Commit 0940573e authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

fixed a few more typos in the docs.

parent 462d4a1d
...@@ -1407,6 +1407,6 @@ The function computes the rectification transformations without knowing intrinsi ...@@ -1407,6 +1407,6 @@ The function computes the rectification transformations without knowing intrinsi
.. [BouguetMCT] J.Y.Bouguet. MATLAB calibration tool. http://www.vision.caltech.edu/bouguetj/calib_doc/ .. [BouguetMCT] J.Y.Bouguet. MATLAB calibration tool. http://www.vision.caltech.edu/bouguetj/calib_doc/
.. [Hartley99] Hartley, R.I., “Theory and Practice of Projective Rectification”. IJCV 35 2, pp 115-127 (1999) .. [Hartley99] Hartley, R.I., Theory and Practice of Projective Rectification. IJCV 35 2, pp 115-127 (1999)
.. [Zhang2000] Z. Zhang. A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000. .. [Zhang2000] Z. Zhang. A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000.
...@@ -58,9 +58,7 @@ partition ...@@ -58,9 +58,7 @@ partition
------------- -------------
Splits an element set into equivalency classes. Splits an element set into equivalency classes.
.. ocv:function:: template<typename _Tp, class _EqPredicate> int .. ocv:function:: template<typename _Tp, class _EqPredicate> int partition( const vector<_Tp>& vec, vector<int>& labels, _EqPredicate predicate=_EqPredicate())
.. ocv:function:: partition( const vector<_Tp>& vec, vector<int>& labels, _EqPredicate predicate=_EqPredicate())
:param vec: Set of elements stored as a vector. :param vec: Set of elements stored as a vector.
...@@ -76,4 +74,4 @@ http://en.wikipedia.org/wiki/Disjoint-set_data_structure ...@@ -76,4 +74,4 @@ http://en.wikipedia.org/wiki/Disjoint-set_data_structure
. The function . The function
returns the number of equivalency classes. returns the number of equivalency classes.
.. [Arthur2007] Arthur and S. Vassilvitskii “k-means++: the advantages of careful seeding”, Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2007 .. [Arthur2007] Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding, Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2007
...@@ -67,12 +67,7 @@ Interfaces of all methods are kept similar to the ``CPU HOG`` descriptor and det ...@@ -67,12 +67,7 @@ Interfaces of all methods are kept similar to the ``CPU HOG`` descriptor and det
gpu::HOGDescriptor::HOGDescriptor gpu::HOGDescriptor::HOGDescriptor
------------------------------------- -------------------------------------
.. ocv:function:: gpu::HOGDescriptor::HOGDescriptor(Size win_size=Size(64, 128), .. ocv:function:: gpu::HOGDescriptor::HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16), Size block_stride=Size(8, 8), Size cell_size=Size(8, 8), int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA, double threshold_L2hys=0.2, bool gamma_correction=true, int nlevels=DEFAULT_NLEVELS)
Size block_size=Size(16, 16), Size block_stride=Size(8, 8),
Size cell_size=Size(8, 8), int nbins=9,
double win_sigma=DEFAULT_WIN_SIGMA,
double threshold_L2hys=0.2, bool gamma_correction=true,
int nlevels=DEFAULT_NLEVELS)??check the output??
Creates the ``HOG`` descriptor and detector. Creates the ``HOG`` descriptor and detector.
...@@ -114,7 +109,7 @@ gpu::HOGDescriptor::getBlockHistogramSize ...@@ -114,7 +109,7 @@ gpu::HOGDescriptor::getBlockHistogramSize
gpu::HOGDescriptor::setSVMDetector gpu::HOGDescriptor::setSVMDetector
-------------------------------------- --------------------------------------
.. ocv:function:: void gpu::HOGDescriptor::setSVMDetector(const vector<float>\& detector) .. ocv:function:: void gpu::HOGDescriptor::setSVMDetector(const vector<float>& detector)
Sets coefficients for the linear SVM classifier. Sets coefficients for the linear SVM classifier.
...@@ -146,9 +141,7 @@ gpu::HOGDescriptor::getPeopleDetector64x128 ...@@ -146,9 +141,7 @@ gpu::HOGDescriptor::getPeopleDetector64x128
gpu::HOGDescriptor::detect gpu::HOGDescriptor::detect
------------------------------ ------------------------------
.. ocv:function:: void gpu::HOGDescriptor::detect(const GpuMat\& img, .. ocv:function:: void gpu::HOGDescriptor::detect(const GpuMat& img, vector<Point>& found_locations, double hit_threshold=0, Size win_stride=Size(), Size padding=Size())
vector<Point>\& found_locations, double hit_threshold=0,
Size win_stride=Size(), Size padding=Size())??see output??
Performs object detection without a multi-scale window. Performs object detection without a multi-scale window.
...@@ -166,10 +159,7 @@ gpu::HOGDescriptor::detect ...@@ -166,10 +159,7 @@ gpu::HOGDescriptor::detect
gpu::HOGDescriptor::detectMultiScale gpu::HOGDescriptor::detectMultiScale
---------------------------------------- ----------------------------------------
.. ocv:function:: void gpu::HOGDescriptor::detectMultiScale(const GpuMat\& img, .. ocv:function:: void gpu::HOGDescriptor::detectMultiScale(const GpuMat& img, vector<Rect>& found_locations, double hit_threshold=0, Size win_stride=Size(), Size padding=Size(), double scale0=1.05, int group_threshold=2)
vector<Rect>\& found_locations, double hit_threshold=0,
Size win_stride=Size(), Size padding=Size(),
double scale0=1.05, int group_threshold=2)??the same??
Performs object detection with a multi-scale window. Performs object detection with a multi-scale window.
...@@ -191,9 +181,7 @@ gpu::HOGDescriptor::detectMultiScale ...@@ -191,9 +181,7 @@ gpu::HOGDescriptor::detectMultiScale
gpu::HOGDescriptor::getDescriptors gpu::HOGDescriptor::getDescriptors
-------------------------------------- --------------------------------------
.. ocv:function:: void gpu::HOGDescriptor::getDescriptors(const GpuMat\& img, .. ocv:function:: void gpu::HOGDescriptor::getDescriptors(const GpuMat& img, Size win_stride, GpuMat& descriptors, int descr_format=DESCR_FORMAT_COL_BY_COL)
Size win_stride, GpuMat\& descriptors,
int descr_format=DESCR_FORMAT_COL_BY_COL)?? the same??
Returns block descriptors computed for the whole image. The function is mainly used to learn the classifier. Returns block descriptors computed for the whole image. The function is mainly used to learn the classifier.
...@@ -247,7 +235,7 @@ Cascade classifier class used for object detection. ...@@ -247,7 +235,7 @@ Cascade classifier class used for object detection.
gpu::CascadeClassifier_GPU::CascadeClassifier_GPU gpu::CascadeClassifier_GPU::CascadeClassifier_GPU
----------------------------------------------------- -----------------------------------------------------
.. ocv:function:: gpu::CascadeClassifier_GPU(const string\& filename) .. ocv:function:: gpu::CascadeClassifier_GPU(const string& filename)
Loads the classifier from a file. Loads the classifier from a file.
...@@ -269,7 +257,7 @@ gpu::CascadeClassifier_GPU::empty ...@@ -269,7 +257,7 @@ gpu::CascadeClassifier_GPU::empty
gpu::CascadeClassifier_GPU::load gpu::CascadeClassifier_GPU::load
------------------------------------ ------------------------------------
.. ocv:function:: bool gpu::CascadeClassifier_GPU::load(const string\& filename) .. ocv:function:: bool gpu::CascadeClassifier_GPU::load(const string& filename)
Loads the classifier from a file. The previous content is destroyed. Loads the classifier from a file. The previous content is destroyed.
...@@ -287,7 +275,7 @@ gpu::CascadeClassifier_GPU::release ...@@ -287,7 +275,7 @@ gpu::CascadeClassifier_GPU::release
gpu::CascadeClassifier_GPU::detectMultiScale gpu::CascadeClassifier_GPU::detectMultiScale
------------------------------------------------ ------------------------------------------------
.. ocv:function:: int gpu::CascadeClassifier_GPU::detectMultiScale(const GpuMat\& image, GpuMat\& objectsBuf, double scaleFactor=1.2, int minNeighbors=4, Size minSize=Size()) .. ocv:function:: int gpu::CascadeClassifier_GPU::detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, double scaleFactor=1.2, int minNeighbors=4, Size minSize=Size())
Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles. Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
......
...@@ -230,9 +230,9 @@ createOpenGLCallback ...@@ -230,9 +230,9 @@ createOpenGLCallback
------------------------ ------------------------
Creates a callback function called to draw OpenGL on top the the image display by ``windowname``. Creates a callback function called to draw OpenGL on top the the image display by ``windowname``.
.. ocv:function:: void createOpenGLCallback( const string& window_name, OpenGLCallback callbackOpenGL, void* userdata CV_DEFAULT(NULL), double angle CV_DEFAULT(-1), double zmin CV_DEFAULT(-1), double zmax CV_DEFAULT(-1) .. ocv:function:: void createOpenGLCallback( const string& window_name, OpenGLCallback callbackOpenGL, void* userdata =NULL, double angle=-1, double zmin=-1, double zmax=-1)
.. ocv:cfunction:: void cvCreateOpenGLCallback( const char* windowName, CvOpenGLCallback callbackOpenGL, void* userdata=NULL, double angle=-1, double zmin=-1, double zmax=-1 .. ocv:cfunction:: void cvCreateOpenGLCallback( const char* windowName, CvOpenGLCallback callbackOpenGL, void* userdata=NULL, double angle=-1, double zmin=-1, double zmax=-1 )
:param window_name: Name of the window. :param window_name: Name of the window.
...@@ -308,9 +308,9 @@ createButton ...@@ -308,9 +308,9 @@ createButton
---------------- ----------------
Attaches a button to the control panel. Attaches a button to the control panel.
.. ocv:function:: createButton( const string& button_name CV_DEFAULT(NULL),ButtonCallback on_change CV_DEFAULT(NULL), void* userdata CV_DEFAULT(NULL), int button_type CV_DEFAULT(CV_PUSH_BUTTON), int initial_button_state CV_DEFAULT(0)) .. ocv:function:: createButton( const string& button_name=NULL, ButtonCallback on_change=NULL, void* userdata=NULL, int button_type=CV_PUSH_BUTTON, int initial_button_state=0 )
.. ocv:cfunction:: cvCreateButton( const char* buttonName=NULL, CvButtonCallback onChange=NULL, void* userdata=NULL, int buttonType=CV_PUSH_BUTTON, int initialButtonState=0 .. ocv:cfunction:: cvCreateButton( const char* buttonName=NULL, CvButtonCallback onChange=NULL, void* userdata=NULL, int buttonType=CV_PUSH_BUTTON, int initialButtonState=0 )
:param button_name: Name of the button. :param button_name: Name of the button.
......
...@@ -266,6 +266,7 @@ VideoCapture::read ...@@ -266,6 +266,7 @@ VideoCapture::read
Grabs, decodes and returns the next video frame. Grabs, decodes and returns the next video frame.
.. ocv:function:: VideoCapture& VideoCapture::operator >> (Mat& image) .. ocv:function:: VideoCapture& VideoCapture::operator >> (Mat& image)
.. ocv:function:: bool VideoCapture::read(Mat& image) .. ocv:function:: bool VideoCapture::read(Mat& image)
.. ocv:pyfunction:: cv2.VideoCapture.read([image]) -> successFlag, image .. ocv:pyfunction:: cv2.VideoCapture.read([image]) -> successFlag, image
...@@ -288,6 +289,7 @@ Returns the specified ``VideoCapture`` property ...@@ -288,6 +289,7 @@ Returns the specified ``VideoCapture`` property
.. ocv:pyfunction:: cv2.VideoCapture.get(propId) -> retval .. ocv:pyfunction:: cv2.VideoCapture.get(propId) -> retval
.. ocv:cfunction:: double cvGetCaptureProperty( CvCapture* capture, int propId ) .. ocv:cfunction:: double cvGetCaptureProperty( CvCapture* capture, int propId )
.. ocv:pyoldfunction:: cv.GetCaptureProperty(capture, propId)->double .. ocv:pyoldfunction:: cv.GetCaptureProperty(capture, propId)->double
...@@ -343,6 +345,7 @@ Sets a property in the ``VideoCapture``. ...@@ -343,6 +345,7 @@ Sets a property in the ``VideoCapture``.
.. ocv:pyfunction:: cv2.VideoCapture.set(propId, value) -> retval .. ocv:pyfunction:: cv2.VideoCapture.set(propId, value) -> retval
.. ocv:cfunction:: int cvSetCaptureProperty( CvCapture* capture, int propId, double value ) .. ocv:cfunction:: int cvSetCaptureProperty( CvCapture* capture, int propId, double value )
.. ocv:pyoldfunction:: cv.SetCaptureProperty(capture, propId, value)->None .. ocv:pyoldfunction:: cv.SetCaptureProperty(capture, propId, value)->None
:param propId: Property identifier. It can be one of the following: :param propId: Property identifier. It can be one of the following:
...@@ -402,6 +405,7 @@ VideoWriter::VideoWriter ...@@ -402,6 +405,7 @@ VideoWriter::VideoWriter
VideoWriter constructors VideoWriter constructors
.. ocv:function:: VideoWriter::VideoWriter() .. ocv:function:: VideoWriter::VideoWriter()
.. ocv:function:: VideoWriter::VideoWriter(const string& filename, int fourcc, double fps, Size frameSize, bool isColor=true) .. ocv:function:: VideoWriter::VideoWriter(const string& filename, int fourcc, double fps, Size frameSize, bool isColor=true)
.. ocv:pyfunction:: cv2.VideoWriter([filename, fourcc, fps, frameSize[, isColor]]) -> <VideoWriter object> .. ocv:pyfunction:: cv2.VideoWriter([filename, fourcc, fps, frameSize[, isColor]]) -> <VideoWriter object>
...@@ -461,6 +465,7 @@ VideoWriter::write ...@@ -461,6 +465,7 @@ VideoWriter::write
Writes the next video frame Writes the next video frame
.. ocv:function:: VideoWriter& VideoWriter::operator << (const Mat& image) .. ocv:function:: VideoWriter& VideoWriter::operator << (const Mat& image)
.. ocv:function:: void VideoWriter::write(const Mat& image) .. ocv:function:: void VideoWriter::write(const Mat& image)
.. ocv:pyfunction:: cv2.VideoWriter.write(image) -> None .. ocv:pyfunction:: cv2.VideoWriter.write(image) -> None
......
...@@ -222,7 +222,7 @@ Determines strong corners on an image. ...@@ -222,7 +222,7 @@ Determines strong corners on an image.
.. ocv:pyfunction:: cv2.goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance[, corners[, mask[, blockSize[, useHarrisDetector[, k]]]]]) -> corners .. ocv:pyfunction:: cv2.goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance[, corners[, mask[, blockSize[, useHarrisDetector[, k]]]]]) -> corners
.. ocv:cfunction:: void cvGoodFeaturesToTrack( const CvArr* image, CvArr* eigImage, CvArr* tempImage CvPoint2D32f* corners, int* cornerCount, double qualityLevel, double minDistance, const CvArr* mask=NULL, int blockSize=3, int useHarris=0, double k=0.04 ) .. ocv:cfunction:: void cvGoodFeaturesToTrack( const CvArr* image, CvArr* eigImage, CvArr* tempImage, CvPoint2D32f* corners, int* cornerCount, double qualityLevel, double minDistance, const CvArr* mask=NULL, int blockSize=3, int useHarris=0, double k=0.04 )
.. ocv:pyoldfunction:: cv.GoodFeaturesToTrack(image, eigImage, tempImage, cornerCount, qualityLevel, minDistance, mask=None, blockSize=3, useHarris=0, k=0.04)-> corners .. ocv:pyoldfunction:: cv.GoodFeaturesToTrack(image, eigImage, tempImage, cornerCount, qualityLevel, minDistance, mask=None, blockSize=3, useHarris=0, k=0.04)-> corners
......
...@@ -59,9 +59,9 @@ To reduce computation time for boosted models without substantially losing accur ...@@ -59,9 +59,9 @@ To reduce computation time for boosted models without substantially losing accur
**all** **all**
training examples are recomputed at each training iteration. Examples deleted at a particular iteration may be used again for learning some of the weak classifiers further [FHT98]_. training examples are recomputed at each training iteration. Examples deleted at a particular iteration may be used again for learning some of the weak classifiers further [FHT98]_.
.. _HTF01: [HTF01] Hastie, T., Tibshirani, R., Friedman, J. H. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics*. 2001. .. [HTF01] Hastie, T., Tibshirani, R., Friedman, J. H. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics*. 2001.
.. _FHT98: [FHT98] Friedman, J. H., Hastie, T. and Tibshirani, R. Additive Logistic Regression: a Statistical View of Boosting. Technical Report, Dept. of Statistics*, Stanford University, 1998. .. [FHT98] Friedman, J. H., Hastie, T. and Tibshirani, R. Additive Logistic Regression: a Statistical View of Boosting. Technical Report, Dept. of Statistics*, Stanford University, 1998.
CvBoostParams CvBoostParams
------------- -------------
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment