@@ -257,7 +257,7 @@ There are four ``train`` methods in :ocv:class:`CvDTree`:
* The **third** method uses :ocv:class:`CvMLData` to pass training data to a decision tree.
* The **last** method ``train`` is mostly used for building tree ensembles. It takes the pre-constructed :ref:`CvDTreeTrainData` instance and an optional subset of the training set. The indices in ``subsample_idx`` are counted relatively to the ``_sample_idx`` , passed to the ``CvDTreeTrainData`` constructor. For example, if ``_sample_idx=[1, 5, 7, 100]`` , then ``subsample_idx=[0,3]`` means that the samples ``[1, 100]`` of the original training set are used.
* The **last** method ``train`` is mostly used for building tree ensembles. It takes the pre-constructed :ref:`CvDTreeTrainData` instance and an optional subset of the training set. The indices in ``subsampleIdx`` are counted relatively to the ``_sample_idx`` , passed to the ``CvDTreeTrainData`` constructor. For example, if ``_sample_idx=[1, 5, 7, 100]`` , then ``subsampleIdx=[0,3]`` means that the samples ``[1, 100]`` of the original training set are used.
.. ocv:function:: bool train(const Mat & trainData, int tflag, const Mat & responses, const Mat & varIdx=Mat(), const Mat & sampleIdx=Mat(), const Mat & varType=Mat(), const Mat & missingDataMask=Mat(), CvGBTreesParams params=CvGBTreesParams(), bool update=false)