Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
0aee5b61
Commit
0aee5b61
authored
Jul 05, 2013
by
Fedor Morozov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Exposure fusion. Code, tests.
parent
a5e11079
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
251 additions
and
148 deletions
+251
-148
photo.hpp
modules/photo/include/opencv2/photo.hpp
+3
-1
hdr_fusion.cpp
modules/photo/src/hdr_fusion.cpp
+95
-4
tonemap.cpp
modules/photo/src/tonemap.cpp
+144
-142
test_hdr.cpp
modules/photo/test/test_hdr.cpp
+9
-1
No files found.
modules/photo/include/opencv2/photo.hpp
View file @
0aee5b61
...
...
@@ -96,8 +96,10 @@ CV_EXPORTS_W void fastNlMeansDenoisingColoredMulti( InputArrayOfArrays srcImgs,
CV_EXPORTS_W
void
makeHDR
(
InputArrayOfArrays
srcImgs
,
const
std
::
vector
<
float
>&
exp_times
,
OutputArray
dst
);
CV_EXPORTS_W
void
tonemap
(
InputArray
src
,
OutputArray
dst
,
tonemap_algorithms
algorithm
,
std
::
vector
<
float
>&
params
=
std
::
vector
<
float
>
());
CV_EXPORTS_W
void
tonemap
(
InputArray
src
,
OutputArray
dst
,
tonemap_algorithms
algorithm
,
const
std
::
vector
<
float
>&
params
=
std
::
vector
<
float
>
());
CV_EXPORTS_W
void
exposureFusion
(
InputArrayOfArrays
srcImgs
,
OutputArray
dst
,
float
wc
=
1
,
float
ws
=
1
,
float
we
=
0
);
}
// cv
#endif
modules/photo/src/hdr_fusion.cpp
View file @
0aee5b61
...
...
@@ -64,14 +64,12 @@ static void generateResponce(float responce[])
responce
[
0
]
=
responce
[
1
];
}
void
makeHDR
(
InputArrayOfArrays
_images
,
const
std
::
vector
<
float
>&
_exp_times
,
OutputArray
_dst
)
static
void
checkImages
(
std
::
vector
<
Mat
>&
images
,
bool
hdr
,
const
std
::
vector
<
float
>&
_exp_times
=
std
::
vector
<
float
>
()
)
{
std
::
vector
<
Mat
>
images
;
_images
.
getMatVector
(
images
);
if
(
images
.
empty
())
{
CV_Error
(
Error
::
StsBadArg
,
"Need at least one image"
);
}
if
(
images
.
size
()
!=
_exp_times
.
size
())
{
if
(
hdr
&&
images
.
size
()
!=
_exp_times
.
size
())
{
CV_Error
(
Error
::
StsBadArg
,
"Number of images and number of exposure times must be equal."
);
}
int
width
=
images
[
0
].
cols
;
...
...
@@ -85,8 +83,16 @@ void makeHDR(InputArrayOfArrays _images, const std::vector<float>& _exp_times, O
CV_Error
(
Error
::
StsBadArg
,
"Images must have CV_8UC3 type."
);
}
}
}
void
makeHDR
(
InputArrayOfArrays
_images
,
const
std
::
vector
<
float
>&
_exp_times
,
OutputArray
_dst
)
{
std
::
vector
<
Mat
>
images
;
_images
.
getMatVector
(
images
);
checkImages
(
images
,
true
,
_exp_times
);
_dst
.
create
(
images
[
0
].
size
(),
CV_32FC3
);
Mat
result
=
_dst
.
getMat
();
std
::
vector
<
float
>
exp_times
(
_exp_times
.
size
());
for
(
size_t
i
=
0
;
i
<
exp_times
.
size
();
i
++
)
{
exp_times
[
i
]
=
log
(
_exp_times
[
i
]);
...
...
@@ -122,4 +128,88 @@ void makeHDR(InputArrayOfArrays _images, const std::vector<float>& _exp_times, O
result
=
result
/
max
;
}
void
exposureFusion
(
InputArrayOfArrays
_images
,
OutputArray
_dst
,
float
wc
,
float
ws
,
float
we
)
{
std
::
vector
<
Mat
>
images
;
_images
.
getMatVector
(
images
);
checkImages
(
images
,
false
);
std
::
vector
<
Mat
>
weights
(
images
.
size
());
Mat
weight_sum
=
Mat
::
zeros
(
images
[
0
].
size
(),
CV_32FC1
);
for
(
size_t
im
=
0
;
im
<
images
.
size
();
im
++
)
{
Mat
img
,
gray
,
contrast
,
saturation
,
wellexp
;
std
::
vector
<
Mat
>
channels
(
3
);
images
[
im
].
convertTo
(
img
,
CV_32FC3
,
1.0
/
255.0
);
cvtColor
(
img
,
gray
,
COLOR_RGB2GRAY
);
split
(
img
,
channels
);
Laplacian
(
gray
,
contrast
,
CV_32F
);
contrast
=
abs
(
contrast
);
Mat
mean
=
(
channels
[
0
]
+
channels
[
1
]
+
channels
[
2
])
/
3.0
f
;
saturation
=
Mat
::
zeros
(
channels
[
0
].
size
(),
CV_32FC1
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
Mat
deviation
=
channels
[
i
]
-
mean
;
pow
(
deviation
,
2.0
,
deviation
);
saturation
+=
deviation
;
}
sqrt
(
saturation
,
saturation
);
wellexp
=
Mat
::
ones
(
gray
.
size
(),
CV_32FC1
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
Mat
exp
=
channels
[
i
]
-
0.5
f
;
pow
(
exp
,
2
,
exp
);
exp
=
-
exp
/
0.08
;
wellexp
=
wellexp
.
mul
(
exp
);
}
pow
(
contrast
,
wc
,
contrast
);
pow
(
saturation
,
ws
,
saturation
);
pow
(
wellexp
,
we
,
wellexp
);
weights
[
im
]
=
contrast
;
weights
[
im
]
=
weights
[
im
].
mul
(
saturation
);
weights
[
im
]
=
weights
[
im
].
mul
(
wellexp
);
weight_sum
+=
weights
[
im
];
}
int
maxlevel
=
(
int
)(
log
((
double
)
max
(
images
[
0
].
rows
,
images
[
0
].
cols
))
/
log
(
2.0
))
-
1
;
std
::
vector
<
Mat
>
res_pyr
(
maxlevel
+
1
);
for
(
size_t
im
=
0
;
im
<
images
.
size
();
im
++
)
{
weights
[
im
]
/=
weight_sum
;
Mat
img
;
images
[
im
].
convertTo
(
img
,
CV_32FC3
,
1
/
255.0
);
std
::
vector
<
Mat
>
img_pyr
,
weight_pyr
;
buildPyramid
(
img
,
img_pyr
,
maxlevel
);
buildPyramid
(
weights
[
im
],
weight_pyr
,
maxlevel
);
for
(
int
lvl
=
0
;
lvl
<
maxlevel
;
lvl
++
)
{
Mat
up
;
pyrUp
(
img_pyr
[
lvl
+
1
],
up
,
img_pyr
[
lvl
].
size
());
img_pyr
[
lvl
]
-=
up
;
}
for
(
int
lvl
=
0
;
lvl
<=
maxlevel
;
lvl
++
)
{
std
::
vector
<
Mat
>
channels
(
3
);
split
(
img_pyr
[
lvl
],
channels
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
channels
[
i
]
=
channels
[
i
].
mul
(
weight_pyr
[
lvl
]);
}
merge
(
channels
,
img_pyr
[
lvl
]);
if
(
res_pyr
[
lvl
].
empty
())
{
res_pyr
[
lvl
]
=
img_pyr
[
lvl
];
}
else
{
res_pyr
[
lvl
]
+=
img_pyr
[
lvl
];
}
}
}
for
(
int
lvl
=
maxlevel
;
lvl
>
0
;
lvl
--
)
{
Mat
up
;
pyrUp
(
res_pyr
[
lvl
],
up
,
res_pyr
[
lvl
-
1
].
size
());
res_pyr
[
lvl
-
1
]
+=
up
;
}
_dst
.
create
(
images
[
0
].
size
(),
CV_32FC3
);
Mat
result
=
_dst
.
getMat
();
res_pyr
[
0
].
copyTo
(
result
);
}
};
\ No newline at end of file
modules/photo/src/tonemap.cpp
View file @
0aee5b61
...
...
@@ -45,146 +45,147 @@
namespace
cv
{
static
float
getParam
(
std
::
vector
<
float
>&
params
,
size_t
i
,
float
defval
)
{
if
(
params
.
size
()
>
i
)
{
return
params
[
i
];
}
else
{
return
defval
;
}
}
static
void
DragoMap
(
Mat
&
src_img
,
Mat
&
dst_img
,
std
::
vector
<
float
>&
params
)
{
float
bias_value
=
getParam
(
params
,
1
,
0.85
f
);
Mat
gray_img
;
cvtColor
(
src_img
,
gray_img
,
COLOR_RGB2GRAY
);
Mat
log_img
;
log
(
gray_img
,
log_img
);
float
mean
=
exp
((
float
)
sum
(
log_img
)[
0
]
/
log_img
.
total
());
gray_img
/=
mean
;
log_img
.
release
();
double
max
;
minMaxLoc
(
gray_img
,
NULL
,
&
max
);
Mat
map
;
log
(
gray_img
+
1.0
f
,
map
);
Mat
div
;
pow
(
gray_img
/
(
float
)
max
,
log
(
bias_value
)
/
log
(
0.5
f
),
div
);
log
(
2.0
f
+
8.0
f
*
div
,
div
);
map
=
map
.
mul
(
1.0
f
/
div
);
map
=
map
.
mul
(
1.0
f
/
gray_img
);
div
.
release
();
gray_img
.
release
();
std
::
vector
<
Mat
>
channels
(
3
);
split
(
src_img
,
channels
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
channels
[
i
]
=
channels
[
i
].
mul
(
map
);
}
map
.
release
();
merge
(
channels
,
dst_img
);
}
static
void
ReinhardDevlinMap
(
Mat
&
src_img
,
Mat
&
dst_img
,
std
::
vector
<
float
>&
params
)
{
float
intensity
=
getParam
(
params
,
1
,
0.0
f
);
float
color_adapt
=
getParam
(
params
,
2
,
0.0
f
);
float
light_adapt
=
getParam
(
params
,
3
,
1.0
f
);
Mat
gray_img
;
cvtColor
(
src_img
,
gray_img
,
COLOR_RGB2GRAY
);
Mat
log_img
;
log
(
gray_img
,
log_img
);
float
log_mean
=
(
float
)
sum
(
log_img
)[
0
]
/
log_img
.
total
();
double
log_min
,
log_max
;
minMaxLoc
(
log_img
,
&
log_min
,
&
log_max
);
log_img
.
release
();
double
key
=
(
float
)((
log_max
-
log_mean
)
/
(
log_max
-
log_min
));
float
map_key
=
0.3
f
+
0.7
f
*
pow
((
float
)
key
,
1.4
f
);
intensity
=
exp
(
-
intensity
);
Scalar
chan_mean
=
mean
(
src_img
);
float
gray_mean
=
(
float
)
mean
(
gray_img
)[
0
];
std
::
vector
<
Mat
>
channels
(
3
);
split
(
src_img
,
channels
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
float
global
=
color_adapt
*
(
float
)
chan_mean
[
i
]
+
(
1.0
f
-
color_adapt
)
*
gray_mean
;
Mat
adapt
=
color_adapt
*
channels
[
i
]
+
(
1.0
f
-
color_adapt
)
*
gray_img
;
adapt
=
light_adapt
*
adapt
+
(
1.0
f
-
light_adapt
)
*
global
;
pow
(
intensity
*
adapt
,
map_key
,
adapt
);
channels
[
i
]
=
channels
[
i
].
mul
(
1.0
f
/
(
adapt
+
channels
[
i
]));
}
gray_img
.
release
();
merge
(
channels
,
dst_img
);
}
static
void
DurandMap
(
Mat
&
src_img
,
Mat
&
dst_img
,
std
::
vector
<
float
>&
params
)
{
float
contrast
=
getParam
(
params
,
1
,
4.0
f
);
float
sigma_color
=
getParam
(
params
,
2
,
2.0
f
);
float
sigma_space
=
getParam
(
params
,
3
,
2.0
f
);
Mat
gray_img
;
cvtColor
(
src_img
,
gray_img
,
COLOR_RGB2GRAY
);
Mat
log_img
;
log
(
gray_img
,
log_img
);
Mat
map_img
;
bilateralFilter
(
log_img
,
map_img
,
-
1
,
sigma_color
,
sigma_space
);
double
min
,
max
;
minMaxLoc
(
map_img
,
&
min
,
&
max
);
float
scale
=
contrast
/
(
float
)(
max
-
min
);
exp
(
map_img
*
(
scale
-
1.0
f
)
+
log_img
,
map_img
);
log_img
.
release
();
map_img
=
map_img
.
mul
(
1.0
f
/
gray_img
);
gray_img
.
release
();
std
::
vector
<
Mat
>
channels
(
3
);
split
(
src_img
,
channels
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
channels
[
i
]
=
channels
[
i
].
mul
(
map_img
);
}
merge
(
channels
,
dst_img
);
}
void
tonemap
(
InputArray
_src
,
OutputArray
_dst
,
tonemap_algorithms
algorithm
,
std
::
vector
<
float
>&
params
)
{
typedef
void
(
*
tonemap_func
)(
Mat
&
,
Mat
&
,
std
::
vector
<
float
>&
);
const
unsigned
param_count
[
TONEMAP_COUNT
]
=
{
0
,
1
,
3
,
3
};
tonemap_func
functions
[
TONEMAP_COUNT
]
=
{
NULL
,
DragoMap
,
ReinhardDevlinMap
,
DurandMap
};
Mat
src
=
_src
.
getMat
();
if
(
src
.
empty
())
{
CV_Error
(
Error
::
StsBadArg
,
"Empty input image"
);
}
if
(
algorithm
<
0
||
algorithm
>=
TONEMAP_COUNT
)
{
CV_Error
(
Error
::
StsBadArg
,
"Wrong algorithm index"
);
}
_dst
.
create
(
src
.
size
(),
CV_32FC3
);
Mat
dst
=
_dst
.
getMat
();
src
.
copyTo
(
dst
);
double
min
,
max
;
minMaxLoc
(
dst
,
&
min
,
&
max
);
if
(
max
-
min
<
1e-10
f
)
{
return
;
}
dst
=
(
dst
-
min
)
/
(
max
-
min
);
if
(
functions
[
algorithm
])
{
functions
[
algorithm
](
dst
,
dst
,
params
);
}
minMaxLoc
(
dst
,
&
min
,
&
max
);
dst
=
(
dst
-
min
)
/
(
max
-
min
);
float
gamma
=
getParam
(
params
,
0
,
1.0
f
);
pow
(
dst
,
1.0
f
/
gamma
,
dst
);
}
static
float
getParam
(
const
std
::
vector
<
float
>&
params
,
size_t
i
,
float
defval
)
{
if
(
params
.
size
()
>
i
)
{
return
params
[
i
];
}
else
{
return
defval
;
}
}
static
void
DragoMap
(
Mat
&
src_img
,
Mat
&
dst_img
,
const
std
::
vector
<
float
>&
params
)
{
float
bias_value
=
getParam
(
params
,
1
,
0.85
f
);
Mat
gray_img
;
cvtColor
(
src_img
,
gray_img
,
COLOR_RGB2GRAY
);
Mat
log_img
;
log
(
gray_img
,
log_img
);
float
mean
=
exp
((
float
)
sum
(
log_img
)[
0
]
/
log_img
.
total
());
gray_img
/=
mean
;
log_img
.
release
();
double
max
;
minMaxLoc
(
gray_img
,
NULL
,
&
max
);
Mat
map
;
log
(
gray_img
+
1.0
f
,
map
);
Mat
div
;
pow
(
gray_img
/
(
float
)
max
,
log
(
bias_value
)
/
log
(
0.5
f
),
div
);
log
(
2.0
f
+
8.0
f
*
div
,
div
);
map
=
map
.
mul
(
1.0
f
/
div
);
map
=
map
.
mul
(
1.0
f
/
gray_img
);
div
.
release
();
gray_img
.
release
();
std
::
vector
<
Mat
>
channels
(
3
);
split
(
src_img
,
channels
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
channels
[
i
]
=
channels
[
i
].
mul
(
map
);
}
map
.
release
();
merge
(
channels
,
dst_img
);
}
static
void
ReinhardDevlinMap
(
Mat
&
src_img
,
Mat
&
dst_img
,
const
std
::
vector
<
float
>&
params
)
{
float
intensity
=
getParam
(
params
,
1
,
0.0
f
);
float
color_adapt
=
getParam
(
params
,
2
,
0.0
f
);
float
light_adapt
=
getParam
(
params
,
3
,
1.0
f
);
Mat
gray_img
;
cvtColor
(
src_img
,
gray_img
,
COLOR_RGB2GRAY
);
Mat
log_img
;
log
(
gray_img
,
log_img
);
float
log_mean
=
(
float
)
sum
(
log_img
)[
0
]
/
log_img
.
total
();
double
log_min
,
log_max
;
minMaxLoc
(
log_img
,
&
log_min
,
&
log_max
);
log_img
.
release
();
double
key
=
(
float
)((
log_max
-
log_mean
)
/
(
log_max
-
log_min
));
float
map_key
=
0.3
f
+
0.7
f
*
pow
((
float
)
key
,
1.4
f
);
intensity
=
exp
(
-
intensity
);
Scalar
chan_mean
=
mean
(
src_img
);
float
gray_mean
=
(
float
)
mean
(
gray_img
)[
0
];
std
::
vector
<
Mat
>
channels
(
3
);
split
(
src_img
,
channels
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
float
global
=
color_adapt
*
(
float
)
chan_mean
[
i
]
+
(
1.0
f
-
color_adapt
)
*
gray_mean
;
Mat
adapt
=
color_adapt
*
channels
[
i
]
+
(
1.0
f
-
color_adapt
)
*
gray_img
;
adapt
=
light_adapt
*
adapt
+
(
1.0
f
-
light_adapt
)
*
global
;
pow
(
intensity
*
adapt
,
map_key
,
adapt
);
channels
[
i
]
=
channels
[
i
].
mul
(
1.0
f
/
(
adapt
+
channels
[
i
]));
}
gray_img
.
release
();
merge
(
channels
,
dst_img
);
}
static
void
DurandMap
(
Mat
&
src_img
,
Mat
&
dst_img
,
const
std
::
vector
<
float
>&
params
)
{
float
contrast
=
getParam
(
params
,
1
,
4.0
f
);
float
sigma_color
=
getParam
(
params
,
2
,
2.0
f
);
float
sigma_space
=
getParam
(
params
,
3
,
2.0
f
);
Mat
gray_img
;
cvtColor
(
src_img
,
gray_img
,
COLOR_RGB2GRAY
);
Mat
log_img
;
log
(
gray_img
,
log_img
);
Mat
map_img
;
bilateralFilter
(
log_img
,
map_img
,
-
1
,
sigma_color
,
sigma_space
);
double
min
,
max
;
minMaxLoc
(
map_img
,
&
min
,
&
max
);
float
scale
=
contrast
/
(
float
)(
max
-
min
);
exp
(
map_img
*
(
scale
-
1.0
f
)
+
log_img
,
map_img
);
log_img
.
release
();
map_img
=
map_img
.
mul
(
1.0
f
/
gray_img
);
gray_img
.
release
();
std
::
vector
<
Mat
>
channels
(
3
);
split
(
src_img
,
channels
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
channels
[
i
]
=
channels
[
i
].
mul
(
map_img
);
}
merge
(
channels
,
dst_img
);
}
void
tonemap
(
InputArray
_src
,
OutputArray
_dst
,
tonemap_algorithms
algorithm
,
const
std
::
vector
<
float
>&
params
)
{
typedef
void
(
*
tonemap_func
)(
Mat
&
,
Mat
&
,
const
std
::
vector
<
float
>&
);
tonemap_func
functions
[
TONEMAP_COUNT
]
=
{
NULL
,
DragoMap
,
ReinhardDevlinMap
,
DurandMap
};
Mat
src
=
_src
.
getMat
();
if
(
src
.
empty
())
{
CV_Error
(
Error
::
StsBadArg
,
"Empty input image"
);
}
if
(
algorithm
<
0
||
algorithm
>=
TONEMAP_COUNT
)
{
CV_Error
(
Error
::
StsBadArg
,
"Wrong algorithm index"
);
}
_dst
.
create
(
src
.
size
(),
CV_32FC3
);
Mat
dst
=
_dst
.
getMat
();
src
.
copyTo
(
dst
);
double
min
,
max
;
minMaxLoc
(
dst
,
&
min
,
&
max
);
if
(
max
-
min
<
1e-10
f
)
{
return
;
}
dst
=
(
dst
-
min
)
/
(
max
-
min
);
if
(
functions
[
algorithm
])
{
functions
[
algorithm
](
dst
,
dst
,
params
);
}
minMaxLoc
(
dst
,
&
min
,
&
max
);
dst
=
(
dst
-
min
)
/
(
max
-
min
);
float
gamma
=
getParam
(
params
,
0
,
1.0
f
);
pow
(
dst
,
1.0
f
/
gamma
,
dst
);
}
}
\ No newline at end of file
modules/photo/test/test_hdr.cpp
View file @
0aee5b61
...
...
@@ -47,7 +47,7 @@
using
namespace
cv
;
using
namespace
std
;
TEST
(
Photo_
MakeHdr
,
regression
)
TEST
(
Photo_
HdrFusion
,
regression
)
{
string
folder
=
string
(
cvtest
::
TS
::
ptr
()
->
get_data_path
())
+
"hdr/"
;
...
...
@@ -75,6 +75,14 @@ TEST(Photo_MakeHdr, regression)
double
max
=
1.0
;
minMaxLoc
(
abs
(
result
-
expected
),
NULL
,
&
max
);
ASSERT_TRUE
(
max
<
0.01
);
expected_path
=
folder
+
"grand_canal_exp_fusion.png"
;
expected
=
imread
(
expected_path
);
ASSERT_FALSE
(
expected
.
empty
())
<<
"Could not load input image "
<<
expected_path
;
exposureFusion
(
images
,
result
);
result
.
convertTo
(
result
,
CV_8UC3
,
255
);
minMaxLoc
(
abs
(
result
-
expected
),
NULL
,
&
max
);
ASSERT_FALSE
(
max
>
0
);
}
TEST
(
Photo_Tonemap
,
regression
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment