Commit 0d706f67 authored by Deanna Hood's avatar Deanna Hood Committed by Vadim Pisarevsky

Return uncompressed support vectors for getSupportVectors on linear SVM (Bug #4096)

parent 544990e3
......@@ -675,11 +675,19 @@ public:
/** @brief Retrieves all the support vectors
The method returns all the support vector as floating-point matrix, where support vectors are
The method returns all the support vectors as a floating-point matrix, where support vectors are
stored as matrix rows.
*/
CV_WRAP virtual Mat getSupportVectors() const = 0;
/** @brief Retrieves all the uncompressed support vectors of a linear %SVM
The method returns all the uncompressed support vectors of a linear %SVM that the compressed
support vector, used for prediction, was derived from. They are returned in a floating-point
matrix, where the support vectors are stored as matrix rows.
*/
CV_WRAP Mat getUncompressedSupportVectors() const;
/** @brief Retrieves the decision function
@param i the index of the decision function. If the problem solved is regression, 1-class or
......
......@@ -1241,6 +1241,12 @@ public:
df_alpha.clear();
df_index.clear();
sv.release();
uncompressed_sv.release();
}
Mat getUncompressedSupportVectors_() const
{
return uncompressed_sv;
}
Mat getSupportVectors() const
......@@ -1538,6 +1544,7 @@ public:
}
optimize_linear_svm();
return true;
}
......@@ -1588,6 +1595,7 @@ public:
setRangeVector(df_index, df_count);
df_alpha.assign(df_count, 1.);
sv.copyTo(uncompressed_sv);
std::swap(sv, new_sv);
std::swap(decision_func, new_df);
}
......@@ -2056,6 +2064,21 @@ public:
}
fs << "]";
if ( !uncompressed_sv.empty() )
{
// write the joint collection of uncompressed support vectors
int uncompressed_sv_total = uncompressed_sv.rows;
fs << "uncompressed_sv_total" << uncompressed_sv_total;
fs << "uncompressed_support_vectors" << "[";
for( i = 0; i < uncompressed_sv_total; i++ )
{
fs << "[:";
fs.writeRaw("f", uncompressed_sv.ptr(i), uncompressed_sv.cols*uncompressed_sv.elemSize());
fs << "]";
}
fs << "]";
}
// write decision functions
int df_count = (int)decision_func.size();
......@@ -2096,7 +2119,7 @@ public:
svm_type_str == "NU_SVR" ? NU_SVR : -1;
if( svmType < 0 )
CV_Error( CV_StsParseError, "Missing of invalid SVM type" );
CV_Error( CV_StsParseError, "Missing or invalid SVM type" );
FileNode kernel_node = fn["kernel"];
if( kernel_node.empty() )
......@@ -2168,14 +2191,31 @@ public:
FileNode sv_node = fn["support_vectors"];
CV_Assert((int)sv_node.size() == sv_total);
sv.create(sv_total, var_count, CV_32F);
sv.create(sv_total, var_count, CV_32F);
FileNodeIterator sv_it = sv_node.begin();
for( i = 0; i < sv_total; i++, ++sv_it )
{
(*sv_it).readRaw("f", sv.ptr(i), var_count*sv.elemSize());
}
int uncompressed_sv_total = (int)fn["uncompressed_sv_total"];
if( uncompressed_sv_total > 0 )
{
// read uncompressed support vectors
FileNode uncompressed_sv_node = fn["uncompressed_support_vectors"];
CV_Assert((int)uncompressed_sv_node.size() == uncompressed_sv_total);
uncompressed_sv.create(uncompressed_sv_total, var_count, CV_32F);
FileNodeIterator uncompressed_sv_it = uncompressed_sv_node.begin();
for( i = 0; i < uncompressed_sv_total; i++, ++uncompressed_sv_it )
{
(*uncompressed_sv_it).readRaw("f", uncompressed_sv.ptr(i), var_count*uncompressed_sv.elemSize());
}
}
// read decision functions
int df_count = class_count > 1 ? class_count*(class_count-1)/2 : 1;
FileNode df_node = fn["decision_functions"];
......@@ -2207,7 +2247,7 @@ public:
SvmParams params;
Mat class_labels;
int var_count;
Mat sv;
Mat sv, uncompressed_sv;
vector<DecisionFunc> decision_func;
vector<double> df_alpha;
vector<int> df_index;
......@@ -2221,6 +2261,14 @@ Ptr<SVM> SVM::create()
return makePtr<SVMImpl>();
}
Mat SVM::getUncompressedSupportVectors() const
{
const SVMImpl* this_ = dynamic_cast<const SVMImpl*>(this);
if(!this_)
CV_Error(Error::StsNotImplemented, "the class is not SVMImpl");
return this_->getUncompressedSupportVectors_();
}
}
}
......
......@@ -118,3 +118,51 @@ TEST(ML_SVM, trainAuto_regression_5369)
EXPECT_EQ(0., result0);
EXPECT_EQ(1., result1);
}
class CV_SVMGetSupportVectorsTest : public cvtest::BaseTest {
public:
CV_SVMGetSupportVectorsTest() {}
protected:
virtual void run( int startFrom );
};
void CV_SVMGetSupportVectorsTest::run(int /*startFrom*/ )
{
int code = cvtest::TS::OK;
// Set up training data
int labels[4] = {1, -1, -1, -1};
float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} };
Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
Mat labelsMat(4, 1, CV_32SC1, labels);
Ptr<SVM> svm = SVM::create();
svm->setType(SVM::C_SVC);
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6));
// Test retrieval of SVs and compressed SVs on linear SVM
svm->setKernel(SVM::LINEAR);
svm->train(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat);
Mat sv = svm->getSupportVectors();
CV_Assert(sv.rows == 1); // by default compressed SV returned
sv = svm->getUncompressedSupportVectors();
CV_Assert(sv.rows == 3);
// Test retrieval of SVs and compressed SVs on non-linear SVM
svm->setKernel(SVM::POLY);
svm->setDegree(2);
svm->train(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat);
sv = svm->getSupportVectors();
CV_Assert(sv.rows == 3);
sv = svm->getUncompressedSupportVectors();
CV_Assert(sv.rows == 0); // inapplicable for non-linear SVMs
ts->set_failed_test_info(code);
}
TEST(ML_SVM, getSupportVectors) { CV_SVMGetSupportVectorsTest test; test.safe_run(); }
......@@ -65,7 +65,7 @@ int main(int, char**)
//! [show_vectors]
thickness = 2;
lineType = 8;
Mat sv = svm->getSupportVectors();
Mat sv = svm->getUncompressedSupportVectors();
for (int i = 0; i < sv.rows; ++i)
{
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment