Commit 0c859002 authored by Lubov Batanina's avatar Lubov Batanina Committed by Alexander Alekhin

Merge pull request #12071 from l-bat/l-bat:onnx_parser

* Add Squeezenet support in ONNX

* Add AlexNet support in ONNX

* Add Googlenet support in ONNX

* Add CaffeNet and RCNN support in ONNX

* Add VGG16 and VGG16 with batch normalization support in ONNX

* Add RCNN, ZFNet, ResNet18v1 and ResNet50v1 support in ONNX

* Add ResNet101_DUC_HDC

* Add Tiny Yolov2

* Add CNN_MNIST, MobileNetv2 and LResNet100 support in ONNX

* Add ONNX models for emotion recognition

* Add DenseNet121 support in ONNX

* Add Inception v1 support in ONNX

* Refactoring

* Fix tests

* Fix tests

* Skip unstable test

* Modify Reshape operation
parent c331a214
......@@ -67,13 +67,13 @@ ocv_warnings_disable(CMAKE_CXX_FLAGS
)
if(PROTOBUF_UPDATE_FILES)
file(GLOB proto_files "${CMAKE_CURRENT_LIST_DIR}/src/tensorflow/*.proto" "${CMAKE_CURRENT_LIST_DIR}/src/caffe/opencv-caffe.proto")
file(GLOB proto_files "${CMAKE_CURRENT_LIST_DIR}/src/tensorflow/*.proto" "${CMAKE_CURRENT_LIST_DIR}/src/caffe/opencv-caffe.proto" "${CMAKE_CURRENT_LIST_DIR}/src/onnx/opencv-onnx.proto")
set(PROTOBUF_GENERATE_CPP_APPEND_PATH ON) # required for tensorflow
protobuf_generate_cpp(fw_srcs fw_hdrs ${proto_files})
else()
file(GLOB fw_srcs "${CMAKE_CURRENT_LIST_DIR}/misc/tensorflow/*.cc" "${CMAKE_CURRENT_LIST_DIR}/misc/caffe/opencv-caffe.pb.cc")
file(GLOB fw_hdrs "${CMAKE_CURRENT_LIST_DIR}/misc/tensorflow/*.h" "${CMAKE_CURRENT_LIST_DIR}/misc/caffe/opencv-caffe.pb.h")
set(fw_inc "${CMAKE_CURRENT_LIST_DIR}/misc/caffe" "${CMAKE_CURRENT_LIST_DIR}/misc/tensorflow")
file(GLOB fw_srcs "${CMAKE_CURRENT_LIST_DIR}/misc/tensorflow/*.cc" "${CMAKE_CURRENT_LIST_DIR}/misc/caffe/opencv-caffe.pb.cc" "${CMAKE_CURRENT_LIST_DIR}/misc/onnx/opencv-onnx.pb.cc")
file(GLOB fw_hdrs "${CMAKE_CURRENT_LIST_DIR}/misc/tensorflow/*.h" "${CMAKE_CURRENT_LIST_DIR}/misc/caffe/opencv-caffe.pb.h" "${CMAKE_CURRENT_LIST_DIR}/misc/onnx/opencv-onnx.pb.h")
set(fw_inc "${CMAKE_CURRENT_LIST_DIR}/misc/caffe" "${CMAKE_CURRENT_LIST_DIR}/misc/tensorflow" "${CMAKE_CURRENT_LIST_DIR}/misc/onnx")
endif()
set(include_dirs ${fw_inc})
......
......@@ -141,6 +141,9 @@ public:
template<typename T>
const T &set(const String &key, const T &value);
//! Erase @p key from the dictionary.
void erase(const String &key);
friend std::ostream &operator<<(std::ostream &stream, const Dict &dict);
std::map<String, DictValue>::const_iterator begin() const;
......
......@@ -814,6 +814,18 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
*/
CV_EXPORTS_W Net readNetFromModelOptimizer(const String &xml, const String &bin);
/** @brief Reads a network model <a href="https://onnx.ai/">ONNX</a>.
* @param onnxFile path to the .onnx file with text description of the network architecture.
* @returns Network object that ready to do forward, throw an exception in failure cases.
*/
CV_EXPORTS_W Net readNetFromONNX(const String &onnxFile);
/** @brief Creates blob from .pb file.
* @param path to the .pb file with input tensor.
* @returns Mat.
*/
CV_EXPORTS_W Mat readTensorFromONNX(const String& path);
/** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
* subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
* @param image input image (with 1-, 3- or 4-channels).
......
......@@ -364,6 +364,11 @@ inline const T &Dict::set(const String &key, const T &value)
return value;
}
inline void Dict::erase(const String &key)
{
dict.erase(key);
}
inline std::ostream &operator<<(std::ostream &stream, const Dict &dict)
{
Dict::_Dict::const_iterator it;
......
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -3462,6 +3462,10 @@ Net readNet(const String& _model, const String& _config, const String& _framewor
std::swap(model, config);
return readNetFromModelOptimizer(config, model);
}
if (framework == "onnx" || modelExt == "onnx")
{
return readNetFromONNX(model);
}
CV_Error(Error::StsError, "Cannot determine an origin framework of files: " +
model + (config.empty() ? "" : ", " + config));
}
......
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2018, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "../precomp.hpp"
#ifdef HAVE_PROTOBUF
#include <iostream>
#include <fstream>
#include <string>
#include <limits>
#include <algorithm>
#if defined(__GNUC__) && __GNUC__ >= 5
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsuggest-override"
#endif
#include "opencv-onnx.pb.h"
#if defined(__GNUC__) && __GNUC__ >= 5
#pragma GCC diagnostic pop
#endif
namespace cv {
namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
class ONNXImporter
{
opencv_onnx::ModelProto model_proto;
struct LayerInfo {
int layerId;
int outputId;
LayerInfo(int _layerId, int _outputId) : layerId(_layerId), outputId(_outputId) {}
};
std::map<std::string, Mat> getGraphTensors(
const opencv_onnx::GraphProto& graph_proto);
Mat getBlob(const opencv_onnx::NodeProto& node_proto, const std::map<std::string, Mat>& constBlobs, int index);
LayerParams getLayerParams(const opencv_onnx::NodeProto& node_proto);
bool isCeilMode(const LayerParams& layerParams);
public:
ONNXImporter(const char *onnxFile)
{
std::fstream input(onnxFile, std::ios::in | std::ios::binary);
if (!model_proto.ParseFromIstream(&input))
CV_Error(Error::StsUnsupportedFormat, "Failed to parse onnx model");
}
void populateNet(Net dstNet);
};
inline void replaceLayerParam(LayerParams& layerParams, const String& oldKey, const String& newKey)
{
if (layerParams.has(oldKey)) {
layerParams.set(newKey, layerParams.get(oldKey));
layerParams.erase(oldKey);
}
}
void releaseONNXTensor(opencv_onnx::TensorProto& tensor_proto)
{
if (!tensor_proto.raw_data().empty()) {
delete tensor_proto.release_raw_data();
}
}
template<typename T1, typename T2>
void convertInt64ToInt32(const T1& src, T2& dst, int size)
{
for (int i = 0; i < size; i++) {
if (src[i] < std::numeric_limits<int32_t>::min() || src[i] > std::numeric_limits<int32_t>::max()) {
CV_Error(Error::StsOutOfRange, "Input is out of OpenCV 32S range");
}
dst[i] = saturate_cast<int32_t>(src[i]);
}
}
Mat getMatFromTensor(opencv_onnx::TensorProto& tensor_proto)
{
CV_Assert(!tensor_proto.raw_data().empty() || !tensor_proto.float_data().empty()
|| !tensor_proto.double_data().empty() || !tensor_proto.int64_data().empty());
opencv_onnx::TensorProto_DataType datatype = tensor_proto.data_type();
Mat blob;
std::vector<int> sizes;
for (int i = 0; i < tensor_proto.dims_size(); i++) {
sizes.push_back(tensor_proto.dims(i));
}
if (datatype == opencv_onnx::TensorProto_DataType_FLOAT) {
if (!tensor_proto.float_data().empty()) {
const ::google::protobuf::RepeatedField<float> field = tensor_proto.float_data();
Mat(sizes, CV_32FC1, (void*)field.data()).copyTo(blob);
}
else {
char* val = const_cast<char*>(tensor_proto.raw_data().c_str());
Mat(sizes, CV_32FC1, val).copyTo(blob);
}
}
else if (datatype == opencv_onnx::TensorProto_DataType_DOUBLE)
{
const ::google::protobuf::RepeatedField<double> field = tensor_proto.double_data();
CV_Assert(!field.empty());
Mat(sizes, CV_64FC1, (void*)field.data()).convertTo(blob, CV_32FC1);
}
else if (datatype == opencv_onnx::TensorProto_DataType_INT64)
{
blob.create(sizes, CV_32SC1);
int32_t* dst = reinterpret_cast<int32_t*>(blob.data);
if (!tensor_proto.int64_data().empty()) {
::google::protobuf::RepeatedField< ::google::protobuf::int64> src = tensor_proto.int64_data();
convertInt64ToInt32(src, dst, blob.total());
}
else
{
char* val = const_cast<char*>(tensor_proto.raw_data().c_str());
int64_t* src = reinterpret_cast<int64_t*>(val);
convertInt64ToInt32(src, dst, blob.total());
}
}
else
CV_Error(Error::StsUnsupportedFormat, "Unsupported data type: " +
opencv_onnx::TensorProto_DataType_Name(datatype));
return blob;
}
std::map<std::string, Mat> ONNXImporter::getGraphTensors(
const opencv_onnx::GraphProto& graph_proto)
{
opencv_onnx::TensorProto tensor_proto;
std::map<std::string, Mat> layers_weights;
for (int i = 0; i < graph_proto.initializer_size(); i++)
{
tensor_proto = graph_proto.initializer(i);
Mat mat = getMatFromTensor(tensor_proto);
releaseONNXTensor(tensor_proto);
layers_weights.insert(std::make_pair(tensor_proto.name(), mat));
}
return layers_weights;
}
LayerParams ONNXImporter::getLayerParams(const opencv_onnx::NodeProto& node_proto)
{
LayerParams lp;
for(int i = 0; i < node_proto.attribute_size(); i++)
{
opencv_onnx::AttributeProto attribute_proto = node_proto.attribute(i);
std::string attribute_name = attribute_proto.name();
if(attribute_name == "kernel_shape")
{
CV_Assert(attribute_proto.ints_size() == 2);
lp.set("kernel_h", saturate_cast<int32_t>(attribute_proto.ints(0)));
lp.set("kernel_w", saturate_cast<int32_t>(attribute_proto.ints(1)));
}
else if(attribute_name == "strides")
{
CV_Assert(attribute_proto.ints_size() == 2);
lp.set("stride_h", saturate_cast<int32_t>(attribute_proto.ints(0)));
lp.set("stride_w", saturate_cast<int32_t>(attribute_proto.ints(1)));
}
else if(attribute_name == "pads")
{
CV_Assert(attribute_proto.ints_size() == 4);
lp.set("pad_h", saturate_cast<int32_t>(attribute_proto.ints(0)));
lp.set("pad_w", saturate_cast<int32_t>(attribute_proto.ints(1)));
// push pad_b and pad_r for compute ceil_mode
lp.set("pad_b", saturate_cast<int32_t>(attribute_proto.ints(2)));
lp.set("pad_r", saturate_cast<int32_t>(attribute_proto.ints(3)));
}
else if(attribute_name == "auto_pad")
{
if (attribute_proto.s() == "SAME_UPPER" || attribute_proto.s() == "SAME_LOWER") {
lp.set("pad_mode", "SAME");
}
else if (attribute_proto.s() == "VALID") {
lp.set("pad_mode", "VALID");
}
}
else if(attribute_name == "dilations")
{
CV_Assert(attribute_proto.ints_size() == 2);
lp.set("dilation_h", saturate_cast<int32_t>(attribute_proto.ints(0)));
lp.set("dilation_w", saturate_cast<int32_t>(attribute_proto.ints(1)));
}
else if (attribute_proto.has_i())
{
::google::protobuf::int64 src = attribute_proto.i();
if (src < std::numeric_limits<int32_t>::min() || src > std::numeric_limits<int32_t>::max())
CV_Error(Error::StsOutOfRange, "Input is out of OpenCV 32S range");
else
lp.set(attribute_name, saturate_cast<int32_t>(src));
}
else if (attribute_proto.has_f())
{
lp.set(attribute_name, attribute_proto.f());
}
else if (attribute_proto.has_s())
{
lp.set(attribute_name, attribute_proto.s());
}
else if (attribute_proto.floats_size() > 0)
{
lp.set(attribute_name, DictValue::arrayReal(
(float*)attribute_proto.mutable_floats(), attribute_proto.floats_size()));
}
else if (attribute_proto.ints_size() > 0)
{
const ::google::protobuf::RepeatedField< ::google::protobuf::int64> src = attribute_proto.ints();
std::vector<int32_t> dst(attribute_proto.ints_size());
convertInt64ToInt32(src, dst, attribute_proto.ints_size());
lp.set(attribute_proto.name(), DictValue::arrayInt(&dst[0], attribute_proto.ints_size()));
}
else if (attribute_proto.has_t())
{
opencv_onnx::TensorProto tensor = attribute_proto.t();
Mat blob = getMatFromTensor(tensor);
lp.blobs.push_back(blob);
}
else if (attribute_proto.has_g() || attribute_proto.strings_size() > 0 ||
attribute_proto.tensors_size() > 0 || attribute_proto.graphs_size() > 0)
{
CV_Error(Error::StsNotImplemented, "Unexpected attribute type");
}
else
CV_Error(Error::StsNotImplemented, "Unsupported attribute type");
}
return lp;
}
Mat ONNXImporter::getBlob(const opencv_onnx::NodeProto& node_proto,
const std::map<std::string, Mat>& constBlobs, int index)
{
CV_Assert(index < node_proto.input_size());
std::map<std::string, Mat>::const_iterator constBlob;
constBlob = constBlobs.find(node_proto.input(index));
if (constBlob == constBlobs.end()) {
CV_Error(Error::StsObjectNotFound,
"Blob " + node_proto.input(index) + " not found in const blobs");
}
return constBlob->second;
}
bool ONNXImporter::isCeilMode(const LayerParams& layerParams) {
if (!layerParams.has("pad_mode")) {
if (layerParams.has("pad_h")) {
return layerParams.get<int>("pad_h") != layerParams.get<int>("pad_b") ||
layerParams.get<int>("pad_w") != layerParams.get<int>("pad_r");
}
else
return false; // all pads == 0
}
return true;
}
void ONNXImporter::populateNet(Net dstNet)
{
CV_Assert(model_proto.has_graph());
opencv_onnx::GraphProto graph_proto = model_proto.graph();
std::map<std::string, Mat> constBlobs = getGraphTensors(graph_proto);
std::string framework_name;
if (model_proto.has_producer_name()) {
framework_name = model_proto.producer_name();
}
// create map with network inputs (without const blobs)
std::map<std::string, LayerInfo> layer_id;
std::map<std::string, LayerInfo>::iterator layerId;
// fill map: push layer name, layer id and output id
std::vector<String> netInputs;
for (int j = 0; j < graph_proto.input_size(); j++)
{
const std::string& name = graph_proto.input(j).name();
if (constBlobs.find(name) == constBlobs.end()) {
netInputs.push_back(name);
layer_id.insert(std::make_pair(name, LayerInfo(0, netInputs.size() - 1)));
}
}
dstNet.setInputsNames(netInputs);
int layersSize = graph_proto.node_size();
LayerParams layerParams;
opencv_onnx::NodeProto node_proto;
for(int i = 0; i < layersSize; i++)
{
node_proto = graph_proto.node(i);
layerParams = getLayerParams(node_proto);
CV_Assert(node_proto.output_size() >= 1);
layerParams.name = node_proto.output(0);
std::string layer_type = node_proto.op_type();
layerParams.type = layer_type;
if (layer_type == "MaxPool")
{
layerParams.type = "Pooling";
layerParams.set("pool", "MAX");
layerParams.set("ceil_mode", isCeilMode(layerParams));
}
else if (layer_type == "AveragePool")
{
layerParams.type = "Pooling";
layerParams.set("pool", "AVE");
layerParams.set("ceil_mode", isCeilMode(layerParams));
layerParams.set("ave_pool_padded_area", framework_name == "pytorch");
}
else if (layer_type == "GlobalAveragePool")
{
layerParams.type = "Pooling";
layerParams.set("pool", "AVE");
layerParams.set("global_pooling", true);
}
else if (layer_type == "Add" || layer_type == "Sum")
{
if (layer_id.find(node_proto.input(1)) == layer_id.end())
{
Mat blob = getBlob(node_proto, constBlobs, 1);
blob = blob.reshape(1, 1);
if (blob.total() == 1) {
layerParams.type = "Power";
layerParams.set("shift", blob.at<float>(0));
}
else {
layerParams.type = "Shift";
layerParams.blobs.push_back(blob);
}
}
else {
layerParams.type = "Eltwise";
}
}
else if (layer_type == "Sub")
{
Mat blob = (-1.0f) * getBlob(node_proto, constBlobs, 1);
blob = blob.reshape(1, 1);
if (blob.total() == 1) {
layerParams.type = "Power";
layerParams.set("shift", blob.at<float>(0));
}
else {
layerParams.type = "Shift";
layerParams.blobs.push_back(blob);
}
}
else if (layer_type == "Constant")
{
CV_Assert(node_proto.input_size() == 0);
CV_Assert(layerParams.blobs.size() == 1);
constBlobs.insert(std::make_pair(layerParams.name, layerParams.blobs[0]));
continue;
}
else if (layer_type == "ImageScaler")
{
const float scale = layerParams.has("scale") ? layerParams.get<float>("scale") : 1.0f;
layerParams.erase("scale");
if (layerParams.has("bias"))
{
layerParams.type = "Scale";
layerParams.blobs.push_back(
Mat(Size(1, layerParams.get("bias").size()), CV_32FC1, scale));
layerParams.set("bias_term", true);
Mat bias(1, layerParams.get("bias").size(), CV_32FC1);
for (int j = 0; j < bias.total(); j++) {
bias.at<float>(0, j) = layerParams.get("bias").getRealValue(j);
}
layerParams.blobs.push_back(bias);
layerParams.erase("bias");
}
else {
layerParams.set("scale", scale);
layerParams.type = "Power";
}
}
else if (layer_type == "LeakyRelu")
{
layerParams.type = "ReLU";
replaceLayerParam(layerParams, "alpha", "negative_slope");
}
else if (layer_type == "LRN")
{
replaceLayerParam(layerParams, "size", "local_size");
}
else if (layer_type == "BatchNormalization")
{
if (node_proto.input_size() != 5)
CV_Error(Error::StsNotImplemented,
"Expected input, scale, bias, mean and var");
layerParams.type = "BatchNorm";
replaceLayerParam(layerParams, "epsilon", "eps");
replaceLayerParam(layerParams, "spatial", "use_global_stats");
Mat meanData = getBlob(node_proto, constBlobs, 3);
Mat stdData = getBlob(node_proto, constBlobs, 4);
layerParams.blobs.push_back(meanData);
layerParams.blobs.push_back(stdData);
if (!node_proto.input(1).empty()) {
layerParams.set("has_weight", true);
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, 1)); // weightData
} else {
layerParams.set("has_weight", false);
}
if (!node_proto.input(2).empty()) {
layerParams.set("has_bias", true);
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, 2)); // biasData
} else {
layerParams.set("has_bias", false);
}
}
else if (layer_type == "Gemm")
{
CV_Assert(node_proto.input_size() >= 2);
layerParams.type = "InnerProduct";
Mat weights = getBlob(node_proto, constBlobs, 1);
int ind_num_out = 0;
if (layerParams.has("transB") && !layerParams.get<int>("transB")) {
transpose(weights, weights);
ind_num_out = 1;
}
layerParams.blobs.push_back(weights);
if (node_proto.input_size() == 3) {
Mat bias = getBlob(node_proto, constBlobs, 2);
layerParams.blobs.push_back(bias);
}
layerParams.set("num_output", layerParams.blobs[0].size[ind_num_out]);
layerParams.set("bias_term", node_proto.input_size() == 3);
}
else if (layer_type == "MatMul")
{
CV_Assert(node_proto.input_size() == 2);
layerParams.type = "InnerProduct";
Mat blob = getBlob(node_proto, constBlobs, 1);
layerParams.blobs.push_back(blob.t());
layerParams.set("bias_term", false);
layerParams.set("num_output", layerParams.blobs[0].size[0]);
}
else if (layer_type == "Mul")
{
CV_Assert(node_proto.input_size() == 2);
if (layer_id.find(node_proto.input(1)) == layer_id.end()) {
Mat blob = getBlob(node_proto, constBlobs, 1);
blob = blob.reshape(1, 1);
if (blob.total() == 1) {
layerParams.set("scale", blob.at<float>(0));
layerParams.type = "Power";
}
else {
layerParams.blobs.push_back(blob);
layerParams.type = "Scale";
}
}
else {
layerParams.type = "Eltwise";
layerParams.set("operation", "prod");
}
}
else if (layer_type == "Conv")
{
CV_Assert(node_proto.input_size() >= 2);
layerParams.type = "Convolution";
for (int j = 1; j < node_proto.input_size(); j++) {
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j));
}
layerParams.set("num_output", layerParams.blobs[0].size[0]);
layerParams.set("bias_term", node_proto.input_size() == 3);
}
else if (layer_type == "Unsqueeze")
{
CV_Assert(node_proto.input_size() == 1);
Mat input = getBlob(node_proto, constBlobs, 0);
DictValue axes = layerParams.get("axes");
std::vector<int> dims;
for (int j = 0; j < input.dims; j++) {
dims.push_back(input.size[j]);
}
CV_Assert(axes.getIntValue(axes.size()-1) <= dims.size());
for (int j = 0; j < axes.size(); j++) {
dims.insert(dims.begin() + axes.getIntValue(j), 1);
}
Mat out = input.reshape(0, dims);
constBlobs.insert(std::make_pair(layerParams.name, out));
continue;
}
else if (layer_type == "Reshape")
{
CV_Assert(node_proto.input_size() == 2 || layerParams.has("shape"));
if (node_proto.input_size() == 2) {
Mat blob = getBlob(node_proto, constBlobs, 1);
CV_Assert(blob.type() == CV_32SC1);
if (layer_id.find(node_proto.input(0)) == layer_id.end()) {
Mat input = getBlob(node_proto, constBlobs, 0);
Mat out = input.reshape(0, static_cast<std::vector<int> >(blob));
constBlobs.insert(std::make_pair(layerParams.name, out));
continue;
}
layerParams.set("dim", DictValue::arrayInt<int*>(
blob.ptr<int>(), blob.total() ));
}
else {
DictValue shape = layerParams.get("shape");
std::vector<int> dim;
for (int j = 0; j < shape.size(); j++) {
dim.push_back(shape.getIntValue(j));
}
if (layer_id.find(node_proto.input(0)) == layer_id.end()) {
Mat input = getBlob(node_proto, constBlobs, 0);
Mat out = input.reshape(0, dim);
constBlobs.insert(std::make_pair(layerParams.name, out));
continue;
}
replaceLayerParam(layerParams, "shape", "dim");
}
}
else
{
for (int j = 0; j < node_proto.input_size(); j++) {
if (layer_id.find(node_proto.input(j)) == layer_id.end())
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j));
}
}
int id = dstNet.addLayer(layerParams.name, layerParams.type, layerParams);
layer_id.insert(std::make_pair(layerParams.name, LayerInfo(id, 0)));
for (int j = 0; j < node_proto.input_size(); j++) {
layerId = layer_id.find(node_proto.input(j));
if (layerId != layer_id.end()) {
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, j);
}
}
}
}
Net readNetFromONNX(const String& onnxFile)
{
ONNXImporter onnxImporter(onnxFile.c_str());
Net net;
onnxImporter.populateNet(net);
return net;
}
Mat readTensorFromONNX(const String& path)
{
opencv_onnx::TensorProto tensor_proto = opencv_onnx::TensorProto();
std::fstream input(path.c_str(), std::ios::in | std::ios::binary);
if (!tensor_proto.ParseFromIstream(&input)) {
CV_Error(Error::StsUnsupportedFormat, "Failed to parse data");
}
Mat mat = getMatFromTensor(tensor_proto);
releaseONNXTensor(tensor_proto);
return mat;
}
CV__DNN_EXPERIMENTAL_NS_END
}} // namespace
#endif
//
// WARNING: This file is automatically generated! Please edit onnx.in.proto.
//
// Copyright (c) Facebook Inc. and Microsoft Corporation.
// Licensed under the MIT license.
syntax = "proto2";
package opencv_onnx;
// Overview
//
// ONNX is an open specification that is comprised of the following components:
//
// 1) A definition of an extensible computation graph model.
// 2) Definitions of standard data types.
// 3) Definitions of built-in operators.
//
// This document describes the syntax of models and their computation graphs,
// as well as the standard data types. Together, they are referred to as the ONNX
// Intermediate Representation, or 'IR' for short.
//
// The normative semantic specification of the ONNX IR is found in docs/IR.md.
// Definitions of the built-in neural network operators may be found in docs/Operators.md.
// Notes
//
// Release
//
// We are still in the very early stage of defining ONNX. The current
// version of ONNX is a starting point. While we are actively working
// towards a complete spec, we would like to get the community involved
// by sharing our working version of ONNX.
//
// Protobuf compatibility
//
// To simplify framework compatibility, ONNX is defined using the subset of protobuf
// that is compatible with both protobuf v2 and v3. This means that we do not use any
// protobuf features that are only available in one of the two versions.
//
// Here are the most notable contortions we have to carry out to work around
// these limitations:
//
// - No 'map' (added protobuf 3.0). We instead represent mappings as lists
// of key-value pairs, where order does not matter and duplicates
// are not allowed.
// Versioning
//
// ONNX versioning is specified in docs/IR.md and elaborated on in docs/Versioning.md
//
// To be compatible with both proto2 and proto3, we will use a version number
// that is not defined by the default value but an explicit enum number.
enum Version {
// proto3 requires the first enum value to be zero.
// We add this just to appease the compiler.
_START_VERSION = 0;
// The version field is always serialized and we will use it to store the
// version that the graph is generated from. This helps us set up version
// control.
// For the IR, we are using simple numbers starting with with 0x00000001,
// which was the version we published on Oct 10, 2017.
IR_VERSION_2017_10_10 = 0x0000000000000001;
// IR_VERSION 2 published on Oct 30, 2017
// - Added type discriminator to AttributeProto to support proto3 users
IR_VERSION_2017_10_30 = 0x0000000000000002;
// IR VERSION 3 published on Nov 3, 2017
// - For operator versioning:
// - Added new message OperatorSetIdProto
// - Added opset_import in ModelProto
// - For vendor extensions, added domain in NodeProto
IR_VERSION = 0x0000000000000003;
}
// Attributes
//
// A named attribute containing either singular float, integer, string, graph,
// and tensor values, or repeated float, integer, string, graph, and tensor values.
// An AttributeProto MUST contain the name field, and *only one* of the
// following content fields, effectively enforcing a C/C++ union equivalent.
message AttributeProto {
// Note: this enum is structurally identical to the OpSchema::AttrType
// enum defined in schema.h. If you rev one, you likely need to rev the other.
enum AttributeType {
UNDEFINED = 0;
FLOAT = 1;
INT = 2;
STRING = 3;
TENSOR = 4;
GRAPH = 5;
FLOATS = 6;
INTS = 7;
STRINGS = 8;
TENSORS = 9;
GRAPHS = 10;
}
// The name field MUST be present for this version of the IR.
optional string name = 1; // namespace Attribute
// if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
// In this case, this AttributeProto does not contain data, and it's a reference of attribute
// in parent scope.
// NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph.
optional string ref_attr_name = 21;
// A human-readable documentation for this attribute. Markdown is allowed.
optional string doc_string = 13;
// The type field MUST be present for this version of the IR.
// For 0.0.1 versions of the IR, this field was not defined, and
// implementations needed to use has_field hueristics to determine
// which value field was in use. For IR_VERSION 0.0.2 or later, this
// field MUST be set and match the f|i|s|t|... field in use. This
// change was made to accomodate proto3 implementations.
optional AttributeType type = 20; // discriminator that indicates which field below is in use
// Exactly ONE of the following fields must be present for this version of the IR
optional float f = 2; // float
optional int64 i = 3; // int
optional bytes s = 4; // UTF-8 string
optional TensorProto t = 5; // tensor value
optional GraphProto g = 6; // graph
// Do not use field below, it's deprecated.
// optional ValueProto v = 12; // value - subsumes everything but graph
repeated float floats = 7; // list of floats
repeated int64 ints = 8; // list of ints
repeated bytes strings = 9; // list of UTF-8 strings
repeated TensorProto tensors = 10; // list of tensors
repeated GraphProto graphs = 11; // list of graph
}
// Defines information on value, including the name, the type, and
// the shape of the value.
message ValueInfoProto {
// This field MUST be present in this version of the IR.
optional string name = 1; // namespace Value
// This field MUST be present in this version of the IR.
optional TypeProto type = 2;
// A human-readable documentation for this value. Markdown is allowed.
optional string doc_string = 3;
}
// Nodes
//
// Computation graphs are made up of a DAG of nodes, which represent what is
// commonly called a "layer" or "pipeline stage" in machine learning frameworks.
//
// For example, it can be a node of type "Conv" that takes in an image, a filter
// tensor and a bias tensor, and produces the convolved output.
message NodeProto {
repeated string input = 1; // namespace Value
repeated string output = 2; // namespace Value
// An optional identifier for this node in a graph.
// This field MAY be absent in ths version of the IR.
optional string name = 3; // namespace Node
// The symbolic identifier of the Operator to execute.
optional string op_type = 4; // namespace Operator
// The domain of the OperatorSet that specifies the operator named by op_type.
optional string domain = 7; // namespace Domain
// Additional named attributes.
repeated AttributeProto attribute = 5;
// A human-readable documentation for this node. Markdown is allowed.
optional string doc_string = 6;
}
// Models
//
// ModelProto is a top-level file/container format for bundling a ML model and
// associating its computation graph with metadata.
//
// The semantics of the model are described by the associated GraphProto.
message ModelProto {
// The version of the IR this model targets. See Version enum above.
// This field MUST be present.
optional int64 ir_version = 1;
// The OperatorSets this model relies on.
// All ModelProtos MUST have at least one entry that
// specifies which version of the ONNX OperatorSet is
// being imported.
//
// All nodes in the ModelProto's graph will bind against the operator
// with the same-domain/same-op_type operator with the HIGHEST version
// in the referenced operator sets.
repeated OperatorSetIdProto opset_import = 8;
// The name of the framework or tool used to generate this model.
// This field SHOULD be present to indicate which implementation/tool/framework
// emitted the model.
optional string producer_name = 2;
// The version of the framework or tool used to generate this model.
// This field SHOULD be present to indicate which implementation/tool/framework
// emitted the model.
optional string producer_version = 3;
// Domain name of the model.
// We use reverse domain names as name space indicators. For example:
// `com.facebook.fair` or `com.microsoft.cognitiveservices`
//
// Together with `model_version` and GraphProto.name, this forms the unique identity of
// the graph.
optional string domain = 4;
// The version of the graph encoded. See Version enum below.
optional int64 model_version = 5;
// A human-readable documentation for this model. Markdown is allowed.
optional string doc_string = 6;
// The parameterized graph that is evaluated to execute the model.
optional GraphProto graph = 7;
// Named metadata values; keys should be distinct.
repeated StringStringEntryProto metadata_props = 14;
};
// StringStringEntryProto follows the pattern for cross-proto-version maps.
// See https://developers.google.com/protocol-buffers/docs/proto3#maps
message StringStringEntryProto {
optional string key = 1;
optional string value= 2;
};
// Graphs
//
// A graph defines the computational logic of a model and is comprised of a parameterized
// list of nodes that form a directed acyclic graph based on their inputs and outputs.
// This is the equivalent of the "network" or "graph" in many deep learning
// frameworks.
message GraphProto {
// The nodes in the graph, sorted topologically.
repeated NodeProto node = 1;
// The name of the graph.
optional string name = 2; // namespace Graph
// A list of named tensor values, used to specify constant inputs of the graph.
// Each TensorProto entry must have a distinct name (within the list) that
// also appears in the input list.
repeated TensorProto initializer = 5;
// A human-readable documentation for this graph. Markdown is allowed.
optional string doc_string = 10;
// The inputs and outputs of the graph.
repeated ValueInfoProto input = 11;
repeated ValueInfoProto output = 12;
// Information for the values in the graph. The ValueInfoProto.name's
// must be distinct. It is optional for a value to appear in value_info list.
repeated ValueInfoProto value_info = 13;
// DO NOT USE the following fields, they were deprecated from earlier versions.
// repeated string input = 3;
// repeated string output = 4;
// optional int64 ir_version = 6;
// optional int64 producer_version = 7;
// optional string producer_tag = 8;
// optional string domain = 9;
}
// Tensors
//
// A serialized tensor value.
message TensorProto {
enum DataType {
UNDEFINED = 0;
// Basic types.
FLOAT = 1; // float
UINT8 = 2; // uint8_t
INT8 = 3; // int8_t
UINT16 = 4; // uint16_t
INT16 = 5; // int16_t
INT32 = 6; // int32_t
INT64 = 7; // int64_t
STRING = 8; // string
BOOL = 9; // bool
// Advanced types
FLOAT16 = 10;
DOUBLE = 11;
UINT32 = 12;
UINT64 = 13;
COMPLEX64 = 14; // complex with float32 real and imaginary components
COMPLEX128 = 15; // complex with float64 real and imaginary components
// Future extensions go here.
}
// The shape of the tensor.
repeated int64 dims = 1;
// The data type of the tensor.
optional DataType data_type = 2;
// For very large tensors, we may want to store them in chunks, in which
// case the following fields will specify the segment that is stored in
// the current TensorProto.
message Segment {
optional int64 begin = 1;
optional int64 end = 2;
}
optional Segment segment = 3;
// Tensor content must be organized in row-major order.
//
// Depending on the data_type field, exactly one of the fields below with
// name ending in _data is used to store the elements of the tensor.
// For float and complex64 values
// Complex64 tensors are encoded as a single array of floats,
// with the real components appearing in odd numbered positions,
// and the corresponding imaginary component apparing in the
// subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
// is encoded as [1.0, 2.0 ,3.0 ,4.0]
// When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
repeated float float_data = 4 [packed = true];
// For int32, uint8, int8, uint16, int16, bool, and float16 values
// float16 values must be bit-wise converted to an uint16_t prior
// to writing to the buffer.
// When this field is present, the data_type field MUST be
// INT32, INT16, INT8, UINT16, INT8, BOOL, or FLOAT16
repeated int32 int32_data = 5 [packed = true];
// For strings.
// Each element of string_data is a UTF-8 encoded Unicode
// string. No trailing null, no leading BOM. The protobuf "string"
// scalar type is not used to match ML community conventions.
// When this field is present, the data_type field MUST be STRING
repeated bytes string_data = 6;
// For int64.
// When this field is present, the data_type field MUST be INT64
repeated int64 int64_data = 7 [packed = true];
// Optionally, a name for the tensor.
optional string name = 8; // namespace Value
// A human-readable documentation for this tensor. Markdown is allowed.
optional string doc_string = 12;
// Serializations can either use one of the fields above, or use this
// raw bytes field. The only exception is the string case, where one is
// required to store the content in the repeated bytes string_data field.
//
// When this raw_data field is used to store tensor value, elements MUST
// be stored in as fixed-width, little-endian order.
// Floating-point data types MUST be stored in IEEE 754 format.
// Complex64 elements must be written as two consecutive FLOAT values, real component first.
// Complex128 elements must be written as two consecutive DOUBLE values, real component first.
// Boolean type MUST be written one byte per tensor element (00000001 for true, 00000000 for false).
//
// Note: the advantage of specific field rather than the raw_data field is
// that in some cases (e.g. int data), protobuf does a better packing via
// variable length storage, and may lead to smaller binary footprint.
// When this field is present, the data_type field MUST NOT be STRING or UNDEFINED
optional bytes raw_data = 9;
// For double
// Complex64 tensors are encoded as a single array of doubles,
// with the real components appearing in odd numbered positions,
// and the corresponding imaginary component apparing in the
// subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
// is encoded as [1.0, 2.0 ,3.0 ,4.0]
// When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
repeated double double_data = 10 [packed = true];
// For uint64 and uint32 values
// When this field is present, the data_type field MUST be
// UINT32 or UINT64
repeated uint64 uint64_data = 11 [packed = true];
}
// Defines a tensor shape. A dimension can be either an integer value
// or a symbolic variable. A symbolic variable represents an unknown
// dimension.
message TensorShapeProto {
message Dimension {
oneof value {
int64 dim_value = 1;
string dim_param = 2; // namespace Shape
};
// Standard denotation can optionally be used to denote tensor
// dimensions with standard semantic descriptions to ensure
// that operations are applied to the correct axis of a tensor.
// Refer to https://github.com/onnx/onnx/blob/master/docs/DimensionDenotation.md#denotation-definition
// for pre-defined dimension denotations.
optional string denotation = 3;
};
repeated Dimension dim = 1;
}
// Types
//
// The standard ONNX data types.
message TypeProto {
message Tensor {
// This field MUST NOT have the value of UNDEFINED
// This field MUST be present for this version of the IR.
optional TensorProto.DataType elem_type = 1;
optional TensorShapeProto shape = 2;
}
oneof value {
// The type of a tensor.
Tensor tensor_type = 1;
}
// An optional denotation can be used to denote the whole
// type with a standard semantic description as to what is
// stored inside. Refer to https://github.com/onnx/onnx/blob/master/docs/TypeDenotation.md#type-denotation-definition
// for pre-defined type denotations.
optional string denotation = 6;
}
// Operator Sets
//
// OperatorSets are uniquely identified by a (domain, opset_version) pair.
message OperatorSetIdProto {
// The domain of the operator set being identified.
// The empty string ("") or absence of this field implies the operator
// set that is defined as part of the ONNX specification.
// This field MUST be present in this version of the IR when referring to any other operator set.
optional string domain = 1;
// The version of the operator set being identified.
// This field MUST be present in this version of the IR.
optional int64 version = 2;
}
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2018, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "test_precomp.hpp"
#include "npy_blob.hpp"
#include <opencv2/dnn/shape_utils.hpp>
namespace opencv_test { namespace {
template<typename TString>
static std::string _tf(TString filename)
{
String rootFolder = "dnn/onnx/";
return findDataFile(rootFolder + filename, false);
}
class Test_ONNX_layers : public DNNTestLayer
{
public:
enum Extension
{
npy,
pb
};
void testONNXModels(const String& basename, const Extension ext = npy, const double l1 = 0, const float lInf = 0)
{
String onnxmodel = _tf("models/" + basename + ".onnx");
Mat inp, ref;
if (ext == npy) {
inp = blobFromNPY(_tf("data/input_" + basename + ".npy"));
ref = blobFromNPY(_tf("data/output_" + basename + ".npy"));
}
else if (ext == pb) {
inp = readTensorFromONNX(_tf("data/input_" + basename + ".pb"));
ref = readTensorFromONNX(_tf("data/output_" + basename + ".pb"));
}
else
CV_Error(Error::StsUnsupportedFormat, "Unsupported extension");
checkBackend(&inp, &ref);
Net net = readNetFromONNX(onnxmodel);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
net.setInput(inp);
Mat out = net.forward();
normAssert(ref, out, "", l1 ? l1 : default_l1, lInf ? lInf : default_lInf);
}
};
TEST_P(Test_ONNX_layers, MaxPooling)
{
testONNXModels("maxpooling");
testONNXModels("two_maxpooling");
}
TEST_P(Test_ONNX_layers, Convolution)
{
testONNXModels("convolution");
testONNXModels("two_convolution");
}
TEST_P(Test_ONNX_layers, Dropout)
{
testONNXModels("dropout");
}
TEST_P(Test_ONNX_layers, Linear)
{
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
throw SkipTestException("");
testONNXModels("linear");
}
TEST_P(Test_ONNX_layers, ReLU)
{
testONNXModels("ReLU");
}
TEST_P(Test_ONNX_layers, MaxPooling_Sigmoid)
{
testONNXModels("maxpooling_sigmoid");
}
TEST_P(Test_ONNX_layers, Concatenation)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE &&
(target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL || target == DNN_TARGET_MYRIAD))
throw SkipTestException("");
testONNXModels("concatenation");
}
TEST_P(Test_ONNX_layers, AveragePooling)
{
testONNXModels("average_pooling");
}
TEST_P(Test_ONNX_layers, BatchNormalization)
{
testONNXModels("batch_norm");
}
TEST_P(Test_ONNX_layers, Multiplication)
{
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16 ||
backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
throw SkipTestException("");
testONNXModels("mul");
}
TEST_P(Test_ONNX_layers, Constant)
{
testONNXModels("constant");
}
TEST_P(Test_ONNX_layers, MultyInputs)
{
const String model = _tf("models/multy_inputs.onnx");
Net net = readNetFromONNX(model);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat inp1 = blobFromNPY(_tf("data/input_multy_inputs_0.npy"));
Mat inp2 = blobFromNPY(_tf("data/input_multy_inputs_1.npy"));
Mat ref = blobFromNPY(_tf("data/output_multy_inputs.npy"));
checkBackend(&inp1, &ref);
net.setInput(inp1, "0");
net.setInput(inp2, "1");
Mat out = net.forward();
normAssert(ref, out, "", default_l1, default_lInf);
}
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_ONNX_layers, dnnBackendsAndTargets());
class Test_ONNX_nets : public Test_ONNX_layers {};
TEST_P(Test_ONNX_nets, Alexnet)
{
const String model = _tf("models/alexnet.onnx");
Net net = readNetFromONNX(model);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat inp = imread(_tf("../grace_hopper_227.png"));
Mat ref = blobFromNPY(_tf("../caffe_alexnet_prob.npy"));
checkBackend(&inp, &ref);
net.setInput(blobFromImage(inp, 1.0f, Size(227, 227), Scalar(), false));
ASSERT_FALSE(net.empty());
Mat out = net.forward();
normAssert(out, ref, "", default_l1, default_lInf);
}
TEST_P(Test_ONNX_nets, Squeezenet)
{
testONNXModels("squeezenet", pb);
}
TEST_P(Test_ONNX_nets, Googlenet)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
throw SkipTestException("");
const String model = _tf("models/googlenet.onnx");
Net net = readNetFromONNX(model);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
std::vector<Mat> images;
images.push_back( imread(_tf("../googlenet_0.png")) );
images.push_back( imread(_tf("../googlenet_1.png")) );
Mat inp = blobFromImages(images, 1.0f, Size(), Scalar(), false);
Mat ref = blobFromNPY(_tf("../googlenet_prob.npy"));
checkBackend(&inp, &ref);
net.setInput(inp);
ASSERT_FALSE(net.empty());
Mat out = net.forward();
normAssert(ref, out, "", default_l1, default_lInf);
}
TEST_P(Test_ONNX_nets, CaffeNet)
{
testONNXModels("caffenet", pb);
}
TEST_P(Test_ONNX_nets, RCNN_ILSVRC13)
{
testONNXModels("rcnn_ilsvrc13", pb);
}
TEST_P(Test_ONNX_nets, VGG16)
{
double l1 = default_l1;
double lInf = default_lInf;
// output range: [-69; 72]
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) {
l1 = 0.087;
lInf = 0.585;
}
else if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL) {
lInf = 1.2e-4;
}
testONNXModels("vgg16", pb, l1, lInf);
}
TEST_P(Test_ONNX_nets, VGG16_bn)
{
double l1 = default_l1;
double lInf = default_lInf;
// output range: [-16; 27]
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) {
l1 = 0.0086;
lInf = 0.037;
}
else if (backend == DNN_BACKEND_INFERENCE_ENGINE &&
(target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)) {
l1 = 0.031;
lInf = 0.2;
}
testONNXModels("vgg16-bn", pb, l1, lInf);
}
TEST_P(Test_ONNX_nets, ZFNet)
{
testONNXModels("zfnet512", pb);
}
TEST_P(Test_ONNX_nets, ResNet18v1)
{
// output range: [-16; 22]
const double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.022 : default_l1;
const double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.12 : default_lInf;
testONNXModels("resnet18v1", pb, l1, lInf);
}
TEST_P(Test_ONNX_nets, ResNet50v1)
{
// output range: [-67; 75]
const double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.6 : 1.25e-5;
const double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.51 : 1.2e-4;
testONNXModels("resnet50v1", pb, l1, lInf);
}
TEST_P(Test_ONNX_nets, ResNet101_DUC_HDC)
{
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL
|| target == DNN_TARGET_MYRIAD) {
throw SkipTestException("");
}
testONNXModels("resnet101_duc_hdc", pb);
}
TEST_P(Test_ONNX_nets, TinyYolov2)
{
if (cvtest::skipUnstableTests ||
backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) {
throw SkipTestException("");
}
// output range: [-11; 8]
const double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.017 : default_l1;
const double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.14 : default_lInf;
testONNXModels("tiny_yolo2", pb, l1, lInf);
}
TEST_P(Test_ONNX_nets, CNN_MNIST)
{
// output range: [-1952; 6574]
const double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 3.82 : 4.3e-4;
const double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 13.5 : 1e-3;
testONNXModels("cnn_mnist", pb, l1, lInf);
}
TEST_P(Test_ONNX_nets, MobileNet_v2)
{
// output range: [-166; 317]
const double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.38 : 7e-5;
const double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 2.87 : 5e-4;
testONNXModels("mobilenetv2", pb, l1, lInf);
}
TEST_P(Test_ONNX_nets, LResNet100E_IR)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE &&
(target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL || target == DNN_TARGET_MYRIAD))
throw SkipTestException("");
double l1 = default_l1;
double lInf = default_lInf;
// output range: [-3; 3]
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) {
l1 = 0.009;
lInf = 0.035;
}
testONNXModels("LResNet100E_IR", pb, l1, lInf);
}
TEST_P(Test_ONNX_nets, Emotion_ferplus)
{
testONNXModels("emotion_ferplus", pb);
}
TEST_P(Test_ONNX_nets, Inception_v2)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
throw SkipTestException("");
testONNXModels("inception_v2", pb);
}
TEST_P(Test_ONNX_nets, DenseNet121)
{
// output range: [-87; 138]
const double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.12 : 1.88e-5;
const double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.74 : 1.23e-4;
testONNXModels("densenet121", pb, l1, lInf);
}
INSTANTIATE_TEST_CASE_P(/**/, Test_ONNX_nets, dnnBackendsAndTargets());
}} // namespace
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment