Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
0934344a
Commit
0934344a
authored
Sep 12, 2013
by
Mathieu Barnachon
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update sample and code with external computation of HOG detector.
parent
2fe340bf
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
100 additions
and
91 deletions
+100
-91
ml.hpp
modules/ml/include/opencv2/ml.hpp
+1
-2
svm.cpp
modules/ml/src/svm.cpp
+0
-32
train_HOG.cpp
samples/cpp/train_HOG.cpp
+99
-57
No files found.
modules/ml/include/opencv2/ml.hpp
View file @
0934344a
...
...
@@ -518,8 +518,7 @@ public:
virtual
CvSVMParams
get_params
()
const
{
return
params
;
};
CV_WRAP
virtual
void
clear
();
// return a single vector for HOG detector.
virtual
void
get_svm_detector
(
std
::
vector
<
float
>
&
detector
)
const
;
virtual
const
CvSVMDecisionFunc
*
get_decision_function
()
const
{
return
decision_func
;
}
static
CvParamGrid
get_default_grid
(
int
param_id
);
...
...
modules/ml/src/svm.cpp
View file @
0934344a
...
...
@@ -1245,38 +1245,6 @@ const float* CvSVM::get_support_vector(int i) const
return
sv
&&
(
unsigned
)
i
<
(
unsigned
)
sv_total
?
sv
[
i
]
:
0
;
}
void
CvSVM
::
get_svm_detector
(
std
::
vector
<
float
>
&
detector
)
const
{
CV_Assert
(
var_all
>
0
&&
sv_total
>
0
&&
sv
!=
0
&&
decision_func
!=
0
&&
decision_func
->
alpha
!=
0
&&
decision_func
->
sv_count
==
sv_total
);
float
svi
=
0.
f
;
detector
.
clear
();
//clear stuff in vector.
detector
.
reserve
(
var_all
+
1
);
//reserve place for memory efficiency.
/**
* detector^i = \sum_j support_vector_j^i * \alpha_j
* detector^dim = -\rho
*/
for
(
int
i
=
0
;
i
<
var_all
;
++
i
)
{
svi
=
0.
f
;
for
(
int
j
=
0
;
j
<
sv_total
;
++
j
)
{
if
(
decision_func
->
sv_index
!=
NULL
)
// sometime the sv_index isn't store on YML/XML.
svi
+=
(
float
)(
sv
[
decision_func
->
sv_index
[
j
]][
i
]
*
decision_func
->
alpha
[
j
]
);
else
svi
+=
(
float
)(
sv
[
j
][
i
]
*
decision_func
->
alpha
[
j
]
);
}
detector
.
push_back
(
svi
);
}
detector
.
push_back
(
(
float
)
-
decision_func
->
rho
);
}
bool
CvSVM
::
set_params
(
const
CvSVMParams
&
_params
)
{
bool
ok
=
false
;
...
...
samples/cpp/train_HOG.cpp
View file @
0934344a
...
...
@@ -11,22 +11,64 @@ using namespace cv;
using
namespace
std
;
void
get_svm_detector
(
const
SVM
&
svm
,
vector
<
float
>
&
hog_detector
)
{
// get the number of variables
const
int
var_all
=
svm
.
get_var_count
();
// get the number of support vectors
const
int
sv_total
=
svm
.
get_support_vector_count
();
// get the decision function
const
CvSVMDecisionFunc
*
decision_func
=
svm
.
get_decision_function
();
// get the support vectors
const
float
**
sv
=
&
(
svm
.
get_support_vector
(
0
));
CV_Assert
(
var_all
>
0
&&
sv_total
>
0
&&
decision_func
!=
0
&&
decision_func
->
alpha
!=
0
&&
decision_func
->
sv_count
==
sv_total
);
float
svi
=
0.
f
;
hog_detector
.
clear
();
//clear stuff in vector.
hog_detector
.
reserve
(
var_all
+
1
);
//reserve place for memory efficiency.
/**
* hog_detector^i = \sum_j support_vector_j^i * \alpha_j
* hog_detector^dim = -\rho
*/
for
(
int
i
=
0
;
i
<
var_all
;
++
i
)
{
svi
=
0.
f
;
for
(
int
j
=
0
;
j
<
sv_total
;
++
j
)
{
if
(
decision_func
->
sv_index
!=
NULL
)
// sometime the sv_index isn't store on YML/XML.
svi
+=
(
float
)(
sv
[
decision_func
->
sv_index
[
j
]][
i
]
*
decision_func
->
alpha
[
j
]
);
else
svi
+=
(
float
)(
sv
[
j
][
i
]
*
decision_func
->
alpha
[
j
]
);
}
hog_detector
.
push_back
(
svi
);
}
hog_detector
.
push_back
(
(
float
)
-
decision_func
->
rho
);
}
/*
* Convert training/testing set to be used by OpenCV Machine Learning algorithms.
* TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1.
* Transposition of samples are made if needed.
*/
* Convert training/testing set to be used by OpenCV Machine Learning algorithms.
* TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1.
* Transposition of samples are made if needed.
*/
void
convert_to_ml
(
const
std
::
vector
<
cv
::
Mat
>
&
train_samples
,
cv
::
Mat
&
trainData
)
{
//--Convert data
//--Convert data
const
int
rows
=
(
int
)
train_samples
.
size
();
const
int
cols
=
(
int
)
std
::
max
(
train_samples
[
0
].
cols
,
train_samples
[
0
].
rows
);
cv
::
Mat
tmp
(
1
,
cols
,
CV_32FC1
);
//< used for transposition if needed
trainData
=
cv
::
Mat
(
rows
,
cols
,
CV_32FC1
);
auto
&
itr
=
train_samples
.
begin
();
auto
&
end
=
train_samples
.
end
();
for
(
int
i
=
0
;
itr
!=
end
;
++
itr
,
++
i
)
{
trainData
=
cv
::
Mat
(
rows
,
cols
,
CV_32FC1
);
auto
&
itr
=
train_samples
.
begin
();
auto
&
end
=
train_samples
.
end
();
for
(
int
i
=
0
;
itr
!=
end
;
++
itr
,
++
i
)
{
CV_Assert
(
itr
->
cols
==
1
||
itr
->
rows
==
1
);
if
(
itr
->
cols
==
1
)
...
...
@@ -38,7 +80,7 @@ void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainD
{
itr
->
copyTo
(
trainData
.
row
(
i
)
);
}
}
}
}
void
load_images
(
const
string
&
prefix
,
const
string
&
filename
,
vector
<
Mat
>
&
img_lst
)
...
...
@@ -52,7 +94,7 @@ void load_images( const string & prefix, const string & filename, vector< Mat >
cerr
<<
"Unable to open the list of images from "
<<
filename
<<
" filename."
<<
endl
;
exit
(
-
1
);
}
while
(
1
)
{
getline
(
file
,
line
);
...
...
@@ -102,12 +144,12 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues,
float
zoomFac
=
3
;
Mat
visu
;
resize
(
color_origImg
,
visu
,
Size
(
color_origImg
.
cols
*
zoomFac
,
color_origImg
.
rows
*
zoomFac
));
int
blockSize
=
16
;
int
cellSize
=
8
;
int
gradientBinSize
=
9
;
float
radRangeForOneBin
=
CV_PI
/
(
float
)
gradientBinSize
;
// dividing 180 into 9 bins, how large (in rad) is one bin?
// prepare data structure: 9 orientation / gradient strenghts for each cell
int
cells_in_x_dir
=
DIMX
/
cellSize
;
int
cells_in_y_dir
=
DIMY
/
cellSize
;
...
...
@@ -122,22 +164,22 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues,
{
gradientStrengths
[
y
][
x
]
=
new
float
[
gradientBinSize
];
cellUpdateCounter
[
y
][
x
]
=
0
;
for
(
int
bin
=
0
;
bin
<
gradientBinSize
;
bin
++
)
gradientStrengths
[
y
][
x
][
bin
]
=
0.0
;
}
}
// nr of blocks = nr of cells - 1
// since there is a new block on each cell (overlapping blocks!) but the last one
int
blocks_in_x_dir
=
cells_in_x_dir
-
1
;
int
blocks_in_y_dir
=
cells_in_y_dir
-
1
;
// compute gradient strengths per cell
int
descriptorDataIdx
=
0
;
int
cellx
=
0
;
int
celly
=
0
;
for
(
int
blockx
=
0
;
blockx
<
blocks_in_x_dir
;
blockx
++
)
{
for
(
int
blocky
=
0
;
blocky
<
blocks_in_y_dir
;
blocky
++
)
...
...
@@ -155,37 +197,37 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues,
cellx
++
;
celly
++
;
}
for
(
int
bin
=
0
;
bin
<
gradientBinSize
;
bin
++
)
{
float
gradientStrength
=
descriptorValues
[
descriptorDataIdx
];
descriptorDataIdx
++
;
gradientStrengths
[
celly
][
cellx
][
bin
]
+=
gradientStrength
;
}
// for (all bins)
// note: overlapping blocks lead to multiple updates of this sum!
// we therefore keep track how often a cell was updated,
// to compute average gradient strengths
cellUpdateCounter
[
celly
][
cellx
]
++
;
}
// for (all cells)
}
// for (all block x pos)
}
// for (all block y pos)
// compute average gradient strengths
for
(
int
celly
=
0
;
celly
<
cells_in_y_dir
;
celly
++
)
{
for
(
int
cellx
=
0
;
cellx
<
cells_in_x_dir
;
cellx
++
)
{
float
NrUpdatesForThisCell
=
(
float
)
cellUpdateCounter
[
celly
][
cellx
];
// compute average gradient strenghts for each gradient bin direction
for
(
int
bin
=
0
;
bin
<
gradientBinSize
;
bin
++
)
{
...
...
@@ -193,7 +235,7 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues,
}
}
}
// draw cells
for
(
int
celly
=
0
;
celly
<
cells_in_y_dir
;
celly
++
)
{
...
...
@@ -201,58 +243,58 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues,
{
int
drawX
=
cellx
*
cellSize
;
int
drawY
=
celly
*
cellSize
;
int
mx
=
drawX
+
cellSize
/
2
;
int
my
=
drawY
+
cellSize
/
2
;
rectangle
(
visu
,
Point
(
drawX
*
zoomFac
,
drawY
*
zoomFac
),
Point
((
drawX
+
cellSize
)
*
zoomFac
,(
drawY
+
cellSize
)
*
zoomFac
),
CV_RGB
(
100
,
100
,
100
),
1
);
// draw in each cell all 9 gradient strengths
for
(
int
bin
=
0
;
bin
<
gradientBinSize
;
bin
++
)
{
float
currentGradStrength
=
gradientStrengths
[
celly
][
cellx
][
bin
];
// no line to draw?
if
(
currentGradStrength
==
0
)
continue
;
float
currRad
=
bin
*
radRangeForOneBin
+
radRangeForOneBin
/
2
;
float
dirVecX
=
cos
(
currRad
);
float
dirVecY
=
sin
(
currRad
);
float
maxVecLen
=
cellSize
/
2
;
float
scale
=
2.5
;
// just a visualization scale, to see the lines better
// compute line coordinates
float
x1
=
mx
-
dirVecX
*
currentGradStrength
*
maxVecLen
*
scale
;
float
y1
=
my
-
dirVecY
*
currentGradStrength
*
maxVecLen
*
scale
;
float
x2
=
mx
+
dirVecX
*
currentGradStrength
*
maxVecLen
*
scale
;
float
y2
=
my
+
dirVecY
*
currentGradStrength
*
maxVecLen
*
scale
;
// draw gradient visualization
line
(
visu
,
Point
(
x1
*
zoomFac
,
y1
*
zoomFac
),
Point
(
x2
*
zoomFac
,
y2
*
zoomFac
),
CV_RGB
(
0
,
255
,
0
),
1
);
}
// for (all bins)
}
// for (cellx)
}
// for (celly)
// don't forget to free memory allocated by helper data structures!
for
(
int
y
=
0
;
y
<
cells_in_y_dir
;
y
++
)
{
for
(
int
x
=
0
;
x
<
cells_in_x_dir
;
x
++
)
{
delete
[]
gradientStrengths
[
y
][
x
];
}
delete
[]
gradientStrengths
[
y
];
delete
[]
cellUpdateCounter
[
y
];
for
(
int
x
=
0
;
x
<
cells_in_x_dir
;
x
++
)
{
delete
[]
gradientStrengths
[
y
][
x
];
}
delete
[]
gradientStrengths
[
y
];
delete
[]
cellUpdateCounter
[
y
];
}
delete
[]
gradientStrengths
;
delete
[]
cellUpdateCounter
;
return
visu
;
}
// get_hogdescriptor_visu
void
compute_hog
(
const
vector
<
Mat
>
&
img_lst
,
vector
<
Mat
>
&
gradient_lst
,
const
Size
&
size
)
...
...
@@ -322,7 +364,7 @@ void test_it( const Size & size )
Scalar
reference
(
0
,
255
,
0
);
Scalar
trained
(
0
,
0
,
255
);
Mat
img
,
draw
;
SVM
svm
;
My
SVM
svm
;
HOGDescriptor
hog
;
HOGDescriptor
my_hog
;
my_hog
.
winSize
=
size
;
...
...
@@ -333,7 +375,7 @@ void test_it( const Size & size )
svm
.
load
(
"my_people_detector.yml"
);
// Set the trained svm to my_hog
vector
<
float
>
hog_detector
;
svm
.
get_svm_detector
(
hog_detector
);
get_svm_detector
(
svm
,
hog_detector
);
my_hog
.
setSVMDetector
(
hog_detector
);
// Set the people detector.
hog
.
setSVMDetector
(
hog
.
getDefaultPeopleDetector
()
);
...
...
@@ -344,7 +386,7 @@ void test_it( const Size & size )
cerr
<<
"Unable to open the device 0"
<<
endl
;
exit
(
-
1
);
}
while
(
true
)
{
video
>>
img
;
...
...
@@ -352,7 +394,7 @@ void test_it( const Size & size )
break
;
draw
=
img
.
clone
();
locations
.
clear
();
hog
.
detectMultiScale
(
img
,
locations
);
draw_locations
(
draw
,
locations
,
reference
);
...
...
@@ -373,8 +415,8 @@ int main( int argc, char** argv )
if
(
argc
!=
4
)
{
cout
<<
"Wrong number of parameters."
<<
endl
<<
"Usage: "
<<
argv
[
0
]
<<
" pos_dir pos.lst neg_dir neg.lst"
<<
endl
<<
"example: "
<<
argv
[
0
]
<<
" /INRIA_dataset/ Train/pos.lst /INRIA_dataset/ Train/neg.lst"
<<
endl
;
<<
"Usage: "
<<
argv
[
0
]
<<
" pos_dir pos.lst neg_dir neg.lst"
<<
endl
<<
"example: "
<<
argv
[
0
]
<<
" /INRIA_dataset/ Train/pos.lst /INRIA_dataset/ Train/neg.lst"
<<
endl
;
exit
(
-
1
);
}
vector
<
Mat
>
pos_lst
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment