Commit 0bd3d6d2 authored by Ilya Lysenkov's avatar Ilya Lysenkov

Minor doc fixes

parent 501033db
......@@ -43,8 +43,6 @@ Mat cv::findFundamentalMat( InputArray points1, InputArray points2, OutputArray
Mat findHomography( InputArray srcPoints, InputArray dstPoints, OutputArray mask, int method=0, double ransacReprojThreshold=3);
########################################## ml ######################################
cvParamLattice
cvDefaultParamLattice
CvBoostTree
CvForestTree
CvSVMKernel
......@@ -53,6 +51,8 @@ CvDTreeTrainData
CvERTreeTrainData
CvKNearest::CvKNearest
CvKNearest::clear
CvDTreeNode::get_num_valid
CvDTreeNode::set_num_valid
CvDTree::CvDTree
CvDTree::clear
CvDTree::read
......@@ -87,3 +87,5 @@ CvANN_MLP::clear
CvANN_MLP::read
CvANN_MLP::write
CvTrainTestSplit
cvParamLattice
cvDefaultParamLattice
......@@ -247,7 +247,7 @@ CvDTree::train
.. ocv:function:: bool CvDTree::train( CvMLData* trainData, CvDTreeParams params=CvDTreeParams() )
.. ocv:function:: bool CvDTree::train( CvDTreeTrainData* train_data, const Mat& subsample_idx )
.. ocv:function:: bool CvDTree::train( CvDTreeTrainData* trainData, const CvMat* subsampleIdx )
Trains a decision tree.
......@@ -257,7 +257,7 @@ There are four ``train`` methods in :ocv:class:`CvDTree`:
* The **third** method uses :ocv:class:`CvMLData` to pass training data to a decision tree.
* The **last** method ``train`` is mostly used for building tree ensembles. It takes the pre-constructed :ref:`CvDTreeTrainData` instance and an optional subset of the training set. The indices in ``subsample_idx`` are counted relatively to the ``_sample_idx`` , passed to the ``CvDTreeTrainData`` constructor. For example, if ``_sample_idx=[1, 5, 7, 100]`` , then ``subsample_idx=[0,3]`` means that the samples ``[1, 100]`` of the original training set are used.
* The **last** method ``train`` is mostly used for building tree ensembles. It takes the pre-constructed :ref:`CvDTreeTrainData` instance and an optional subset of the training set. The indices in ``subsampleIdx`` are counted relatively to the ``_sample_idx`` , passed to the ``CvDTreeTrainData`` constructor. For example, if ``_sample_idx=[1, 5, 7, 100]`` , then ``subsampleIdx=[0,3]`` means that the samples ``[1, 100]`` of the original training set are used.
.. index:: CvDTree::predict
......
......@@ -102,9 +102,9 @@ All parameters are public. You can initialize them by a constructor and then ove
CvEMParams::CvEMParams
----------------------
.. ocv:function:: CvEMParams()
.. ocv:function:: CvEMParams::CvEMParams()
.. ocv:function:: CvEMParams( int nclusters, int cov_mat_type=1/*CvEM::COV_MAT_DIAGONAL*/, int start_step=0/*CvEM::START_AUTO_STEP*/, CvTermCriteria term_crit=cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, FLT_EPSILON), const CvMat* probs=0, const CvMat* weights=0, const CvMat* means=0, const CvMat** covs=0 )
.. ocv:function:: CvEMParams::CvEMParams( int nclusters, int cov_mat_type=1/*CvEM::COV_MAT_DIAGONAL*/, int start_step=0/*CvEM::START_AUTO_STEP*/, CvTermCriteria term_crit=cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, FLT_EPSILON), const CvMat* probs=0, const CvMat* weights=0, const CvMat* means=0, const CvMat** covs=0 )
:param nclusters: The number of mixtures in the gaussian mixture model.
......
......@@ -238,9 +238,9 @@ GBT model. ::
CvGBTrees::train
----------------
.. ocv:function:: bool train(const Mat & trainData, int tflag, const Mat & responses, const Mat & varIdx=Mat(), const Mat & sampleIdx=Mat(), const Mat & varType=Mat(), const Mat & missingDataMask=Mat(), CvGBTreesParams params=CvGBTreesParams(), bool update=false)
.. ocv:function:: bool CvGBTrees::train(const Mat& trainData, int tflag, const Mat& responses, const Mat& varIdx=Mat(), const Mat& sampleIdx=Mat(), const Mat& varType=Mat(), const Mat& missingDataMask=Mat(), CvGBTreesParams params=CvGBTreesParams(), bool update=false)
.. ocv:function:: bool train(CvMLData* data, CvGBTreesParams params=CvGBTreesParams(), bool update=false)
.. ocv:function:: bool CvGBTrees::train(CvMLData* data, CvGBTreesParams params=CvGBTreesParams(), bool update=false)
Trains a Gradient boosted tree model.
......@@ -265,7 +265,7 @@ as a :ocv:class:`CvGBTreesParams` structure.
CvGBTrees::predict
------------------
.. ocv:function:: float predict(const Mat & sample, const Mat & missing=Mat(), const Range & slice = Range::all(), int k=-1) const
.. ocv:function:: float CvGBTrees::predict(const Mat& sample, const Mat& missing=Mat(), const Range& slice = Range::all(), int k=-1) const
Predicts a response for an input sample.
......@@ -308,7 +308,7 @@ of single trees are computed in a parallel fashion.
CvGBTrees::clear
----------------
.. ocv:function:: void clear()
.. ocv:function:: void CvGBTrees::clear()
Clears the model.
......@@ -323,7 +323,7 @@ destructor.
CvGBTrees::calc_error
---------------------
.. ocv:function:: float calc_error( CvMLData* _data, int type, std::vector<float> *resp = 0 )
.. ocv:function:: float CvGBTrees::calc_error( CvMLData* _data, int type, std::vector<float> *resp = 0 )
Calculates a training or testing error.
......@@ -340,4 +340,4 @@ used to get a training/testing error easily and (optionally) all predictions
on the training/testing set. If the Intel* TBB* library is used, the error is computed in a
parallel way, namely, predictions for different samples are computed at the same time.
In case of a regression problem, a mean squared error is returned. For
classifications, the result is a misclassification error in percent.
\ No newline at end of file
classifications, the result is a misclassification error in percent.
......@@ -114,7 +114,7 @@ CvRTrees::train
.. ocv:function:: bool CvRTrees::train( const Mat& trainData, int tflag, const Mat& responses, const Mat& varIdx=Mat(), const Mat& sampleIdx=Mat(), const Mat& varType=Mat(), const Mat& missingDataMask=Mat(), CvRTParams params=CvRTParams() )
.. ocv:function:: bool CvRTress::train( const CvMat* trainData, int tflag, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0, const CvMat* varType=0, const CvMat* missingDataMask=0, CvRTParams params=CvRTParams() )
.. ocv:function:: bool CvRTrees::train( const CvMat* trainData, int tflag, const CvMat* responses, const CvMat* varIdx=0, const CvMat* sampleIdx=0, const CvMat* varType=0, const CvMat* missingDataMask=0, CvRTParams params=CvRTParams() )
Trains the Random Tree model.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment