Commit 0aee5b61 authored by Fedor Morozov's avatar Fedor Morozov

Exposure fusion. Code, tests.

parent a5e11079
...@@ -96,8 +96,10 @@ CV_EXPORTS_W void fastNlMeansDenoisingColoredMulti( InputArrayOfArrays srcImgs, ...@@ -96,8 +96,10 @@ CV_EXPORTS_W void fastNlMeansDenoisingColoredMulti( InputArrayOfArrays srcImgs,
CV_EXPORTS_W void makeHDR(InputArrayOfArrays srcImgs, const std::vector<float>& exp_times, OutputArray dst); CV_EXPORTS_W void makeHDR(InputArrayOfArrays srcImgs, const std::vector<float>& exp_times, OutputArray dst);
CV_EXPORTS_W void tonemap(InputArray src, OutputArray dst, tonemap_algorithms algorithm, std::vector<float>& params = std::vector<float>()); CV_EXPORTS_W void tonemap(InputArray src, OutputArray dst, tonemap_algorithms algorithm,
const std::vector<float>& params = std::vector<float>());
CV_EXPORTS_W void exposureFusion(InputArrayOfArrays srcImgs, OutputArray dst, float wc = 1, float ws = 1, float we = 0);
} // cv } // cv
#endif #endif
...@@ -64,14 +64,12 @@ static void generateResponce(float responce[]) ...@@ -64,14 +64,12 @@ static void generateResponce(float responce[])
responce[0] = responce[1]; responce[0] = responce[1];
} }
void makeHDR(InputArrayOfArrays _images, const std::vector<float>& _exp_times, OutputArray _dst) static void checkImages(std::vector<Mat>& images, bool hdr, const std::vector<float>& _exp_times = std::vector<float>())
{ {
std::vector<Mat> images;
_images.getMatVector(images);
if(images.empty()) { if(images.empty()) {
CV_Error(Error::StsBadArg, "Need at least one image"); CV_Error(Error::StsBadArg, "Need at least one image");
} }
if(images.size() != _exp_times.size()) { if(hdr && images.size() != _exp_times.size()) {
CV_Error(Error::StsBadArg, "Number of images and number of exposure times must be equal."); CV_Error(Error::StsBadArg, "Number of images and number of exposure times must be equal.");
} }
int width = images[0].cols; int width = images[0].cols;
...@@ -85,8 +83,16 @@ void makeHDR(InputArrayOfArrays _images, const std::vector<float>& _exp_times, O ...@@ -85,8 +83,16 @@ void makeHDR(InputArrayOfArrays _images, const std::vector<float>& _exp_times, O
CV_Error(Error::StsBadArg, "Images must have CV_8UC3 type."); CV_Error(Error::StsBadArg, "Images must have CV_8UC3 type.");
} }
} }
}
void makeHDR(InputArrayOfArrays _images, const std::vector<float>& _exp_times, OutputArray _dst)
{
std::vector<Mat> images;
_images.getMatVector(images);
checkImages(images, true, _exp_times);
_dst.create(images[0].size(), CV_32FC3); _dst.create(images[0].size(), CV_32FC3);
Mat result = _dst.getMat(); Mat result = _dst.getMat();
std::vector<float> exp_times(_exp_times.size()); std::vector<float> exp_times(_exp_times.size());
for(size_t i = 0; i < exp_times.size(); i++) { for(size_t i = 0; i < exp_times.size(); i++) {
exp_times[i] = log(_exp_times[i]); exp_times[i] = log(_exp_times[i]);
...@@ -122,4 +128,88 @@ void makeHDR(InputArrayOfArrays _images, const std::vector<float>& _exp_times, O ...@@ -122,4 +128,88 @@ void makeHDR(InputArrayOfArrays _images, const std::vector<float>& _exp_times, O
result = result / max; result = result / max;
} }
void exposureFusion(InputArrayOfArrays _images, OutputArray _dst, float wc, float ws, float we)
{
std::vector<Mat> images;
_images.getMatVector(images);
checkImages(images, false);
std::vector<Mat> weights(images.size());
Mat weight_sum = Mat::zeros(images[0].size(), CV_32FC1);
for(size_t im = 0; im < images.size(); im++) {
Mat img, gray, contrast, saturation, wellexp;
std::vector<Mat> channels(3);
images[im].convertTo(img, CV_32FC3, 1.0/255.0);
cvtColor(img, gray, COLOR_RGB2GRAY);
split(img, channels);
Laplacian(gray, contrast, CV_32F);
contrast = abs(contrast);
Mat mean = (channels[0] + channels[1] + channels[2]) / 3.0f;
saturation = Mat::zeros(channels[0].size(), CV_32FC1);
for(int i = 0; i < 3; i++) {
Mat deviation = channels[i] - mean;
pow(deviation, 2.0, deviation);
saturation += deviation;
}
sqrt(saturation, saturation);
wellexp = Mat::ones(gray.size(), CV_32FC1);
for(int i = 0; i < 3; i++) {
Mat exp = channels[i] - 0.5f;
pow(exp, 2, exp);
exp = -exp / 0.08;
wellexp = wellexp.mul(exp);
}
pow(contrast, wc, contrast);
pow(saturation, ws, saturation);
pow(wellexp, we, wellexp);
weights[im] = contrast;
weights[im] = weights[im].mul(saturation);
weights[im] = weights[im].mul(wellexp);
weight_sum += weights[im];
}
int maxlevel = (int)(log((double)max(images[0].rows, images[0].cols)) / log(2.0)) - 1;
std::vector<Mat> res_pyr(maxlevel + 1);
for(size_t im = 0; im < images.size(); im++) {
weights[im] /= weight_sum;
Mat img;
images[im].convertTo(img, CV_32FC3, 1/255.0);
std::vector<Mat> img_pyr, weight_pyr;
buildPyramid(img, img_pyr, maxlevel);
buildPyramid(weights[im], weight_pyr, maxlevel);
for(int lvl = 0; lvl < maxlevel; lvl++) {
Mat up;
pyrUp(img_pyr[lvl + 1], up, img_pyr[lvl].size());
img_pyr[lvl] -= up;
}
for(int lvl = 0; lvl <= maxlevel; lvl++) {
std::vector<Mat> channels(3);
split(img_pyr[lvl], channels);
for(int i = 0; i < 3; i++) {
channels[i] = channels[i].mul(weight_pyr[lvl]);
}
merge(channels, img_pyr[lvl]);
if(res_pyr[lvl].empty()) {
res_pyr[lvl] = img_pyr[lvl];
} else {
res_pyr[lvl] += img_pyr[lvl];
}
}
}
for(int lvl = maxlevel; lvl > 0; lvl--) {
Mat up;
pyrUp(res_pyr[lvl], up, res_pyr[lvl - 1].size());
res_pyr[lvl - 1] += up;
}
_dst.create(images[0].size(), CV_32FC3);
Mat result = _dst.getMat();
res_pyr[0].copyTo(result);
}
}; };
\ No newline at end of file
...@@ -45,146 +45,147 @@ ...@@ -45,146 +45,147 @@
namespace cv namespace cv
{ {
static float getParam(std::vector<float>& params, size_t i, float defval)
{ static float getParam(const std::vector<float>& params, size_t i, float defval)
if(params.size() > i) { {
return params[i]; if(params.size() > i) {
} else { return params[i];
return defval; } else {
} return defval;
}
}
static void DragoMap(Mat& src_img, Mat &dst_img, std::vector<float>& params) }
{
float bias_value = getParam(params, 1, 0.85f); static void DragoMap(Mat& src_img, Mat &dst_img, const std::vector<float>& params)
Mat gray_img; {
cvtColor(src_img, gray_img, COLOR_RGB2GRAY); float bias_value = getParam(params, 1, 0.85f);
Mat log_img; Mat gray_img;
log(gray_img, log_img); cvtColor(src_img, gray_img, COLOR_RGB2GRAY);
float mean = exp((float)sum(log_img)[0] / log_img.total()); Mat log_img;
gray_img /= mean; log(gray_img, log_img);
log_img.release(); float mean = exp((float)sum(log_img)[0] / log_img.total());
gray_img /= mean;
double max; log_img.release();
minMaxLoc(gray_img, NULL, &max);
double max;
Mat map; minMaxLoc(gray_img, NULL, &max);
log(gray_img + 1.0f, map);
Mat div; Mat map;
pow(gray_img / (float)max, log(bias_value) / log(0.5f), div); log(gray_img + 1.0f, map);
log(2.0f + 8.0f * div, div); Mat div;
map = map.mul(1.0f / div); pow(gray_img / (float)max, log(bias_value) / log(0.5f), div);
map = map.mul(1.0f / gray_img); log(2.0f + 8.0f * div, div);
div.release(); map = map.mul(1.0f / div);
gray_img.release(); map = map.mul(1.0f / gray_img);
div.release();
std::vector<Mat> channels(3); gray_img.release();
split(src_img, channels);
for(int i = 0; i < 3; i++) { std::vector<Mat> channels(3);
channels[i] = channels[i].mul(map); split(src_img, channels);
} for(int i = 0; i < 3; i++) {
map.release(); channels[i] = channels[i].mul(map);
merge(channels, dst_img); }
} map.release();
merge(channels, dst_img);
static void ReinhardDevlinMap(Mat& src_img, Mat &dst_img, std::vector<float>& params) }
{
float intensity = getParam(params, 1, 0.0f); static void ReinhardDevlinMap(Mat& src_img, Mat &dst_img, const std::vector<float>& params)
float color_adapt = getParam(params, 2, 0.0f); {
float light_adapt = getParam(params, 3, 1.0f); float intensity = getParam(params, 1, 0.0f);
float color_adapt = getParam(params, 2, 0.0f);
Mat gray_img; float light_adapt = getParam(params, 3, 1.0f);
cvtColor(src_img, gray_img, COLOR_RGB2GRAY);
Mat log_img; Mat gray_img;
log(gray_img, log_img); cvtColor(src_img, gray_img, COLOR_RGB2GRAY);
Mat log_img;
float log_mean = (float)sum(log_img)[0] / log_img.total(); log(gray_img, log_img);
double log_min, log_max;
minMaxLoc(log_img, &log_min, &log_max); float log_mean = (float)sum(log_img)[0] / log_img.total();
log_img.release(); double log_min, log_max;
minMaxLoc(log_img, &log_min, &log_max);
double key = (float)((log_max - log_mean) / (log_max - log_min)); log_img.release();
float map_key = 0.3f + 0.7f * pow((float)key, 1.4f);
intensity = exp(-intensity); double key = (float)((log_max - log_mean) / (log_max - log_min));
Scalar chan_mean = mean(src_img); float map_key = 0.3f + 0.7f * pow((float)key, 1.4f);
float gray_mean = (float)mean(gray_img)[0]; intensity = exp(-intensity);
Scalar chan_mean = mean(src_img);
std::vector<Mat> channels(3); float gray_mean = (float)mean(gray_img)[0];
split(src_img, channels);
std::vector<Mat> channels(3);
for(int i = 0; i < 3; i++) { split(src_img, channels);
float global = color_adapt * (float)chan_mean[i] + (1.0f - color_adapt) * gray_mean;
Mat adapt = color_adapt * channels[i] + (1.0f - color_adapt) * gray_img; for(int i = 0; i < 3; i++) {
adapt = light_adapt * adapt + (1.0f - light_adapt) * global; float global = color_adapt * (float)chan_mean[i] + (1.0f - color_adapt) * gray_mean;
pow(intensity * adapt, map_key, adapt); Mat adapt = color_adapt * channels[i] + (1.0f - color_adapt) * gray_img;
channels[i] = channels[i].mul(1.0f / (adapt + channels[i])); adapt = light_adapt * adapt + (1.0f - light_adapt) * global;
} pow(intensity * adapt, map_key, adapt);
gray_img.release(); channels[i] = channels[i].mul(1.0f / (adapt + channels[i]));
merge(channels, dst_img); }
} gray_img.release();
merge(channels, dst_img);
static void DurandMap(Mat& src_img, Mat& dst_img, std::vector<float>& params) }
{
float contrast = getParam(params, 1, 4.0f); static void DurandMap(Mat& src_img, Mat& dst_img, const std::vector<float>& params)
float sigma_color = getParam(params, 2, 2.0f); {
float sigma_space = getParam(params, 3, 2.0f); float contrast = getParam(params, 1, 4.0f);
float sigma_color = getParam(params, 2, 2.0f);
Mat gray_img; float sigma_space = getParam(params, 3, 2.0f);
cvtColor(src_img, gray_img, COLOR_RGB2GRAY);
Mat log_img; Mat gray_img;
log(gray_img, log_img); cvtColor(src_img, gray_img, COLOR_RGB2GRAY);
Mat map_img; Mat log_img;
bilateralFilter(log_img, map_img, -1, sigma_color, sigma_space); log(gray_img, log_img);
Mat map_img;
double min, max; bilateralFilter(log_img, map_img, -1, sigma_color, sigma_space);
minMaxLoc(map_img, &min, &max);
float scale = contrast / (float)(max - min); double min, max;
minMaxLoc(map_img, &min, &max);
exp(map_img * (scale - 1.0f) + log_img, map_img); float scale = contrast / (float)(max - min);
log_img.release();
map_img = map_img.mul(1.0f / gray_img); exp(map_img * (scale - 1.0f) + log_img, map_img);
gray_img.release(); log_img.release();
map_img = map_img.mul(1.0f / gray_img);
std::vector<Mat> channels(3); gray_img.release();
split(src_img, channels);
for(int i = 0; i < 3; i++) { std::vector<Mat> channels(3);
channels[i] = channels[i].mul(map_img); split(src_img, channels);
} for(int i = 0; i < 3; i++) {
merge(channels, dst_img); channels[i] = channels[i].mul(map_img);
} }
merge(channels, dst_img);
void tonemap(InputArray _src, OutputArray _dst, tonemap_algorithms algorithm, }
std::vector<float>& params)
{ void tonemap(InputArray _src, OutputArray _dst, tonemap_algorithms algorithm,
typedef void (*tonemap_func)(Mat&, Mat&, std::vector<float>&); const std::vector<float>& params)
const unsigned param_count[TONEMAP_COUNT] = {0, 1, 3, 3}; {
tonemap_func functions[TONEMAP_COUNT] = { typedef void (*tonemap_func)(Mat&, Mat&, const std::vector<float>&);
NULL, DragoMap, ReinhardDevlinMap, DurandMap}; tonemap_func functions[TONEMAP_COUNT] = {
NULL, DragoMap, ReinhardDevlinMap, DurandMap};
Mat src = _src.getMat();
if(src.empty()) { Mat src = _src.getMat();
CV_Error(Error::StsBadArg, "Empty input image"); if(src.empty()) {
} CV_Error(Error::StsBadArg, "Empty input image");
if(algorithm < 0 || algorithm >= TONEMAP_COUNT) { }
CV_Error(Error::StsBadArg, "Wrong algorithm index"); if(algorithm < 0 || algorithm >= TONEMAP_COUNT) {
} CV_Error(Error::StsBadArg, "Wrong algorithm index");
}
_dst.create(src.size(), CV_32FC3);
Mat dst = _dst.getMat(); _dst.create(src.size(), CV_32FC3);
src.copyTo(dst); Mat dst = _dst.getMat();
src.copyTo(dst);
double min, max;
minMaxLoc(dst, &min, &max); double min, max;
if(max - min < 1e-10f) { minMaxLoc(dst, &min, &max);
return; if(max - min < 1e-10f) {
} return;
dst = (dst - min) / (max - min); }
if(functions[algorithm]) { dst = (dst - min) / (max - min);
functions[algorithm](dst, dst, params); if(functions[algorithm]) {
} functions[algorithm](dst, dst, params);
minMaxLoc(dst, &min, &max); }
dst = (dst - min) / (max - min); minMaxLoc(dst, &min, &max);
float gamma = getParam(params, 0, 1.0f); dst = (dst - min) / (max - min);
pow(dst, 1.0f / gamma, dst); float gamma = getParam(params, 0, 1.0f);
} pow(dst, 1.0f / gamma, dst);
}
} }
\ No newline at end of file
...@@ -47,7 +47,7 @@ ...@@ -47,7 +47,7 @@
using namespace cv; using namespace cv;
using namespace std; using namespace std;
TEST(Photo_MakeHdr, regression) TEST(Photo_HdrFusion, regression)
{ {
string folder = string(cvtest::TS::ptr()->get_data_path()) + "hdr/"; string folder = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
...@@ -75,6 +75,14 @@ TEST(Photo_MakeHdr, regression) ...@@ -75,6 +75,14 @@ TEST(Photo_MakeHdr, regression)
double max = 1.0; double max = 1.0;
minMaxLoc(abs(result - expected), NULL, &max); minMaxLoc(abs(result - expected), NULL, &max);
ASSERT_TRUE(max < 0.01); ASSERT_TRUE(max < 0.01);
expected_path = folder + "grand_canal_exp_fusion.png";
expected = imread(expected_path);
ASSERT_FALSE(expected.empty()) << "Could not load input image " << expected_path;
exposureFusion(images, result);
result.convertTo(result, CV_8UC3, 255);
minMaxLoc(abs(result - expected), NULL, &max);
ASSERT_FALSE(max > 0);
} }
TEST(Photo_Tonemap, regression) TEST(Photo_Tonemap, regression)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment