get_local_id(0) < 10 && get_local_id(1) < 10 )
{
int srcx = (int)(get_group_id(0) * get_local_size(0) / 2 + get_local_id(0)) - 1;
int srcy = (int)(get_group_id(1) * get_local_size(1) / 2 + get_local_id(1)) - 1;
srcx = abs(srcx);
srcx = min(srcCols - 1,srcx);
srcy = abs(srcy);
srcy = min(srcRows -1 ,srcy);
s_srcPatch[get_local_id(1)][get_local_id(0)] = covert_ushort4_to_float4(src[srcx + srcy * srcStep]);
}
barrier(CLK_LOCAL_MEM_FENCE);
float4 sum = (float4)(0,0,0,0);
const int evenFlag = (int)((get_local_id(0) & 1) == 0);
const int oddFlag = (int)((get_local_id(0) & 1) != 0);
const bool eveny = ((get_local_id(1) & 1) == 0);
const int tidx = get_local_id(0);
float4 co1 = (float4)(0.375f, 0.375f, 0.375f, 0.375f);
float4 co2 = (float4)(0.25f, 0.25f, 0.25f, 0.25f);
float4 co3 = (float4)(0.0625f, 0.0625f, 0.0625f, 0.0625f);
if(eveny)
{
sum = sum + float4_x_float4(int_x_float4( evenFlag, co3 ) , s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx - 2) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( oddFlag , co2 ) , s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx - 1) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( evenFlag, co1 ) , s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx ) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( oddFlag , co2 ) , s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx + 1) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( evenFlag, co3 ) , s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx + 2) >> 1)]);
}
s_dstPatch[2 + get_local_id(1)][get_local_id(0)] = sum;
if (get_local_id(1) < 2)
{
sum = 0;
if (eveny)
{
sum = sum + float4_x_float4(int_x_float4(evenFlag , co3) , s_srcPatch[0][1 + ((tidx - 2) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( oddFlag , co2 ) , s_srcPatch[0][1 + ((tidx - 1) >> 1)]);
sum = sum + float4_x_float4(int_x_float4(evenFlag , co1 ) , s_srcPatch[0][1 + ((tidx ) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( oddFlag , co2 ) , s_srcPatch[0][1 + ((tidx + 1) >> 1)]);
sum = sum + float4_x_float4(int_x_float4(evenFlag , co3) , s_srcPatch[0][1 + ((tidx + 2) >> 1)]);
}
s_dstPatch[get_local_id(1)][get_local_id(0)] = sum;
}
if (get_local_id(1) > 13)
{
sum = 0;
if (eveny)
{
sum = sum + float4_x_float4(int_x_float4(evenFlag , co3) , s_srcPatch[9][1 + ((tidx - 2) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( oddFlag , co2) , s_srcPatch[9][1 + ((tidx - 1) >> 1)]);
sum = sum + float4_x_float4(int_x_float4(evenFlag , co1) , s_srcPatch[9][1 + ((tidx ) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( oddFlag , co2) , s_srcPatch[9][1 + ((tidx + 1) >> 1)]);
sum = sum + float4_x_float4(int_x_float4(evenFlag , co3) , s_srcPatch[9][1 + ((tidx + 2) >> 1)]);
}
s_dstPatch[4 + get_local_id(1)][get_local_id(0)] = sum;
}
barrier(CLK_LOCAL_MEM_FENCE);
sum = 0;
const int tidy = get_local_id(1);
sum = sum + float4_x_float4(co3 , s_dstPatch[2 + tidy - 2][get_local_id(0)]);
sum = sum + float4_x_float4(co2 , s_dstPatch[2 + tidy - 1][get_local_id(0)]);
sum = sum + float4_x_float4(co1 , s_dstPatch[2 + tidy ][get_local_id(0)]);
sum = sum + float4_x_float4(co2 , s_dstPatch[2 + tidy + 1][get_local_id(0)]);
sum = sum + float4_x_float4(co3 , s_dstPatch[2 + tidy + 2][get_local_id(0)]);
if ((x < dstCols) && (y < dstRows))
{
dst[x + y * dstStep] = convert_float4_to_ushort4(int_x_float4(4.0f,sum));
}
}
///////////////////////////////////////////////////////////////////////
////////////////////////// CV_32FC4 //////////////////////////////////
///////////////////////////////////////////////////////////////////////
__kernel void pyrUp_C4_D5(__global float4* src,__global float4* dst,
int srcRows,int dstRows,int srcCols,int dstCols,
int srcOffset,int dstOffset,int srcStep,int dstStep)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
__local float4 s_srcPatch[10][10];
__local float4 s_dstPatch[20][16];
srcOffset >>= 4;
dstOffset >>= 4;
srcStep >>= 4;
dstStep >>= 4;
if( get_local_id(0) < 10 && get_local_id(1) < 10 )
{
int srcx = (int)(get_group_id(0) * get_local_size(0) / 2 + get_local_id(0)) - 1;
int srcy = (int)(get_group_id(1) * get_local_size(1) / 2 + get_local_id(1)) - 1;
srcx = abs(srcx);
srcx = min(srcCols - 1,srcx);
srcy = abs(srcy);
srcy = min(srcRows -1 ,srcy);
s_srcPatch[get_local_id(1)][get_local_id(0)] = (float4)(src[srcx + srcy * srcStep]);
}
barrier(CLK_LOCAL_MEM_FENCE);
float4 sum = (float4)(0,0,0,0);
const int evenFlag = (int)((get_local_id(0) & 1) == 0);
const int oddFlag = (int)((get_local_id(0) & 1) != 0);
const bool eveny = ((get_local_id(1) & 1) == 0);
const int tidx = get_local_id(0);
float4 co1 = (float4)(0.375f, 0.375f, 0.375f, 0.375f);
float4 co2 = (float4)(0.25f, 0.25f, 0.25f, 0.25f);
float4 co3 = (float4)(0.0625f, 0.0625f, 0.0625f, 0.0625f);
if(eveny)
{
sum = sum + float4_x_float4(int_x_float4( evenFlag, co3 ) , s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx - 2) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( oddFlag , co2 ) , s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx - 1) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( evenFlag, co1 ) , s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx ) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( oddFlag , co2 ) , s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx + 1) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( evenFlag, co3 ) , s_srcPatch[1 + (get_local_id(1) >> 1)][1 + ((tidx + 2) >> 1)]);
}
s_dstPatch[2 + get_local_id(1)][get_local_id(0)] = sum;
if (get_local_id(1) < 2)
{
sum = 0;
if (eveny)
{
sum = sum + float4_x_float4(int_x_float4(evenFlag , co3) , s_srcPatch[0][1 + ((tidx - 2) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( oddFlag , co2 ) , s_srcPatch[0][1 + ((tidx - 1) >> 1)]);
sum = sum + float4_x_float4(int_x_float4(evenFlag , co1 ) , s_srcPatch[0][1 + ((tidx ) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( oddFlag , co2 ) , s_srcPatch[0][1 + ((tidx + 1) >> 1)]);
sum = sum + float4_x_float4(int_x_float4(evenFlag , co3) , s_srcPatch[0][1 + ((tidx + 2) >> 1)]);
}
s_dstPatch[get_local_id(1)][get_local_id(0)] = sum;
}
if (get_local_id(1) > 13)
{
sum = 0;
if (eveny)
{
sum = sum + float4_x_float4(int_x_float4(evenFlag , co3) , s_srcPatch[9][1 + ((tidx - 2) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( oddFlag , co2) , s_srcPatch[9][1 + ((tidx - 1) >> 1)]);
sum = sum + float4_x_float4(int_x_float4(evenFlag , co1) , s_srcPatch[9][1 + ((tidx ) >> 1)]);
sum = sum + float4_x_float4(int_x_float4( oddFlag , co2) , s_srcPatch[9][1 + ((tidx + 1) >> 1)]);
sum = sum + float4_x_float4(int_x_float4(evenFlag , co3) , s_srcPatch[9][1 + ((tidx + 2) >> 1)]);
}
s_dstPatch[4 + get_local_id(1)][get_local_id(0)] = sum;
}
barrier(CLK_LOCAL_MEM_FENCE);
sum = 0;
const int tidy = get_local_id(1);
sum = sum + float4_x_float4(co3 , s_dstPatch[2 + tidy - 2][get_local_id(0)]);
sum = sum + float4_x_float4(co2 , s_dstPatch[2 + tidy - 1][get_local_id(0)]);
sum = sum + float4_x_float4(co1 , s_dstPatch[2 + tidy ][get_local_id(0)]);
sum = sum + float4_x_float4(co2 , s_dstPatch[2 + tidy + 1][get_local_id(0)]);
sum = sum + float4_x_float4(co3 , s_dstPatch[2 + tidy + 2][get_local_id(0)]);
if ((x < dstCols) && (y < dstRows))
{
dst[x + y * dstStep] = 4.0f * sum;
}
}
\ No newline at end of file
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <iomanip>
#include "precomp.hpp"
using namespace cv;
using namespace cv::ocl;
using namespace std;
#define EXT_FP64 0
#if !defined (HAVE_OPENCL)
void cv::ocl::matchTemplate(const oclMat&, const oclMat&, oclMat&) { throw_nogpu(); }
#else
//helper routines
namespace cv
{
namespace ocl
{
///////////////////////////OpenCL kernel strings///////////////////////////
extern const char *match_template;
}
}
namespace cv { namespace ocl
{
void matchTemplate_SQDIFF(
const oclMat& image, const oclMat& templ, oclMat& result, MatchTemplateBuf &buf);
void matchTemplate_SQDIFF_NORMED(
const oclMat& image, const oclMat& templ, oclMat& result, MatchTemplateBuf &buf);
void matchTemplate_CCORR(
const oclMat& image, const oclMat& templ, oclMat& result, MatchTemplateBuf &buf);
void matchTemplate_CCORR_NORMED(
const oclMat& image, const oclMat& templ, oclMat& result, MatchTemplateBuf &buf);
void matchTemplate_CCOFF(
const oclMat& image, const oclMat& templ, oclMat& result, MatchTemplateBuf &buf);
void matchTemplate_CCOFF_NORMED(
const oclMat& image, const oclMat& templ, oclMat& result, MatchTemplateBuf &buf);
void matchTemplateNaive_SQDIFF(
const oclMat& image, const oclMat& templ, oclMat& result, int cn);
void matchTemplateNaive_CCORR(
const oclMat& image, const oclMat& templ, oclMat& result, int cn);
// Evaluates optimal template's area threshold. If
// template's area is less than the threshold, we use naive match
// template version, otherwise FFT-based (if available)
int getTemplateThreshold(int method, int depth)
{
switch (method)
{
case CV_TM_CCORR:
if (depth == CV_32F) return 250;
if (depth == CV_8U) return 300;
break;
case CV_TM_SQDIFF:
if (depth == CV_32F) return MAXSHORT; // do naive SQDIFF for CV_32F
if (depth == CV_8U) return 300;
break;
}
CV_Error(CV_StsBadArg, "getTemplateThreshold: unsupported match template mode");
return 0;
}
//////////////////////////////////////////////////////////////////////
// SQDIFF
void matchTemplate_SQDIFF(
const oclMat& image, const oclMat& templ, oclMat& result, MatchTemplateBuf &buf)
{
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
if (templ.size().area() < getTemplateThreshold(CV_TM_SQDIFF, image.depth()))
{
matchTemplateNaive_SQDIFF(image, templ, result, image.channels());
return;
}
else
{
// TODO
CV_Error(CV_StsBadArg, "Not supported yet for this size template");
}
}
void matchTemplate_SQDIFF_NORMED(
const oclMat& image, const oclMat& templ, oclMat& result, MatchTemplateBuf &buf)
{
matchTemplate_CCORR(image,templ,result,buf);
buf.image_sums.resize(1);
buf.image_sqsums.resize(1);
integral(image.reshape(1), buf.image_sums[0], buf.image_sqsums[0]);
#if EXT_FP64 && SQRSUM_FIXED
unsigned long long templ_sqsum = (unsigned long long)sqrSum(templ.reshape(1))[0];
#else
Mat sqr_mat = templ.reshape(1);
unsigned long long templ_sqsum = (unsigned long long)sum(sqr_mat.mul(sqr_mat))[0];
#endif
Context *clCxt = image.clCxt;
string kernelName = "matchTemplate_Prepared_SQDIFF_NORMED";
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[0].data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&result.data));
args.push_back( make_pair( sizeof(cl_ulong), (void *)&templ_sqsum));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].step));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step));
size_t globalThreads[3] = {result.cols, result.rows, 1};
size_t localThreads[3] = {32, 8, 1};
openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, 1, CV_8U);
}
void matchTemplateNaive_SQDIFF(
const oclMat& image, const oclMat& templ, oclMat& result, int cn)
{
CV_Assert((image.depth() == CV_8U && templ.depth() == CV_8U )
|| (image.depth() == CV_32F && templ.depth() == CV_32F) && result.depth() == CV_32F);
CV_Assert(image.channels() == templ.channels() && (image.channels() == 1 || image.channels() == 4) && result.channels() == 1);
CV_Assert(result.rows == image.rows - templ.rows + 1 && result.cols == image.cols - templ.cols + 1);
Context *clCxt = image.clCxt;
string kernelName = "matchTemplate_Naive_SQDIFF";
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&image.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&templ.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&result.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&image.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&image.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&image.offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&image.step));
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.step));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step));
size_t globalThreads[3] = {result.cols, result.rows, 1};
size_t localThreads[3] = {32, 8, 1};
openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, image.channels(), image.depth());
}
//////////////////////////////////////////////////////////////////////
// CCORR
void matchTemplate_CCORR(
const oclMat& image, const oclMat& templ, oclMat& result, MatchTemplateBuf &buf)
{
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
if (templ.size().area() < getTemplateThreshold(CV_TM_SQDIFF, image.depth()))
{
matchTemplateNaive_CCORR(image, templ, result, image.channels());
return;
}
else
{
CV_Error(CV_StsBadArg, "Not supported yet for this size template");
if(image.depth() == CV_8U && templ.depth() == CV_8U)
{
image.convertTo(buf.imagef, CV_32F);
templ.convertTo(buf.templf, CV_32F);
}
CV_Assert(image.channels() == 1);
oclMat o_result(image.size(), CV_MAKETYPE(CV_32F, image.channels()));
filter2D(buf.imagef,o_result,CV_32F,buf.templf, Point(0,0));
result = o_result(Rect(0,0,image.rows - templ.rows + 1, image.cols - templ.cols + 1));
}
}
void matchTemplate_CCORR_NORMED(
const oclMat& image, const oclMat& templ, oclMat& result, MatchTemplateBuf &buf)
{
matchTemplate_CCORR(image,templ,result,buf);
buf.image_sums.resize(1);
buf.image_sqsums.resize(1);
integral(image.reshape(1), buf.image_sums[0], buf.image_sqsums[0]);
#if EXT_FP64 && SQRSUM_FIXED
unsigned long long templ_sqsum = (unsigned long long)sqrSum(templ.reshape(1))[0];
#elif EXT_FP64
oclMat templ_c1 = templ.reshape(1);
multiply(templ_c1, templ_c1, templ_c1);
unsigned long long templ_sqsum = (unsigned long long)sum(templ_c1)[0];
#else
Mat m_templ_c1 = templ.reshape(1);
multiply(m_templ_c1, m_templ_c1, m_templ_c1);
unsigned long long templ_sqsum = (unsigned long long)sum(m_templ_c1)[0];
#endif
Context *clCxt = image.clCxt;
string kernelName = "normalizeKernel";
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sqsums[0].data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&result.data));
args.push_back( make_pair( sizeof(cl_ulong), (void *)&templ_sqsum));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sqsums[0].offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sqsums[0].step));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step));
size_t globalThreads[3] = {result.cols, result.rows, 1};
size_t localThreads[3] = {32, 8, 1};
openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, 1, CV_8U);
}
void matchTemplateNaive_CCORR(
const oclMat& image, const oclMat& templ, oclMat& result, int cn)
{
CV_Assert((image.depth() == CV_8U && templ.depth() == CV_8U )
|| (image.depth() == CV_32F && templ.depth() == CV_32F) && result.depth() == CV_32F);
CV_Assert(image.channels() == templ.channels() && (image.channels() == 1 || image.channels() == 4) && result.channels() == 1);
CV_Assert(result.rows == image.rows - templ.rows + 1 && result.cols == image.cols - templ.cols + 1);
Context *clCxt = image.clCxt;
string kernelName = "matchTemplate_Naive_CCORR";
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&image.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&templ.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&result.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&image.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&image.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&image.offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&image.step));
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.step));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step));
size_t globalThreads[3] = {result.cols, result.rows, 1};
size_t localThreads[3] = {32, 8, 1};
openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, image.channels(), image.depth());
}
//////////////////////////////////////////////////////////////////////
// CCOFF
void matchTemplate_CCOFF(
const oclMat& image, const oclMat& templ, oclMat& result, MatchTemplateBuf &buf)
{
CV_Assert(image.depth() == CV_8U && templ.depth() == CV_8U);
matchTemplate_CCORR(image,templ,result,buf);
Context *clCxt = image.clCxt;
string kernelName;
kernelName = "matchTemplate_Prepared_CCOFF";
size_t globalThreads[3] = {result.cols, result.rows, 1};
size_t localThreads[3] = {32, 8, 1};
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&result.data) );
args.push_back( make_pair( sizeof(cl_int), (void *)&image.rows) );
args.push_back( make_pair( sizeof(cl_int), (void *)&image.cols) );
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.rows) );
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.cols) );
args.push_back( make_pair( sizeof(cl_int), (void *)&result.rows) );
args.push_back( make_pair( sizeof(cl_int), (void *)&result.cols) );
args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step));
// to be continued in the following section
if(image.channels() == 1)
{
buf.image_sums.resize(1);
// FIXME: temp fix for incorrect integral kernel
oclMat tmp_oclmat;
integral(image, buf.image_sums[0], tmp_oclmat);
float templ_sum = 0;
#if EXT_FP64
templ_sum = (float)sum(templ)[0] / templ.size().area();
#else
Mat o_templ = templ;
templ_sum = (float)sum(o_templ)[0] / o_templ.size().area(); // temp fix for non-double supported machine
#endif
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[0].data) );
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].offset) );
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].step) );
args.push_back( make_pair( sizeof(cl_float),(void *)&templ_sum) );
}
else
{
Vec4f templ_sum = Vec4f::all(0);
#if EXT_FP64
split(image,buf.images);
templ_sum = sum(templ) / templ.size().area();
#else
// temp fix for non-double supported machine
Mat o_templ = templ, o_image = image;
vector<Mat> o_mat_vector;
o_mat_vector.resize(image.channels());
buf.images.resize(image.channels());
split(o_image, o_mat_vector);
for(int i = 0; i < o_mat_vector.size(); i ++)
{
buf.images[i] = oclMat(o_mat_vector[i]);
}
templ_sum = sum(o_templ) / templ.size().area();
#endif
buf.image_sums.resize(buf.images.size());
for(int i = 0; i < image.channels(); i ++)
{
// FIXME: temp fix for incorrect integral kernel
oclMat omat_temp;
integral(buf.images[i], buf.image_sums[i], omat_temp);
}
switch(image.channels())
{
case 4:
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[0].data) );
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[1].data) );
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[2].data) );
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[3].data) );
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].offset) );
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].step) );
args.push_back( make_pair( sizeof(cl_float),(void *)&templ_sum[0]) );
args.push_back( make_pair( sizeof(cl_float),(void *)&templ_sum[1]) );
args.push_back( make_pair( sizeof(cl_float),(void *)&templ_sum[2]) );
args.push_back( make_pair( sizeof(cl_float),(void *)&templ_sum[3]) );
break;
default:
CV_Error(CV_StsBadArg, "matchTemplate: unsupported number of channels");
break;
}
}
openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, image.channels(), image.depth());
}
void matchTemplate_CCOFF_NORMED(
const oclMat& image, const oclMat& templ, oclMat& result, MatchTemplateBuf &buf)
{
image.convertTo(buf.imagef, CV_32F);
templ.convertTo(buf.templf, CV_32F);
matchTemplate_CCORR(buf.imagef, buf.templf, result, buf);
float scale = 1.f/templ.size().area();
Context *clCxt = image.clCxt;
string kernelName;
kernelName = "matchTemplate_Prepared_CCOFF_NORMED";
size_t globalThreads[3] = {result.cols, result.rows, 1};
size_t localThreads[3] = {32, 8, 1};
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&result.data) );
args.push_back( make_pair( sizeof(cl_int), (void *)&image.rows) );
args.push_back( make_pair( sizeof(cl_int), (void *)&image.cols) );
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.rows) );
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.cols) );
args.push_back( make_pair( sizeof(cl_int), (void *)&result.rows) );
args.push_back( make_pair( sizeof(cl_int), (void *)&result.cols) );
args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step));
args.push_back( make_pair( sizeof(cl_float),(void *)&scale) );
// to be continued in the following section
if(image.channels() == 1)
{
buf.image_sums.resize(1);
buf.image_sqsums.resize(1);
integral(image, buf.image_sums[0], buf.image_sqsums[0]);
float templ_sum = 0;
float templ_sqsum = 0;
#if EXT_FP64
templ_sum = (float)sum(templ)[0];
#if SQRSUM_FIXED
templ_sqsum = sqrSum(templ);
#else
oclMat templ_sqr = templ;
multiply(templ,templ, templ_sqr);
templ_sqsum = sum(templ_sqr)[0];
#endif //SQRSUM_FIXED
templ_sqsum -= scale * templ_sum * templ_sum;
templ_sum *= scale;
#else
// temp fix for non-double supported machine
Mat o_templ = templ;
templ_sum = (float)sum(o_templ)[0];
templ_sqsum = sum(o_templ.mul(o_templ))[0] - scale * templ_sum * templ_sum;
templ_sum *= scale;
#endif
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[0].data) );
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].offset) );
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].step) );
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sqsums[0].data) );
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sqsums[0].offset) );
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sqsums[0].step) );
args.push_back( make_pair( sizeof(cl_float),(void *)&templ_sum) );
args.push_back( make_pair( sizeof(cl_float),(void *)&templ_sqsum) );
}
else
{
Vec4f templ_sum = Vec4f::all(0);
Vec4f templ_sqsum = Vec4f::all(0);
#if EXT_FP64
split(image,buf.images);
templ_sum = sum(templ);
#if SQRSUM_FIXED
templ_sqsum = sqrSum(templ);
#else
oclMat templ_sqr = templ;
multiply(templ,templ, templ_sqr);
templ_sqsum = sum(templ_sqr);
#endif //SQRSUM_FIXED
templ_sqsum -= scale * templ_sum * templ_sum;
#else
// temp fix for non-double supported machine
Mat o_templ = templ, o_image = image;
vector<Mat> o_mat_vector;
o_mat_vector.resize(image.channels());
buf.images.resize(image.channels());
split(o_image, o_mat_vector);
for(int i = 0; i < o_mat_vector.size(); i ++)
{
buf.images[i] = oclMat(o_mat_vector[i]);
}
templ_sum = sum(o_templ);
templ_sqsum = sum(o_templ.mul(o_templ));
#endif
float templ_sqsum_sum = 0;
for(int i = 0; i < image.channels(); i ++)
{
templ_sqsum_sum += templ_sqsum[i] - scale * templ_sum[i] * templ_sum[i];
}
templ_sum *= scale;
buf.image_sums.resize(buf.images.size());
buf.image_sqsums.resize(buf.images.size());
for(int i = 0; i < image.channels(); i ++)
{
integral(buf.images[i], buf.image_sums[i], buf.image_sqsums[i]);
}
switch(image.channels())
{
case 4:
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[0].data) );
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[1].data) );
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[2].data) );
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sums[3].data) );
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].offset) );
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sums[0].step) );
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sqsums[0].data) );
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sqsums[1].data) );
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sqsums[2].data) );
args.push_back( make_pair( sizeof(cl_mem), (void *)&buf.image_sqsums[3].data) );
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sqsums[0].offset) );
args.push_back( make_pair( sizeof(cl_int), (void *)&buf.image_sqsums[0].step) );
args.push_back( make_pair( sizeof(cl_float),(void *)&templ_sum[0]) );
args.push_back( make_pair( sizeof(cl_float),(void *)&templ_sum[1]) );
args.push_back( make_pair( sizeof(cl_float),(void *)&templ_sum[2]) );
args.push_back( make_pair( sizeof(cl_float),(void *)&templ_sum[3]) );
args.push_back( make_pair( sizeof(cl_float),(void *)&templ_sqsum_sum) );
break;
default:
CV_Error(CV_StsBadArg, "matchTemplate: unsupported number of channels");
break;
}
}
openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, image.channels(), image.depth());
}
}/*ocl*/} /*cv*/
void cv::ocl::matchTemplate(const oclMat& image, const oclMat& templ, oclMat& result, int method)
{
MatchTemplateBuf buf;
matchTemplate(image,templ, result, method,buf);
}
void cv::ocl::matchTemplate(const oclMat& image, const oclMat& templ, oclMat& result, int method, MatchTemplateBuf& buf)
{
CV_Assert(image.type() == templ.type());
CV_Assert(image.cols >= templ.cols && image.rows >= templ.rows);
typedef void (*Caller)(const oclMat&, const oclMat&, oclMat&, MatchTemplateBuf&);
const Caller callers[] = {
::matchTemplate_SQDIFF, ::matchTemplate_SQDIFF_NORMED,
::matchTemplate_CCORR, ::matchTemplate_CCORR_NORMED,
::matchTemplate_CCOFF, ::matchTemplate_CCOFF_NORMED
};
Caller caller = callers[method];
CV_Assert(caller);
caller(image, templ, result, buf);
}
#endif //
#include "precomp.hpp"
using namespace cv;
using namespace cv::ocl;
using namespace std;
using std::cout;
using std::endl;
namespace cv
{
namespace ocl
{
///////////////////////////OpenCL kernel strings///////////////////////////
extern const char *pyr_down;
}
}
//////////////////////////////////////////////////////////////////////////////
/////////////////////// add subtract multiply divide /////////////////////////
//////////////////////////////////////////////////////////////////////////////
template<typename T>
void pyrdown_run(const oclMat &src, const oclMat &dst)
{
CV_Assert(src.cols / 2 == dst.cols && src.rows / 2 == dst.rows);
CV_Assert(src.type() == dst.type());
CV_Assert(src.depth() != CV_8S);
Context *clCxt = src.clCxt;
//int channels = dst.channels();
//int depth = dst.depth();
string kernelName = "pyrDown";
//int vector_lengths[4][7] = {{4, 0, 4, 4, 1, 1, 1},
// {4, 0, 4, 4, 1, 1, 1},
// {4, 0, 4, 4, 1, 1, 1},
// {4, 0, 4, 4, 1, 1, 1}
//};
//size_t vector_length = vector_lengths[channels-1][depth];
//int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1);
size_t localThreads[3] = { 256, 1, 1 };
size_t globalThreads[3] = { src.cols, dst.rows, 1};
//int dst_step1 = dst.cols * dst.elemSize();
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.offset ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.cols));
openCLExecuteKernel(clCxt, &pyr_down, kernelName, globalThreads, localThreads, args, src.channels(), src.depth());
}
void pyrdown_run(const oclMat &src, const oclMat &dst)
{
switch(src.depth())
{
case 0:
pyrdown_run<unsigned char>(src, dst);
break;
case 1:
pyrdown_run<char>(src, dst);
break;
case 2:
pyrdown_run<unsigned short>(src, dst);
break;
case 3:
pyrdown_run<short>(src, dst);
break;
case 4:
pyrdown_run<int>(src, dst);
break;
case 5:
pyrdown_run<float>(src, dst);
break;
case 6:
pyrdown_run<double>(src, dst);
break;
default:
break;
}
}
//////////////////////////////////////////////////////////////////////////////
// pyrDown
void cv::ocl::pyrDown(const oclMat& src, oclMat& dst)
{
CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
//src.step = src.rows;
dst.create((src.rows + 1) / 2, (src.cols + 1) / 2, src.type());
//dst.step = dst.rows;
pyrdown_run(src, dst);
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Zhang Chunpeng chunpeng@multicorewareinc.com
//
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* Haar features calculation */
//#define EMU
#include "precomp.hpp"
using namespace cv;
using namespace cv::ocl;
using namespace std;
#ifndef HAVE_OPENCL
void cv::ocl::pyrUp(const oclMat&, GpuMat&, oclMat&) { throw_nogpu(); }
#else
namespace cv { namespace ocl
{
extern const char *pyr_up;
void pyrUp(const cv::ocl::oclMat& src,cv::ocl::oclMat& dst)
{
dst.create(src.rows * 2, src.cols * 2, src.type());
Context *clCxt = src.clCxt;
const std::string kernelName = "pyrUp";
std::vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.step));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step));
size_t globalThreads[3] = {dst.cols, dst.rows, 1};
size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &pyr_up, kernelName, globalThreads, localThreads, args, src.channels(), src.depth());
}
}};
#endif // HAVE_OPENCL
\ No newline at end of file
#include "precomp.hpp"
#include <iomanip>
using namespace cv;
using namespace cv::ocl;
using namespace cvtest;
using namespace testing;
using namespace std;
template <typename T>
void blendLinearGold(const cv::Mat& img1, const cv::Mat& img2, const cv::Mat& weights1, const cv::Mat& weights2, cv::Mat& result_gold)
{
result_gold.create(img1.size(), img1.type());
int cn = img1.channels();
for (int y = 0; y < img1.rows; ++y)
{
const float* weights1_row = weights1.ptr<float>(y);
const float* weights2_row = weights2.ptr<float>(y);
const T* img1_row = img1.ptr<T>(y);
const T* img2_row = img2.ptr<T>(y);
T* result_gold_row = result_gold.ptr<T>(y);
for (int x = 0; x < img1.cols * cn; ++x)
{
float w1 = weights1_row[x / cn];
float w2 = weights2_row[x / cn];
result_gold_row[x] = static_cast<T>((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f));
}
}
}
PARAM_TEST_CASE(Blend, cv::Size, MatType/*, UseRoi*/)
{
//cv::gpu::DeviceInfo devInfo;
cv::Size size;
int type;
bool useRoi;
virtual void SetUp()
{
//devInfo = GET_PARAM(0);
size = GET_PARAM(0);
type = GET_PARAM(1);
/*useRoi = GET_PARAM(3);*/
//cv::gpu::setDevice(devInfo.deviceID());
}
};
TEST_P(Blend, Accuracy)
{
int depth = CV_MAT_DEPTH(type);
cv::Mat img1 = randomMat(size, type, 0.0, depth == CV_8U ? 255.0 : 1.0);
cv::Mat img2 = randomMat(size, type, 0.0, depth == CV_8U ? 255.0 : 1.0);
cv::Mat weights1 = randomMat(size, CV_32F, 0, 1);
cv::Mat weights2 = randomMat(size, CV_32F, 0, 1);
cv::ocl::oclMat gimg1(size, type), gimg2(size, type), gweights1(size, CV_32F), gweights2(size, CV_32F);
cv::ocl::oclMat dst(size, type);
gimg1.upload(img1);
gimg2.upload(img2);
gweights1.upload(weights1);
gweights2.upload(weights2);
cv::ocl::blendLinear(gimg1, gimg2, gweights1, gweights2, dst);
cv::Mat result;
cv::Mat result_gold;
dst.download(result);
if (depth == CV_8U)
blendLinearGold<uchar>(img1, img2, weights1, weights2, result_gold);
else
blendLinearGold<float>(img1, img2, weights1, weights2, result_gold);
EXPECT_MAT_NEAR(result_gold, result, CV_MAT_DEPTH(type) == CV_8U ? 1 : 1e-5f, NULL)
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Blend, Combine(
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC4))
));
\ No newline at end of file
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Chunpeng Zhang chunpeng@multicorewareinc.com
//
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <iomanip>
///////////////////////////////////////////////////////////////////////////////
/// ColumnSum
#ifdef HAVE_OPENCL
////////////////////////////////////////////////////////////////////////
// ColumnSum
PARAM_TEST_CASE(ColumnSum, cv::Size, bool )
{
cv::Size size;
cv::Mat src;
bool useRoi;
virtual void SetUp()
{
size = GET_PARAM(0);
useRoi = GET_PARAM(1);
}
};
TEST_P(ColumnSum, Accuracy)
{
cv::Mat src = randomMat(size, CV_32FC1);
//cv::Mat src(size,CV_32FC1);
//cv::ocl::oclMat d_dst = ::createMat(size,src.type(),useRoi);
cv::ocl::oclMat d_dst = loadMat(src,useRoi);
cv::ocl::columnSum(loadMat(src,useRoi),d_dst);
cv::Mat dst(d_dst);
for (int j = 0; j < src.cols; ++j)
{
float gold = src.at<float>(0, j);
float res = dst.at<float>(0, j);
ASSERT_NEAR(res, gold, 1e-5);
}
for (int i = 1; i < src.rows; ++i)
{
for (int j = 0; j < src.cols; ++j)
{
float gold = src.at<float>(i, j) += src.at<float>(i - 1, j);
float res = dst.at<float>(i, j);
ASSERT_NEAR(res, gold, 1e-5);
}
}
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, ColumnSum, testing::Combine(
DIFFERENT_SIZES,testing::Values(Inverse(false),Inverse(true))));
#endif
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#define PERF_TEST 0
////////////////////////////////////////////////////////////////////////////////
// MatchTemplate
#define ALL_TEMPLATE_METHODS testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR), TemplateMethod(cv::TM_CCOEFF), TemplateMethod(cv::TM_SQDIFF_NORMED), TemplateMethod(cv::TM_CCORR_NORMED), TemplateMethod(cv::TM_CCOEFF_NORMED))
IMPLEMENT_PARAM_CLASS(TemplateSize, cv::Size);
const char* TEMPLATE_METHOD_NAMES[6] = {"TM_SQDIFF", "TM_SQDIFF_NORMED", "TM_CCORR", "TM_CCORR_NORMED", "TM_CCOEFF", "TM_CCOEFF_NORMED"};
PARAM_TEST_CASE(MatchTemplate8U, cv::Size, TemplateSize, Channels, TemplateMethod)
{
cv::Size size;
cv::Size templ_size;
int cn;
int method;
virtual void SetUp()
{
size = GET_PARAM(0);
templ_size = GET_PARAM(1);
cn = GET_PARAM(2);
method = GET_PARAM(3);
}
};
TEST_P(MatchTemplate8U, Accuracy)
{
std::cout << "Method: " << TEMPLATE_METHOD_NAMES[method] << std::endl;
std::cout << "Image Size: (" << size.width << ", " << size.height << ")"<< std::endl;
std::cout << "Template Size: (" << templ_size.width << ", " << templ_size.height << ")"<< std::endl;
std::cout << "Channels: " << cn << std::endl;
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_8U, cn));
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_8U, cn));
cv::ocl::oclMat dst, ocl_image(image), ocl_templ(templ);
cv::ocl::matchTemplate(ocl_image, ocl_templ, dst, method);
cv::Mat dst_gold;
cv::matchTemplate(image, templ, dst_gold, method);
char sss [100] = "";
cv::Mat mat_dst;
dst.download(mat_dst);
EXPECT_MAT_NEAR(dst_gold, mat_dst, templ_size.area() * 1e-1, sss);
#if PERF_TEST
{
P_TEST_FULL({}, {cv::ocl::matchTemplate(ocl_image, ocl_templ, dst, method);}, {});
P_TEST_FULL({}, {cv::matchTemplate(image, templ, dst_gold, method);}, {});
}
#endif // PERF_TEST
}
PARAM_TEST_CASE(MatchTemplate32F, cv::Size, TemplateSize, Channels, TemplateMethod)
{
cv::Size size;
cv::Size templ_size;
int cn;
int method;
virtual void SetUp()
{
size = GET_PARAM(0);
templ_size = GET_PARAM(1);
cn = GET_PARAM(2);
method = GET_PARAM(3);
}
};
TEST_P(MatchTemplate32F, Accuracy)
{
cv::Mat image = randomMat(size, CV_MAKETYPE(CV_32F, cn));
cv::Mat templ = randomMat(templ_size, CV_MAKETYPE(CV_32F, cn));
cv::ocl::oclMat dst, ocl_image(image), ocl_templ(templ);
cv::ocl::matchTemplate(ocl_image, ocl_templ, dst, method);
cv::Mat dst_gold;
cv::matchTemplate(image, templ, dst_gold, method);
char sss [100] = "";
cv::Mat mat_dst;
dst.download(mat_dst);
EXPECT_MAT_NEAR(dst_gold, mat_dst, templ_size.area() * 1e-1, sss);
#if PERF_TEST
{
std::cout << "Method: " << TEMPLATE_METHOD_NAMES[method] << std::endl;
std::cout << "Image Size: (" << size.width << ", " << size.height << ")"<< std::endl;
std::cout << "Template Size: (" << templ_size.width << ", " << templ_size.height << ")"<< std::endl;
std::cout << "Channels: " << cn << std::endl;
P_TEST_FULL({}, {cv::ocl::matchTemplate(ocl_image, ocl_templ, dst, method);}, {});
P_TEST_FULL({}, {cv::matchTemplate(image, templ, dst_gold, method);}, {});
}
#endif // PERF_TEST
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate8U,
testing::Combine(
DIFFERENT_SIZES,
testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16))/*, TemplateSize(cv::Size(30, 30))*/),
testing::Values(Channels(1), Channels(4)),
ALL_TEMPLATE_METHODS
)
);
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, MatchTemplate32F, testing::Combine(
DIFFERENT_SIZES,
testing::Values(TemplateSize(cv::Size(5, 5)), TemplateSize(cv::Size(16, 16))/*, TemplateSize(cv::Size(30, 30))*/),
testing::Values(Channels(1), Channels(4)),
testing::Values(TemplateMethod(cv::TM_SQDIFF), TemplateMethod(cv::TM_CCORR))));
///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Dachuan Zhao, dachuan@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
//#define PRINT_CPU_TIME 1000
//#define PRINT_TIME
#include "precomp.hpp"
#include <iomanip>
#ifdef HAVE_OPENCL
using namespace cv;
using namespace cv::ocl;
using namespace cvtest;
using namespace testing;
using namespace std;
PARAM_TEST_CASE(PyrDown, MatType, bool)
{
int type;
cv::Scalar val;
//src mat
cv::Mat mat1;
cv::Mat mat2;
cv::Mat mask;
cv::Mat dst;
cv::Mat dst1; //bak, for two outputs
// set up roi
int roicols;
int roirows;
int src1x;
int src1y;
int src2x;
int src2y;
int dstx;
int dsty;
int maskx;
int masky;
//src mat with roi
cv::Mat mat1_roi;
cv::Mat mat2_roi;
cv::Mat mask_roi;
cv::Mat dst_roi;
cv::Mat dst1_roi; //bak
std::vector<cv::ocl::Info> oclinfo;
//ocl dst mat for testing
cv::ocl::oclMat gdst_whole;
cv::ocl::oclMat gdst1_whole; //bak
//ocl mat with roi
cv::ocl::oclMat gmat1;
cv::ocl::oclMat gmat2;
cv::ocl::oclMat gdst;
cv::ocl::oclMat gdst1; //bak
cv::ocl::oclMat gmask;
virtual void SetUp()
{
type = GET_PARAM(0);
cv::RNG &rng = TS::ptr()->get_rng();
cv::Size size(MWIDTH, MHEIGHT);
mat1 = randomMat(rng, size, type, 5, 16, false);
mat2 = randomMat(rng, size, type, 5, 16, false);
dst = randomMat(rng, size, type, 5, 16, false);
dst1 = randomMat(rng, size, type, 5, 16, false);
mask = randomMat(rng, size, CV_8UC1, 0, 2, false);
cv::threshold(mask, mask, 0.5, 255., CV_8UC1);
val = cv::Scalar(rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0));
//int devnums = getDevice(oclinfo);
//CV_Assert(devnums > 0);
//if you want to use undefault device, set it here
//setDevice(oclinfo[0]);
}
void Cleanup()
{
mat1.release();
mat2.release();
mask.release();
dst.release();
dst1.release();
mat1_roi.release();
mat2_roi.release();
mask_roi.release();
dst_roi.release();
dst1_roi.release();
gdst_whole.release();
gdst1_whole.release();
gmat1.release();
gmat2.release();
gdst.release();
gdst1.release();
gmask.release();
}
void random_roi()
{
cv::RNG &rng = TS::ptr()->get_rng();
#ifdef RANDOMROI
//randomize ROI
roicols = rng.uniform(1, mat1.cols);
roirows = rng.uniform(1, mat1.rows);
src1x = rng.uniform(0, mat1.cols - roicols);
src1y = rng.uniform(0, mat1.rows - roirows);
dstx = rng.uniform(0, dst.cols - roicols);
dsty = rng.uniform(0, dst.rows - roirows);
#else
roicols = mat1.cols;
roirows = mat1.rows;
src1x = 0;
src1y = 0;
dstx = 0;
dsty = 0;
#endif
maskx = rng.uniform(0, mask.cols - roicols);
masky = rng.uniform(0, mask.rows - roirows);
src2x = rng.uniform(0, mat2.cols - roicols);
src2y = rng.uniform(0, mat2.rows - roirows);
mat1_roi = mat1(Rect(src1x, src1y, roicols, roirows));
mat2_roi = mat2(Rect(src2x, src2y, roicols, roirows));
mask_roi = mask(Rect(maskx, masky, roicols, roirows));
dst_roi = dst(Rect(dstx, dsty, roicols, roirows));
dst1_roi = dst1(Rect(dstx, dsty, roicols, roirows));
gdst_whole = dst;
gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows));
gdst1_whole = dst1;
gdst1 = gdst1_whole(Rect(dstx, dsty, roicols, roirows));
gmat1 = mat1_roi;
gmat2 = mat2_roi;
gmask = mask_roi; //end
}
};
#define VARNAME(A) string(#A);
void PrePrint()
{
//for(int i = 0; i < MHEIGHT; i++)
//{
// printf("(%d) ", i);
// for(int k = 0; k < MWIDTH; k++)
// {
// printf("%d ", mat1_roi.data[i * MHEIGHT + k]);
// }
// printf("\n");
//}
}
void PostPrint()
{
//dst_roi.convertTo(dst_roi,CV_32S);
//cpu_dst.convertTo(cpu_dst,CV_32S);
//dst_roi -= cpu_dst;
//cpu_dst -= dst_roi;
//for(int i = 0; i < MHEIGHT / 2; i++)
//{
// printf("(%d) ", i);
// for(int k = 0; k < MWIDTH / 2; k++)
// {
// if(gmat1.depth() == 0)
// {
// if(gmat1.channels() == 1)
// {
// printf("%d ", dst_roi.data[i * MHEIGHT / 2 + k]);
// }
// else
// {
// printf("%d ", ((unsigned*)dst_roi.data)[i * MHEIGHT / 2 + k]);
// }
// }
// else if(gmat1.depth() == 5)
// {
// printf("%.6f ", ((float*)dst_roi.data)[i * MHEIGHT / 2 + k]);
// }
// }
// printf("\n");
//}
//for(int i = 0; i < MHEIGHT / 2; i++)
//{
// printf("(%d) ", i);
// for(int k = 0; k < MWIDTH / 2; k++)
// {
// if(gmat1.depth() == 0)
// {
// if(gmat1.channels() == 1)
// {
// printf("%d ", cpu_dst.data[i * MHEIGHT / 2 + k]);
// }
// else
// {
// printf("%d ", ((unsigned*)cpu_dst.data)[i * MHEIGHT / 2 + k]);
// }
// }
// else if(gmat1.depth() == 5)
// {
// printf("%.6f ", ((float*)cpu_dst.data)[i * MHEIGHT / 2 + k]);
// }
// }
// printf("\n");
//}
}
////////////////////////////////PyrDown/////////////////////////////////////////////////
//struct PyrDown : ArithmTestBase {};
TEST_P(PyrDown, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::pyrDown(mat1_roi, dst_roi);
cv::ocl::pyrDown(gmat1, gdst);
cv::Mat cpu_dst;
gdst.download(cpu_dst);
char s[1024];
sprintf(s, "roicols=%d,roirows=%d,src1x=%d,src1y=%d,dstx=%d,dsty=%d,maskx=%d,masky=%d,src2x=%d,src2y=%d", roicols, roirows, src1x, src1y, dstx, dsty, maskx, masky, src2x, src2y);
EXPECT_MAT_NEAR(dst_roi, cpu_dst, dst_roi.depth() == CV_32F ? 1e-5f : 1.0f, s);
Cleanup();
}
}
//********test****************
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, PyrDown, Combine(
Values(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4),
Values(false))); // Values(false) is the reserved parameter
#endif // HAVE_OPENCL
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Zhang Chunpeng chunpeng@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/core/core.hpp"
#ifdef HAVE_OPENCL
PARAM_TEST_CASE(PyrUp,cv::Size,int)
{
cv::Size size;
int type;
virtual void SetUp()
{
size = GET_PARAM(0);
type = GET_PARAM(1);
}
};
TEST_P(PyrUp,Accuracy)
{
cv::Mat src = randomMat(size,type);
cv::Mat dst_gold;
cv::pyrUp(src,dst_gold);
cv::ocl::oclMat dst;
cv::ocl::oclMat srcMat(src);
cv::ocl::pyrUp(srcMat,dst);
char s[100]={0};
EXPECT_MAT_NEAR(dst_gold, dst, (src.depth() == CV_32F ? 1e-4f : 1.0),s);
}
#if 1
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, PyrUp, testing::Combine(
testing::Values(cv::Size(32, 32)),
testing::Values(MatType(CV_8UC1),MatType(CV_16UC1),MatType(CV_32FC1),MatType(CV_8UC4),
MatType(CV_16UC4),MatType(CV_32FC4))));
#endif
#endif // HAVE_OPENCL
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment