Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
0913dd7f
Commit
0913dd7f
authored
Dec 27, 2013
by
Andrey Pavlenko
Committed by
OpenCV Buildbot
Dec 27, 2013
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #2055 from vbystricky:ocl_sepFilter2D
parents
2d2312d7
26d53c74
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
1078 additions
and
0 deletions
+1078
-0
filter.cpp
modules/imgproc/src/filter.cpp
+245
-0
filterSepCol.cl
modules/imgproc/src/opencl/filterSepCol.cl
+116
-0
filterSepRow.cl
modules/imgproc/src/opencl/filterSepRow.cl
+570
-0
test_sepfilter2D.cpp
modules/imgproc/test/ocl/test_sepfilter2D.cpp
+147
-0
No files found.
modules/imgproc/src/filter.cpp
View file @
0913dd7f
...
...
@@ -42,6 +42,7 @@
#include "precomp.hpp"
#include "opencl_kernels.hpp"
#include <sstream>
/****************************************************************************************\
Base Image Filter
...
...
@@ -3314,6 +3315,246 @@ static bool ocl_filter2D( InputArray _src, OutputArray _dst, int ddepth,
}
return
kernel
.
run
(
2
,
globalsize
,
localsize
,
true
);
}
static
bool
ocl_sepRowFilter2D
(
UMat
&
src
,
UMat
&
buf
,
Mat
&
kernelX
,
int
anchor
,
int
borderType
,
bool
sync
)
{
int
type
=
src
.
type
();
int
cn
=
CV_MAT_CN
(
type
);
int
sdepth
=
CV_MAT_DEPTH
(
type
);
Size
bufSize
=
buf
.
size
();
#ifdef ANDROID
size_t
localsize
[
2
]
=
{
16
,
10
};
#else
size_t
localsize
[
2
]
=
{
16
,
16
};
#endif
size_t
globalsize
[
2
]
=
{
DIVUP
(
bufSize
.
width
,
localsize
[
0
])
*
localsize
[
0
],
DIVUP
(
bufSize
.
height
,
localsize
[
1
])
*
localsize
[
1
]};
if
(
CV_8U
==
sdepth
)
{
switch
(
cn
)
{
case
1
:
globalsize
[
0
]
=
DIVUP
((
bufSize
.
width
+
3
)
>>
2
,
localsize
[
0
])
*
localsize
[
0
];
break
;
case
2
:
globalsize
[
0
]
=
DIVUP
((
bufSize
.
width
+
1
)
>>
1
,
localsize
[
0
])
*
localsize
[
0
];
break
;
case
4
:
globalsize
[
0
]
=
DIVUP
(
bufSize
.
width
,
localsize
[
0
])
*
localsize
[
0
];
break
;
}
}
int
radiusX
=
anchor
;
int
radiusY
=
(
int
)((
buf
.
rows
-
src
.
rows
)
>>
1
);
bool
isIsolatedBorder
=
(
borderType
&
BORDER_ISOLATED
)
!=
0
;
const
char
*
btype
=
NULL
;
switch
(
borderType
&
~
BORDER_ISOLATED
)
{
case
BORDER_CONSTANT
:
btype
=
"BORDER_CONSTANT"
;
break
;
case
BORDER_REPLICATE
:
btype
=
"BORDER_REPLICATE"
;
break
;
case
BORDER_REFLECT
:
btype
=
"BORDER_REFLECT"
;
break
;
case
BORDER_WRAP
:
btype
=
"BORDER_WRAP"
;
break
;
case
BORDER_REFLECT101
:
btype
=
"BORDER_REFLECT_101"
;
break
;
default
:
return
false
;
}
bool
extra_extrapolation
=
src
.
rows
<
(
int
)((
-
radiusY
+
globalsize
[
1
])
>>
1
)
+
1
;
extra_extrapolation
|=
src
.
rows
<
radiusY
;
extra_extrapolation
|=
src
.
cols
<
(
int
)((
-
radiusX
+
globalsize
[
0
]
+
8
*
localsize
[
0
]
+
3
)
>>
1
)
+
1
;
extra_extrapolation
|=
src
.
cols
<
radiusX
;
cv
::
String
build_options
=
cv
::
format
(
"-D RADIUSX=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d -D %s -D %s -D %s"
,
radiusX
,
(
int
)
localsize
[
0
],
(
int
)
localsize
[
1
],
cn
,
btype
,
extra_extrapolation
?
"EXTRA_EXTRAPOLATION"
:
"NO_EXTRA_EXTRAPOLATION"
,
isIsolatedBorder
?
"BORDER_ISOLATED"
:
"NO_BORDER_ISOLATED"
);
Size
srcWholeSize
;
Point
srcOffset
;
src
.
locateROI
(
srcWholeSize
,
srcOffset
);
std
::
stringstream
strKernel
;
strKernel
<<
"row_filter"
;
if
(
-
1
!=
cn
)
strKernel
<<
"_C"
<<
cn
;
if
(
-
1
!=
sdepth
)
strKernel
<<
"_D"
<<
sdepth
;
ocl
::
Kernel
kernelRow
;
if
(
!
kernelRow
.
create
(
strKernel
.
str
().
c_str
(),
cv
::
ocl
::
imgproc
::
filterSepRow_oclsrc
,
build_options
))
return
false
;
int
idxArg
=
0
;
idxArg
=
kernelRow
.
set
(
idxArg
,
ocl
::
KernelArg
::
PtrReadOnly
(
src
));
idxArg
=
kernelRow
.
set
(
idxArg
,
(
int
)(
src
.
step
/
src
.
elemSize
()));
idxArg
=
kernelRow
.
set
(
idxArg
,
srcOffset
.
x
);
idxArg
=
kernelRow
.
set
(
idxArg
,
srcOffset
.
y
);
idxArg
=
kernelRow
.
set
(
idxArg
,
src
.
cols
);
idxArg
=
kernelRow
.
set
(
idxArg
,
src
.
rows
);
idxArg
=
kernelRow
.
set
(
idxArg
,
srcWholeSize
.
width
);
idxArg
=
kernelRow
.
set
(
idxArg
,
srcWholeSize
.
height
);
idxArg
=
kernelRow
.
set
(
idxArg
,
ocl
::
KernelArg
::
PtrWriteOnly
(
buf
));
idxArg
=
kernelRow
.
set
(
idxArg
,
(
int
)(
buf
.
step
/
buf
.
elemSize
()));
idxArg
=
kernelRow
.
set
(
idxArg
,
buf
.
cols
);
idxArg
=
kernelRow
.
set
(
idxArg
,
buf
.
rows
);
idxArg
=
kernelRow
.
set
(
idxArg
,
radiusY
);
idxArg
=
kernelRow
.
set
(
idxArg
,
ocl
::
KernelArg
::
PtrReadOnly
(
kernelX
.
getUMat
(
ACCESS_READ
)));
return
kernelRow
.
run
(
2
,
globalsize
,
localsize
,
sync
);
}
static
bool
ocl_sepColFilter2D
(
UMat
&
buf
,
UMat
&
dst
,
Mat
&
kernelY
,
int
anchor
,
bool
sync
)
{
#ifdef ANDROID
size_t
localsize
[
2
]
=
{
16
,
10
};
#else
size_t
localsize
[
2
]
=
{
16
,
16
};
#endif
size_t
globalsize
[
2
]
=
{
0
,
0
};
int
type
=
dst
.
type
();
int
cn
=
CV_MAT_CN
(
type
);
int
ddepth
=
CV_MAT_DEPTH
(
type
);
Size
sz
=
dst
.
size
();
globalsize
[
1
]
=
DIVUP
(
sz
.
height
,
localsize
[
1
])
*
localsize
[
1
];
cv
::
String
build_options
;
if
(
CV_8U
==
ddepth
)
{
switch
(
cn
)
{
case
1
:
globalsize
[
0
]
=
DIVUP
(
sz
.
width
,
localsize
[
0
])
*
localsize
[
0
];
build_options
=
cv
::
format
(
"-D RADIUSY=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d -D GENTYPE_SRC=%s -D GENTYPE_DST=%s -D convert_to_DST=%s"
,
anchor
,
(
int
)
localsize
[
0
],
(
int
)
localsize
[
1
],
cn
,
"float"
,
"uchar"
,
"convert_uchar_sat"
);
break
;
case
2
:
globalsize
[
0
]
=
DIVUP
((
sz
.
width
+
1
)
/
2
,
localsize
[
0
])
*
localsize
[
0
];
build_options
=
cv
::
format
(
"-D RADIUSY=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d -D GENTYPE_SRC=%s -D GENTYPE_DST=%s -D convert_to_DST=%s"
,
anchor
,
(
int
)
localsize
[
0
],
(
int
)
localsize
[
1
],
cn
,
"float2"
,
"uchar2"
,
"convert_uchar2_sat"
);
break
;
case
3
:
case
4
:
globalsize
[
0
]
=
DIVUP
(
sz
.
width
,
localsize
[
0
])
*
localsize
[
0
];
build_options
=
cv
::
format
(
"-D RADIUSY=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d -D GENTYPE_SRC=%s -D GENTYPE_DST=%s -D convert_to_DST=%s"
,
anchor
,
(
int
)
localsize
[
0
],
(
int
)
localsize
[
1
],
cn
,
"float4"
,
"uchar4"
,
"convert_uchar4_sat"
);
break
;
}
}
else
{
globalsize
[
0
]
=
DIVUP
(
sz
.
width
,
localsize
[
0
])
*
localsize
[
0
];
switch
(
dst
.
type
())
{
case
CV_32SC1
:
build_options
=
cv
::
format
(
"-D RADIUSY=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d -D GENTYPE_SRC=%s -D GENTYPE_DST=%s -D convert_to_DST=%s"
,
anchor
,
(
int
)
localsize
[
0
],
(
int
)
localsize
[
1
],
cn
,
"float"
,
"int"
,
"convert_int_sat"
);
break
;
case
CV_32SC3
:
case
CV_32SC4
:
build_options
=
cv
::
format
(
"-D RADIUSY=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d -D GENTYPE_SRC=%s -D GENTYPE_DST=%s -D convert_to_DST=%s"
,
anchor
,
(
int
)
localsize
[
0
],
(
int
)
localsize
[
1
],
cn
,
"float4"
,
"int4"
,
"convert_int4_sat"
);
break
;
case
CV_32FC1
:
build_options
=
cv
::
format
(
"-D RADIUSY=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d -D GENTYPE_SRC=%s -D GENTYPE_DST=%s -D convert_to_DST=%s"
,
anchor
,
(
int
)
localsize
[
0
],
(
int
)
localsize
[
1
],
cn
,
"float"
,
"float"
,
""
);
break
;
case
CV_32FC3
:
case
CV_32FC4
:
build_options
=
cv
::
format
(
"-D RADIUSY=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d -D GENTYPE_SRC=%s -D GENTYPE_DST=%s -D convert_to_DST=%s"
,
anchor
,
(
int
)
localsize
[
0
],
(
int
)
localsize
[
1
],
cn
,
"float4"
,
"float4"
,
""
);
break
;
}
}
ocl
::
Kernel
kernelCol
;
if
(
!
kernelCol
.
create
(
"col_filter"
,
cv
::
ocl
::
imgproc
::
filterSepCol_oclsrc
,
build_options
))
return
false
;
int
idxArg
=
0
;
idxArg
=
kernelCol
.
set
(
idxArg
,
ocl
::
KernelArg
::
PtrReadOnly
(
buf
));
idxArg
=
kernelCol
.
set
(
idxArg
,
(
int
)(
buf
.
step
/
buf
.
elemSize
()));
idxArg
=
kernelCol
.
set
(
idxArg
,
buf
.
cols
);
idxArg
=
kernelCol
.
set
(
idxArg
,
buf
.
rows
);
idxArg
=
kernelCol
.
set
(
idxArg
,
ocl
::
KernelArg
::
PtrWriteOnly
(
dst
));
idxArg
=
kernelCol
.
set
(
idxArg
,
(
int
)(
dst
.
offset
/
dst
.
elemSize
()));
idxArg
=
kernelCol
.
set
(
idxArg
,
(
int
)(
dst
.
step
/
dst
.
elemSize
()));
idxArg
=
kernelCol
.
set
(
idxArg
,
dst
.
cols
);
idxArg
=
kernelCol
.
set
(
idxArg
,
dst
.
rows
);
idxArg
=
kernelCol
.
set
(
idxArg
,
ocl
::
KernelArg
::
PtrReadOnly
(
kernelY
.
getUMat
(
ACCESS_READ
)));
return
kernelCol
.
run
(
2
,
globalsize
,
localsize
,
sync
);
}
static
bool
ocl_sepFilter2D
(
InputArray
_src
,
OutputArray
_dst
,
int
ddepth
,
InputArray
_kernelX
,
InputArray
_kernelY
,
Point
anchor
,
double
delta
,
int
borderType
)
{
if
(
abs
(
delta
)
>
FLT_MIN
)
return
false
;
int
type
=
_src
.
type
();
if
((
CV_8UC1
!=
type
)
&&
(
CV_8UC4
==
type
)
&&
(
CV_32FC1
!=
type
)
&&
(
CV_32FC4
==
type
))
return
false
;
int
cn
=
CV_MAT_CN
(
type
);
Mat
kernelX
=
_kernelX
.
getMat
().
reshape
(
1
,
1
);
if
(
1
!=
(
kernelX
.
cols
%
2
))
return
false
;
Mat
kernelY
=
_kernelY
.
getMat
().
reshape
(
1
,
1
);
if
(
1
!=
(
kernelY
.
cols
%
2
))
return
false
;
int
sdepth
=
CV_MAT_DEPTH
(
type
);
if
(
anchor
.
x
<
0
)
anchor
.
x
=
kernelX
.
cols
>>
1
;
if
(
anchor
.
y
<
0
)
anchor
.
y
=
kernelY
.
cols
>>
1
;
if
(
ddepth
<
0
)
ddepth
=
sdepth
;
else
if
(
ddepth
!=
sdepth
)
return
false
;
UMat
src
=
_src
.
getUMat
();
Size
srcWholeSize
;
Point
srcOffset
;
src
.
locateROI
(
srcWholeSize
,
srcOffset
);
if
(
(
0
!=
(
srcOffset
.
x
%
4
))
||
(
0
!=
(
src
.
cols
%
4
))
||
(
0
!=
((
src
.
step
/
src
.
elemSize
())
%
4
))
)
{
return
false
;
}
Size
srcSize
=
src
.
size
();
Size
bufSize
(
srcSize
.
width
,
srcSize
.
height
+
kernelY
.
cols
-
1
);
UMat
buf
;
buf
.
create
(
bufSize
,
CV_MAKETYPE
(
CV_32F
,
cn
));
if
(
!
ocl_sepRowFilter2D
(
src
,
buf
,
kernelX
,
anchor
.
x
,
borderType
,
true
))
return
false
;
_dst
.
create
(
srcSize
,
CV_MAKETYPE
(
ddepth
,
cn
));
UMat
dst
=
_dst
.
getUMat
();
return
ocl_sepColFilter2D
(
buf
,
dst
,
kernelY
,
anchor
.
y
,
true
);
}
}
cv
::
Ptr
<
cv
::
BaseFilter
>
cv
::
getLinearFilter
(
int
srcType
,
int
dstType
,
...
...
@@ -3481,6 +3722,10 @@ void cv::sepFilter2D( InputArray _src, OutputArray _dst, int ddepth,
InputArray
_kernelX
,
InputArray
_kernelY
,
Point
anchor
,
double
delta
,
int
borderType
)
{
bool
use_opencl
=
ocl
::
useOpenCL
()
&&
_dst
.
isUMat
();
if
(
use_opencl
&&
ocl_sepFilter2D
(
_src
,
_dst
,
ddepth
,
_kernelX
,
_kernelY
,
anchor
,
delta
,
borderType
))
return
;
Mat
src
=
_src
.
getMat
(),
kernelX
=
_kernelX
.
getMat
(),
kernelY
=
_kernelY
.
getMat
();
if
(
ddepth
<
0
)
...
...
modules/imgproc/src/opencl/filterSepCol.cl
0 → 100644
View file @
0913dd7f
//
License
Agreement
//
For
Open
Source
Computer
Vision
Library
//
//
Copyright
(
C
)
2010-2012,
Institute
Of
Software
Chinese
Academy
Of
Science,
all
rights
reserved.
//
Copyright
(
C
)
2010-2012,
Advanced
Micro
Devices,
Inc.,
all
rights
reserved.
//
Third
party
copyrights
are
property
of
their
respective
owners.
//
//
@Authors
//
Niko
Li,
newlife20080214@gmail.com
//
//
Redistribution
and
use
in
source
and
binary
forms,
with
or
without
modification,
//
are
permitted
provided
that
the
following
conditions
are
met:
//
//
*
Redistribution
's
of
source
code
must
retain
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer.
//
//
*
Redistribution
's
in
binary
form
must
reproduce
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer
in
the
documentation
//
and/or
other
materials
provided
with
the
distribution.
//
//
*
The
name
of
the
copyright
holders
may
not
be
used
to
endorse
or
promote
products
//
derived
from
this
software
without
specific
prior
written
permission.
//
//
This
software
is
provided
by
the
copyright
holders
and
contributors
as
is
and
//
any
express
or
implied
warranties,
including,
but
not
limited
to,
the
implied
//
warranties
of
merchantability
and
fitness
for
a
particular
purpose
are
disclaimed.
//
In
no
event
shall
the
Intel
Corporation
or
contributors
be
liable
for
any
direct,
//
indirect,
incidental,
special,
exemplary,
or
consequential
damages
//
(
including,
but
not
limited
to,
procurement
of
substitute
goods
or
services
;
//
loss
of
use,
data,
or
profits
; or business interruption) however caused
//
and
on
any
theory
of
liability,
whether
in
contract,
strict
liability,
//
or
tort
(
including
negligence
or
otherwise
)
arising
in
any
way
out
of
//
the
use
of
this
software,
even
if
advised
of
the
possibility
of
such
damage.
//
//
#
define
READ_TIMES_COL
((
2*
(
RADIUSY+LSIZE1
)
-1
)
/LSIZE1
)
#
define
RADIUS
1
#
if
CN
==1
#
define
ALIGN
(((
RADIUS
)
+3
)
>>2<<2
)
#
elif
CN==2
#
define
ALIGN
(((
RADIUS
)
+1
)
>>1<<1
)
#
elif
CN==3
#
define
ALIGN
(((
RADIUS
)
+3
)
>>2<<2
)
#
elif
CN==4
#
define
ALIGN
(
RADIUS
)
#
define
READ_TIMES_ROW
((
2*
(
RADIUS+LSIZE0
)
-1
)
/LSIZE0
)
#
endif
/**********************************************************************************
These
kernels
are
written
for
separable
filters
such
as
Sobel,
Scharr,
GaussianBlur.
Now
(
6/29/2011
)
the
kernels
only
support
8U
data
type
and
the
anchor
of
the
convovle
kernel
must
be
in
the
center.
ROI
is
not
supported
either.
Each
kernels
read
4
elements
(
not
4
pixels
)
,
save
them
to
LDS
and
read
the
data
needed
from
LDS
to
calculate
the
result.
The
length
of
the
convovle
kernel
supported
is
only
related
to
the
MAX
size
of
LDS,
which
is
HW
related.
Niko
6/29/2011
The
info
above
maybe
obsolete.
***********************************************************************************
/
__kernel
__attribute__
((
reqd_work_group_size
(
LSIZE0,LSIZE1,1
)))
void
col_filter
(
__global
const
GENTYPE_SRC
*
restrict
src,
const
int
src_step_in_pixel,
const
int
src_whole_cols,
const
int
src_whole_rows,
__global
GENTYPE_DST
*
dst,
const
int
dst_offset_in_pixel,
const
int
dst_step_in_pixel,
const
int
dst_cols,
const
int
dst_rows,
__constant
float
*
mat_kernel
__attribute__
((
max_constant_size
(
4*
(
2*RADIUSY+1
)))))
{
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
int
l_x
=
get_local_id
(
0
)
;
int
l_y
=
get_local_id
(
1
)
;
int
start_addr
=
mad24
(
y,
src_step_in_pixel,
x
)
;
int
end_addr
=
mad24
(
src_whole_rows
-
1
,
src_step_in_pixel,
src_whole_cols
)
;
int
i
;
GENTYPE_SRC
sum,
temp[READ_TIMES_COL]
;
__local
GENTYPE_SRC
LDS_DAT[LSIZE1
*
READ_TIMES_COL][LSIZE0
+
1]
;
//read
pixels
from
src
for
(
i
=
0
;i<READ_TIMES_COL;i++)
{
int
current_addr
=
start_addr+i*LSIZE1*src_step_in_pixel
;
current_addr
=
current_addr
<
end_addr
?
current_addr
:
0
;
temp[i]
=
src[current_addr]
;
}
//save
pixels
to
lds
for
(
i
=
0
;i<READ_TIMES_COL;i++)
{
LDS_DAT[l_y+i*LSIZE1][l_x]
=
temp[i]
;
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
//read
pixels
from
lds
and
calculate
the
result
sum
=
LDS_DAT[l_y+RADIUSY][l_x]*mat_kernel[RADIUSY]
;
for
(
i=1
;i<=RADIUSY;i++)
{
temp[0]=LDS_DAT[l_y+RADIUSY-i][l_x]
;
temp[1]=LDS_DAT[l_y+RADIUSY+i][l_x]
;
sum
+=
temp[0]
*
mat_kernel[RADIUSY-i]+temp[1]
*
mat_kernel[RADIUSY+i]
;
}
//write
the
result
to
dst
if
((
x<dst_cols
)
&
(
y<dst_rows
))
{
start_addr
=
mad24
(
y,
dst_step_in_pixel,
x
+
dst_offset_in_pixel
)
;
dst[start_addr]
=
convert_to_DST
(
sum
)
;
}
}
modules/imgproc/src/opencl/filterSepRow.cl
0 → 100644
View file @
0913dd7f
//
License
Agreement
//
For
Open
Source
Computer
Vision
Library
//
//
Copyright
(
C
)
2010-2012,
Institute
Of
Software
Chinese
Academy
Of
Science,
all
rights
reserved.
//
Copyright
(
C
)
2010-2012,
Advanced
Micro
Devices,
Inc.,
all
rights
reserved.
//
Third
party
copyrights
are
property
of
their
respective
owners.
//
//
@Authors
//
Niko
Li,
newlife20080214@gmail.com
//
//
Redistribution
and
use
in
source
and
binary
forms,
with
or
without
modification,
//
are
permitted
provided
that
the
following
conditions
are
met:
//
//
*
Redistribution
's
of
source
code
must
retain
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer.
//
//
*
Redistribution
's
in
binary
form
must
reproduce
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer
in
the
documentation
//
and/or
other
materials
provided
with
the
distribution.
//
//
*
The
name
of
the
copyright
holders
may
not
be
used
to
endorse
or
promote
products
//
derived
from
this
software
without
specific
prior
written
permission.
//
//
This
software
is
provided
by
the
copyright
holders
and
contributors
as
is
and
//
any
express
or
implied
warranties,
including,
but
not
limited
to,
the
implied
//
warranties
of
merchantability
and
fitness
for
a
particular
purpose
are
disclaimed.
//
In
no
event
shall
the
Intel
Corporation
or
contributors
be
liable
for
any
direct,
//
indirect,
incidental,
special,
exemplary,
or
consequential
damages
//
(
including,
but
not
limited
to,
procurement
of
substitute
goods
or
services
;
//
loss
of
use,
data,
or
profits
; or business interruption) however caused
//
and
on
any
theory
of
liability,
whether
in
contract,
strict
liability,
//
or
tort
(
including
negligence
or
otherwise
)
arising
in
any
way
out
of
//
the
use
of
this
software,
even
if
advised
of
the
possibility
of
such
damage.
//
//
#
define
READ_TIMES_ROW
((
2*
(
RADIUSX+LSIZE0
)
-1
)
/LSIZE0
)
//for
c4
only
#
define
READ_TIMES_COL
((
2*
(
RADIUSY+LSIZE1
)
-1
)
/LSIZE1
)
//#pragma
OPENCL
EXTENSION
cl_amd_printf
:
enable
#
define
RADIUS
1
#
if
CN
==1
#
define
ALIGN
(((
RADIUS
)
+3
)
>>2<<2
)
#
elif
CN==2
#
define
ALIGN
(((
RADIUS
)
+1
)
>>1<<1
)
#
elif
CN==3
#
define
ALIGN
(((
RADIUS
)
+3
)
>>2<<2
)
#
elif
CN==4
#
define
ALIGN
(
RADIUS
)
#
endif
#
ifdef
BORDER_REPLICATE
//BORDER_REPLICATE:
aaaaaa|abcdefgh|hhhhhhh
#
define
ADDR_L
(
i,
l_edge,
r_edge
)
((
i
)
<
(
l_edge
)
?
(
l_edge
)
:
(
i
))
#
define
ADDR_R
(
i,
r_edge,
addr
)
((
i
)
>=
(
r_edge
)
?
(
r_edge
)
-1
:
(
addr
))
#
endif
#
ifdef
BORDER_REFLECT
//BORDER_REFLECT:
fedcba|abcdefgh|hgfedcb
#
define
ADDR_L
(
i,
l_edge,
r_edge
)
((
i
)
<
(
l_edge
)
?
-
(
i
)
-1
:
(
i
))
#
define
ADDR_R
(
i,
r_edge,
addr
)
((
i
)
>=
(
r_edge
)
?
-
(
i
)
-1+
((
r_edge
)
<<1
)
:
(
addr
))
#
endif
#
ifdef
BORDER_REFLECT_101
//BORDER_REFLECT_101:
gfedcb|abcdefgh|gfedcba
#
define
ADDR_L
(
i,
l_edge,
r_edge
)
((
i
)
<
(
l_edge
)
?
-
(
i
)
:
(
i
))
#
define
ADDR_R
(
i,
r_edge,
addr
)
((
i
)
>=
(
r_edge
)
?
-
(
i
)
-2+
((
r_edge
)
<<1
)
:
(
addr
))
#
endif
//blur
function
does
not
support
BORDER_WRAP
#
ifdef
BORDER_WRAP
//BORDER_WRAP:
cdefgh|abcdefgh|abcdefg
#
define
ADDR_L
(
i,
l_edge,
r_edge
)
((
i
)
<
(
l_edge
)
?
(
i
)
+
(
r_edge
)
:
(
i
))
#
define
ADDR_R
(
i,
r_edge,
addr
)
((
i
)
>=
(
r_edge
)
?
(
i
)
-
(
r_edge
)
:
(
addr
))
#
endif
#
ifdef
EXTRA_EXTRAPOLATION
//
border
>
src
image
size
#
ifdef
BORDER_CONSTANT
#
define
ELEM
(
i,l_edge,r_edge,elem1,elem2
)
(
i
)
<
(
l_edge
)
| (i) >= (r_edge) ? (elem1) : (elem2)
#elif defined BORDER_REPLICATE
#define EXTRAPOLATE(t, minT, maxT) \
{ \
t = max(min(t, (maxT) - 1), (minT)); \
}
#elif defined BORDER_WRAP
#define EXTRAPOLATE(x, minT, maxT) \
{ \
if (t < (minT)) \
t -= ((t - (maxT) + 1) / (maxT)) * (maxT); \
if (t >= (maxT)) \
t %= (maxT); \
}
#elif defined(BORDER_REFLECT) || defined(BORDER_REFLECT_101)
#define EXTRAPOLATE_(t, minT, maxT, delta) \
{ \
if ((maxT) - (minT) == 1) \
t = (minT); \
else \
do \
{ \
if (t < (minT)) \
t = (minT) - (t - (minT)) - 1 + delta; \
else \
t = (maxT) - 1 - (t - (maxT)) - delta; \
} \
while (t >= (maxT) || t < (minT)); \
\
}
#ifdef BORDER_REFLECT
#define EXTRAPOLATE(t, minT, maxT) EXTRAPOLATE_(t, minT, maxT, 0)
#elif defined(BORDER_REFLECT_101)
#define EXTRAPOLATE(t, minT, maxT) EXTRAPOLATE_(t, minT, maxT, 1)
#endif
#else
#error No extrapolation method
#endif //BORDER_....
#else //EXTRA_EXTRAPOLATION
#ifdef BORDER_CONSTANT
#define ELEM(i,l_edge,r_edge,elem1,elem2) (i)<(l_edge) |
(
i
)
>=
(
r_edge
)
?
(
elem1
)
:
(
elem2
)
#
else
#
define
EXTRAPOLATE
(
t
,
minT,
maxT
)
\
{
\
int
_delta
=
t
-
(
minT
)
; \
_delta
=
ADDR_L
(
_delta,
0
,
(
maxT
)
-
(
minT
))
; \
_delta
=
ADDR_R
(
_delta,
(
maxT
)
-
(
minT
)
,
_delta
)
; \
t
=
_delta
+
(
minT
)
; \
}
#
endif
//BORDER_CONSTANT
#
endif
//EXTRA_EXTRAPOLATION
/**********************************************************************************
These
kernels
are
written
for
separable
filters
such
as
Sobel,
Scharr,
GaussianBlur.
Now
(
6/29/2011
)
the
kernels
only
support
8U
data
type
and
the
anchor
of
the
convovle
kernel
must
be
in
the
center.
ROI
is
not
supported
either.
For
channels
=1,2,4,
each
kernels
read
4
elements
(
not
4
pixels
)
,
and
for
channels
=3,
the
kernel
read
4
pixels,
save
them
to
LDS
and
read
the
data
needed
from
LDS
to
calculate
the
result.
The
length
of
the
convovle
kernel
supported
is
related
to
the
LSIZE0
and
the
MAX
size
of
LDS,
which
is
HW
related.
For
channels
=
1
,
3
the
RADIUS
is
no
more
than
LSIZE0*2
For
channels
=
2
,
the
RADIUS
is
no
more
than
LSIZE0
For
channels
=
4
,
arbitary
RADIUS
is
supported
unless
the
LDS
is
not
enough
Niko
6/29/2011
The
info
above
maybe
obsolete.
***********************************************************************************
/
__kernel
__attribute__
((
reqd_work_group_size
(
LSIZE0,LSIZE1,1
)))
void
row_filter_C1_D0
(
__global
uchar
*
restrict
src,
int
src_step_in_pixel,
int
src_offset_x,
int
src_offset_y,
int
src_cols,
int
src_rows,
int
src_whole_cols,
int
src_whole_rows,
__global
float
*
dst,
int
dst_step_in_pixel,
int
dst_cols,
int
dst_rows,
int
radiusy,
__constant
float
*
mat_kernel
__attribute__
((
max_constant_size
(
4*
(
2*RADIUSX+1
)))))
{
int
x
=
get_global_id
(
0
)
<<2
;
int
y
=
get_global_id
(
1
)
;
int
l_x
=
get_local_id
(
0
)
;
int
l_y
=
get_local_id
(
1
)
;
int
start_x
=
x+src_offset_x
-
RADIUSX
&
0xfffffffc
;
int
offset
=
src_offset_x
-
RADIUSX
&
3
;
int
start_y
=
y
+
src_offset_y
-
radiusy
;
int
start_addr
=
mad24
(
start_y,
src_step_in_pixel,
start_x
)
;
int
i
;
float4
sum
;
uchar4
temp[READ_TIMES_ROW]
;
__local
uchar4
LDS_DAT[LSIZE1][READ_TIMES_ROW*LSIZE0+1]
;
#
ifdef
BORDER_CONSTANT
int
end_addr
=
mad24
(
src_whole_rows
-
1
,
src_step_in_pixel,
src_whole_cols
)
;
//
read
pixels
from
src
for
(
i
=
0
; i < READ_TIMES_ROW; i++)
{
int
current_addr
=
start_addr+i*LSIZE0*4
;
current_addr
=
((
current_addr
<
end_addr
)
&&
(
current_addr
>
0
))
?
current_addr
:
0
;
temp[i]
=
*
(
__global
uchar4*
)
&src[current_addr]
;
}
//
judge
if
read
out
of
boundary
#
ifdef
BORDER_ISOLATED
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
temp[i].x
=
ELEM
(
start_x+i*LSIZE0*4,
src_offset_x,
src_offset_x
+
src_cols,
0
,
temp[i].x
)
;
temp[i].y
=
ELEM
(
start_x+i*LSIZE0*4+1,
src_offset_x,
src_offset_x
+
src_cols,
0
,
temp[i].y
)
;
temp[i].z
=
ELEM
(
start_x+i*LSIZE0*4+2,
src_offset_x,
src_offset_x
+
src_cols,
0
,
temp[i].z
)
;
temp[i].w
=
ELEM
(
start_x+i*LSIZE0*4+3,
src_offset_x,
src_offset_x
+
src_cols,
0
,
temp[i].w
)
;
temp[i]
=
ELEM
(
start_y,
src_offset_y,
src_offset_y
+
src_rows,
(
uchar4
)
0
,
temp[i]
)
;
}
#
else
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
temp[i].x
=
ELEM
(
start_x+i*LSIZE0*4,
0
,
src_whole_cols,
0
,
temp[i].x
)
;
temp[i].y
=
ELEM
(
start_x+i*LSIZE0*4+1,
0
,
src_whole_cols,
0
,
temp[i].y
)
;
temp[i].z
=
ELEM
(
start_x+i*LSIZE0*4+2,
0
,
src_whole_cols,
0
,
temp[i].z
)
;
temp[i].w
=
ELEM
(
start_x+i*LSIZE0*4+3,
0
,
src_whole_cols,
0
,
temp[i].w
)
;
temp[i]
=
ELEM
(
start_y,
0
,
src_whole_rows,
(
uchar4
)
0
,
temp[i]
)
;
}
#
endif
#
else
//
BORDER_CONSTANT
#
ifdef
BORDER_ISOLATED
int
not_all_in_range
=
(
start_x<src_offset_x
)
| (start_x + READ_TIMES_ROW*LSIZE0*4+4>src_offset_x + src_cols)|
(
start_y<src_offset_y
)
| (start_y >= src_offset_y + src_rows);
#else
int not_all_in_range = (start_x<0) |
(
start_x
+
READ_TIMES_ROW*LSIZE0*4+4>src_whole_cols
)
| (start_y<0) |
(
start_y
>=
src_whole_rows
)
;
#
endif
int4
index[READ_TIMES_ROW]
;
int4
addr
;
int
s_y
;
if
(
not_all_in_range
)
{
//
judge
if
read
out
of
boundary
for
(
i
=
0
; i < READ_TIMES_ROW; i++)
{
index[i]
=
(
int4
)(
start_x+i*LSIZE0*4
)
+
(
int4
)(
0
,
1
,
2
,
3
)
;
#
ifdef
BORDER_ISOLATED
EXTRAPOLATE
(
index[i].x,
src_offset_x,
src_offset_x
+
src_cols
)
;
EXTRAPOLATE
(
index[i].y,
src_offset_x,
src_offset_x
+
src_cols
)
;
EXTRAPOLATE
(
index[i].z,
src_offset_x,
src_offset_x
+
src_cols
)
;
EXTRAPOLATE
(
index[i].w,
src_offset_x,
src_offset_x
+
src_cols
)
;
#
else
EXTRAPOLATE
(
index[i].x,
0
,
src_whole_cols
)
;
EXTRAPOLATE
(
index[i].y,
0
,
src_whole_cols
)
;
EXTRAPOLATE
(
index[i].z,
0
,
src_whole_cols
)
;
EXTRAPOLATE
(
index[i].w,
0
,
src_whole_cols
)
;
#
endif
}
s_y
=
start_y
;
#
ifdef
BORDER_ISOLATED
EXTRAPOLATE
(
s_y,
src_offset_y,
src_offset_y
+
src_rows
)
;
#
else
EXTRAPOLATE
(
s_y,
0
,
src_whole_rows
)
;
#
endif
//
read
pixels
from
src
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
addr
=
mad24
((
int4
)
s_y,
(
int4
)
src_step_in_pixel,index[i]
)
;
temp[i].x
=
src[addr.x]
;
temp[i].y
=
src[addr.y]
;
temp[i].z
=
src[addr.z]
;
temp[i].w
=
src[addr.w]
;
}
}
else
{
//
read
pixels
from
src
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
temp[i]
=
*
(
__global
uchar4*
)
&src[start_addr+i*LSIZE0*4]
;
}
#
endif
//BORDER_CONSTANT
//
save
pixels
to
lds
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
LDS_DAT[l_y][l_x+i*LSIZE0]=temp[i]
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
//
read
pixels
from
lds
and
calculate
the
result
sum
=convert_float4
(
vload4
(
0
,
(
__local
uchar*
)
&LDS_DAT[l_y][l_x]+RADIUSX+offset
))
*mat_kernel[RADIUSX]
;
for
(
i=1
; i<=RADIUSX; i++)
{
temp[0]
=
vload4
(
0
,
(
__local
uchar*
)
&LDS_DAT[l_y][l_x]
+
RADIUSX
+
offset
-
i
)
;
temp[1]
=
vload4
(
0
,
(
__local
uchar*
)
&LDS_DAT[l_y][l_x]
+
RADIUSX
+
offset
+
i
)
;
sum
+=
convert_float4
(
temp[0]
)
*
mat_kernel[RADIUSX-i]
+
convert_float4
(
temp[1]
)
*
mat_kernel[RADIUSX+i]
;
}
start_addr
=
mad24
(
y,dst_step_in_pixel,x
)
;
//
write
the
result
to
dst
if
((
x+3<dst_cols
)
&
(
y<dst_rows
))
*
(
__global
float4*
)
&dst[start_addr]
=
sum
;
else
if
((
x+2<dst_cols
)
&&
(
y<dst_rows
))
{
dst[start_addr]
=
sum.x
;
dst[start_addr+1]
=
sum.y
;
dst[start_addr+2]
=
sum.z
;
}
else
if
((
x+1<dst_cols
)
&&
(
y<dst_rows
))
{
dst[start_addr]
=
sum.x
;
dst[start_addr+1]
=
sum.y
;
}
else
if
(
x<dst_cols
&&
y<dst_rows
)
dst[start_addr]
=
sum.x
;
}
__kernel
__attribute__
((
reqd_work_group_size
(
LSIZE0,LSIZE1,1
)))
void
row_filter_C4_D0
(
__global
uchar4
*
restrict
src,
int
src_step_in_pixel,
int
src_offset_x,
int
src_offset_y,
int
src_cols,
int
src_rows,
int
src_whole_cols,
int
src_whole_rows,
__global
float4
*
dst,
int
dst_step_in_pixel,
int
dst_cols,
int
dst_rows,
int
radiusy,
__constant
float
*
mat_kernel
__attribute__
((
max_constant_size
(
4*
(
2*RADIUSX+1
)))))
{
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
int
l_x
=
get_local_id
(
0
)
;
int
l_y
=
get_local_id
(
1
)
;
int
start_x
=
x+src_offset_x-RADIUSX
;
int
start_y
=
y+src_offset_y-radiusy
;
int
start_addr
=
mad24
(
start_y,src_step_in_pixel,start_x
)
;
int
i
;
float4
sum
;
uchar4
temp[READ_TIMES_ROW]
;
__local
uchar4
LDS_DAT[LSIZE1][READ_TIMES_ROW*LSIZE0+1]
;
#
ifdef
BORDER_CONSTANT
int
end_addr
=
mad24
(
src_whole_rows
-
1
,
src_step_in_pixel,src_whole_cols
)
;
//
read
pixels
from
src
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
int
current_addr
=
start_addr+i*LSIZE0
;
current_addr
=
((
current_addr
<
end_addr
)
&&
(
current_addr
>
0
))
?
current_addr
:
0
;
temp[i]
=
src[current_addr]
;
}
//judge
if
read
out
of
boundary
#
ifdef
BORDER_ISOLATED
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
temp[i]=
ELEM
(
start_x+i*LSIZE0,
src_offset_x,
src_offset_x
+
src_cols,
(
uchar4
)
0
,
temp[i]
)
;
temp[i]=
ELEM
(
start_y,
src_offset_y,
src_offset_y
+
src_rows,
(
uchar4
)
0
,
temp[i]
)
;
}
#
else
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
temp[i]=
ELEM
(
start_x+i*LSIZE0,
0
,
src_whole_cols,
(
uchar4
)
0
,
temp[i]
)
;
temp[i]=
ELEM
(
start_y,
0
,
src_whole_rows,
(
uchar4
)
0
,
temp[i]
)
;
}
#
endif
#
else
int
index[READ_TIMES_ROW]
;
int
s_x,s_y
;
//
judge
if
read
out
of
boundary
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
s_x
=
start_x+i*LSIZE0
;
s_y
=
start_y
;
#
ifdef
BORDER_ISOLATED
EXTRAPOLATE
(
s_x,
src_offset_x,
src_offset_x
+
src_cols
)
;
EXTRAPOLATE
(
s_y,
src_offset_y,
src_offset_y
+
src_rows
)
;
#
else
EXTRAPOLATE
(
s_x,
0
,
src_whole_cols
)
;
EXTRAPOLATE
(
s_y,
0
,
src_whole_rows
)
;
#
endif
index[i]=mad24
(
s_y,
src_step_in_pixel,
s_x
)
;
}
//read
pixels
from
src
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
temp[i]
=
src[index[i]]
;
#
endif
//BORDER_CONSTANT
//save
pixels
to
lds
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
LDS_DAT[l_y][l_x+i*LSIZE0]=temp[i]
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
//read
pixels
from
lds
and
calculate
the
result
sum
=convert_float4
(
LDS_DAT[l_y][l_x+RADIUSX]
)
*mat_kernel[RADIUSX]
;
for
(
i=1
; i<=RADIUSX; i++)
{
temp[0]=LDS_DAT[l_y][l_x+RADIUSX-i]
;
temp[1]=LDS_DAT[l_y][l_x+RADIUSX+i]
;
sum
+=
convert_float4
(
temp[0]
)
*mat_kernel[RADIUSX-i]+convert_float4
(
temp[1]
)
*mat_kernel[RADIUSX+i]
;
}
//write
the
result
to
dst
if
(
x<dst_cols
&&
y<dst_rows
)
{
start_addr
=
mad24
(
y,dst_step_in_pixel,x
)
;
dst[start_addr]
=
sum
;
}
}
__kernel
__attribute__
((
reqd_work_group_size
(
LSIZE0,LSIZE1,1
)))
void
row_filter_C1_D5
(
__global
float
*
restrict
src,
int
src_step_in_pixel,
int
src_offset_x,
int
src_offset_y,
int
src_cols,
int
src_rows,
int
src_whole_cols,
int
src_whole_rows,
__global
float
*
dst,
int
dst_step_in_pixel,
int
dst_cols,
int
dst_rows,
int
radiusy,
__constant
float
*
mat_kernel
__attribute__
((
max_constant_size
(
4*
(
2*RADIUSX+1
)))))
{
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
int
l_x
=
get_local_id
(
0
)
;
int
l_y
=
get_local_id
(
1
)
;
int
start_x
=
x+src_offset_x-RADIUSX
;
int
start_y
=
y+src_offset_y-radiusy
;
int
start_addr
=
mad24
(
start_y,src_step_in_pixel,start_x
)
;
int
i
;
float
sum
;
float
temp[READ_TIMES_ROW]
;
__local
float
LDS_DAT[LSIZE1][READ_TIMES_ROW*LSIZE0+1]
;
#
ifdef
BORDER_CONSTANT
int
end_addr
=
mad24
(
src_whole_rows
-
1
,
src_step_in_pixel,src_whole_cols
)
;
//
read
pixels
from
src
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
int
current_addr
=
start_addr+i*LSIZE0
;
current_addr
=
((
current_addr
<
end_addr
)
&&
(
current_addr
>
0
))
?
current_addr
:
0
;
temp[i]
=
src[current_addr]
;
}
//
judge
if
read
out
of
boundary
#
ifdef
BORDER_ISOLATED
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
temp[i]=
ELEM
(
start_x+i*LSIZE0,
src_offset_x,
src_offset_x
+
src_cols,
(
float
)
0
,
temp[i]
)
;
temp[i]=
ELEM
(
start_y,
src_offset_y,
src_offset_y
+
src_rows,
(
float
)
0
,
temp[i]
)
;
}
#
else
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
temp[i]=
ELEM
(
start_x+i*LSIZE0,
0
,
src_whole_cols,
(
float
)
0
,
temp[i]
)
;
temp[i]=
ELEM
(
start_y,
0
,
src_whole_rows,
(
float
)
0
,
temp[i]
)
;
}
#
endif
#
else
//
BORDER_CONSTANT
int
index[READ_TIMES_ROW]
;
int
s_x,s_y
;
//
judge
if
read
out
of
boundary
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
s_x
=
start_x
+
i*LSIZE0,
s_y
=
start_y
;
#
ifdef
BORDER_ISOLATED
EXTRAPOLATE
(
s_x,
src_offset_x,
src_offset_x
+
src_cols
)
;
EXTRAPOLATE
(
s_y,
src_offset_y,
src_offset_y
+
src_rows
)
;
#
else
EXTRAPOLATE
(
s_x,
0
,
src_whole_cols
)
;
EXTRAPOLATE
(
s_y,
0
,
src_whole_rows
)
;
#
endif
index[i]=mad24
(
s_y,
src_step_in_pixel,
s_x
)
;
}
//
read
pixels
from
src
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
temp[i]
=
src[index[i]]
;
#
endif//
BORDER_CONSTANT
//save
pixels
to
lds
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
LDS_DAT[l_y][l_x+i*LSIZE0]=temp[i]
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
//
read
pixels
from
lds
and
calculate
the
result
sum
=LDS_DAT[l_y][l_x+RADIUSX]*mat_kernel[RADIUSX]
;
for
(
i=1
; i<=RADIUSX; i++)
{
temp[0]=LDS_DAT[l_y][l_x+RADIUSX-i]
;
temp[1]=LDS_DAT[l_y][l_x+RADIUSX+i]
;
sum
+=
temp[0]*mat_kernel[RADIUSX-i]+temp[1]*mat_kernel[RADIUSX+i]
;
}
//
write
the
result
to
dst
if
(
x<dst_cols
&&
y<dst_rows
)
{
start_addr
=
mad24
(
y,dst_step_in_pixel,x
)
;
dst[start_addr]
=
sum
;
}
}
__kernel
__attribute__
((
reqd_work_group_size
(
LSIZE0,LSIZE1,1
)))
void
row_filter_C4_D5
(
__global
float4
*
restrict
src,
int
src_step_in_pixel,
int
src_offset_x,
int
src_offset_y,
int
src_cols,
int
src_rows,
int
src_whole_cols,
int
src_whole_rows,
__global
float4
*
dst,
int
dst_step_in_pixel,
int
dst_cols,
int
dst_rows,
int
radiusy,
__constant
float
*
mat_kernel
__attribute__
((
max_constant_size
(
4*
(
2*RADIUSX+1
)))))
{
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
int
l_x
=
get_local_id
(
0
)
;
int
l_y
=
get_local_id
(
1
)
;
int
start_x
=
x+src_offset_x-RADIUSX
;
int
start_y
=
y+src_offset_y-radiusy
;
int
start_addr
=
mad24
(
start_y,src_step_in_pixel,start_x
)
;
int
i
;
float4
sum
;
float4
temp[READ_TIMES_ROW]
;
__local
float4
LDS_DAT[LSIZE1][READ_TIMES_ROW*LSIZE0+1]
;
#
ifdef
BORDER_CONSTANT
int
end_addr
=
mad24
(
src_whole_rows
-
1
,
src_step_in_pixel,src_whole_cols
)
;
//
read
pixels
from
src
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
int
current_addr
=
start_addr+i*LSIZE0
;
current_addr
=
((
current_addr
<
end_addr
)
&&
(
current_addr
>
0
))
?
current_addr
:
0
;
temp[i]
=
src[current_addr]
;
}
//
judge
if
read
out
of
boundary
#
ifdef
BORDER_ISOLATED
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
temp[i]=
ELEM
(
start_x+i*LSIZE0,
src_offset_x,
src_offset_x
+
src_cols,
(
float4
)
0
,
temp[i]
)
;
temp[i]=
ELEM
(
start_y,
src_offset_y,
src_offset_y
+
src_rows,
(
float4
)
0
,
temp[i]
)
;
}
#
else
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
temp[i]=
ELEM
(
start_x+i*LSIZE0,
0
,
src_whole_cols,
(
float4
)
0
,
temp[i]
)
;
temp[i]=
ELEM
(
start_y,
0
,
src_whole_rows,
(
float4
)
0
,
temp[i]
)
;
}
#
endif
#
else
int
index[READ_TIMES_ROW]
;
int
s_x,s_y
;
//
judge
if
read
out
of
boundary
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
s_x
=
start_x
+
i*LSIZE0,
s_y
=
start_y
;
#
ifdef
BORDER_ISOLATED
EXTRAPOLATE
(
s_x,
src_offset_x,
src_offset_x
+
src_cols
)
;
EXTRAPOLATE
(
s_y,
src_offset_y,
src_offset_y
+
src_rows
)
;
#
else
EXTRAPOLATE
(
s_x,
0
,
src_whole_cols
)
;
EXTRAPOLATE
(
s_y,
0
,
src_whole_rows
)
;
#
endif
index[i]=mad24
(
s_y,src_step_in_pixel,s_x
)
;
}
//
read
pixels
from
src
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
temp[i]
=
src[index[i]]
;
#
endif
//
save
pixels
to
lds
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
LDS_DAT[l_y][l_x+i*LSIZE0]=temp[i]
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
//
read
pixels
from
lds
and
calculate
the
result
sum
=LDS_DAT[l_y][l_x+RADIUSX]*mat_kernel[RADIUSX]
;
for
(
i=1
; i<=RADIUSX; i++)
{
temp[0]=LDS_DAT[l_y][l_x+RADIUSX-i]
;
temp[1]=LDS_DAT[l_y][l_x+RADIUSX+i]
;
sum
+=
temp[0]*mat_kernel[RADIUSX-i]+temp[1]*mat_kernel[RADIUSX+i]
;
}
//
write
the
result
to
dst
if
(
x<dst_cols
&&
y<dst_rows
)
{
start_addr
=
mad24
(
y,dst_step_in_pixel,x
)
;
dst[start_addr]
=
sum
;
}
}
modules/imgproc/test/ocl/test_sepfilter2D.cpp
0 → 100644
View file @
0913dd7f
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/ts/ocl_test.hpp"
#ifdef HAVE_OPENCL
namespace
cvtest
{
namespace
ocl
{
/////////////////////////////////////////////////////////////////////////////////////////////////
// sepFilter2D
PARAM_TEST_CASE
(
SepFilter2D
,
MatDepth
,
Channels
,
BorderType
,
bool
,
bool
)
{
static
const
int
kernelMinSize
=
2
;
static
const
int
kernelMaxSize
=
10
;
int
type
;
Point
anchor
;
int
borderType
;
bool
useRoi
;
Mat
kernelX
,
kernelY
;
TEST_DECLARE_INPUT_PARAMETER
(
src
)
TEST_DECLARE_OUTPUT_PARAMETER
(
dst
)
virtual
void
SetUp
()
{
type
=
CV_MAKE_TYPE
(
GET_PARAM
(
0
),
GET_PARAM
(
1
));
borderType
=
GET_PARAM
(
2
)
|
(
GET_PARAM
(
3
)
?
BORDER_ISOLATED
:
0
);
useRoi
=
GET_PARAM
(
4
);
}
void
random_roi
()
{
Size
ksize
=
randomSize
(
kernelMinSize
,
kernelMaxSize
);
if
(
1
!=
(
ksize
.
width
%
2
))
ksize
.
width
++
;
if
(
1
!=
(
ksize
.
height
%
2
))
ksize
.
height
++
;
Mat
temp
=
randomMat
(
Size
(
ksize
.
width
,
1
),
CV_MAKE_TYPE
(
CV_32F
,
1
),
-
MAX_VALUE
,
MAX_VALUE
);
cv
::
normalize
(
temp
,
kernelX
,
1.0
,
0.0
,
NORM_L1
);
temp
=
randomMat
(
Size
(
1
,
ksize
.
height
),
CV_MAKE_TYPE
(
CV_32F
,
1
),
-
MAX_VALUE
,
MAX_VALUE
);
cv
::
normalize
(
temp
,
kernelY
,
1.0
,
0.0
,
NORM_L1
);
Size
roiSize
=
randomSize
(
ksize
.
width
,
MAX_VALUE
,
ksize
.
height
,
MAX_VALUE
);
int
rest
=
roiSize
.
width
%
4
;
if
(
0
!=
rest
)
roiSize
.
width
+=
(
4
-
rest
);
Border
srcBorder
=
randomBorder
(
0
,
useRoi
?
MAX_VALUE
:
0
);
rest
=
srcBorder
.
lef
%
4
;
if
(
0
!=
rest
)
srcBorder
.
lef
+=
(
4
-
rest
);
rest
=
srcBorder
.
rig
%
4
;
if
(
0
!=
rest
)
srcBorder
.
rig
+=
(
4
-
rest
);
randomSubMat
(
src
,
src_roi
,
roiSize
,
srcBorder
,
type
,
-
MAX_VALUE
,
MAX_VALUE
);
Border
dstBorder
=
randomBorder
(
0
,
useRoi
?
MAX_VALUE
:
0
);
randomSubMat
(
dst
,
dst_roi
,
roiSize
,
dstBorder
,
type
,
-
MAX_VALUE
,
MAX_VALUE
);
anchor
.
x
=
-
1
;
anchor
.
y
=
-
1
;
UMAT_UPLOAD_INPUT_PARAMETER
(
src
)
UMAT_UPLOAD_OUTPUT_PARAMETER
(
dst
)
}
void
Near
(
double
threshold
=
0.0
)
{
OCL_EXPECT_MATS_NEAR
(
dst
,
threshold
);
}
};
OCL_TEST_P
(
SepFilter2D
,
Mat
)
{
for
(
int
j
=
0
;
j
<
test_loop_times
;
j
++
)
{
random_roi
();
OCL_OFF
(
cv
::
sepFilter2D
(
src_roi
,
dst_roi
,
-
1
,
kernelX
,
kernelY
,
anchor
,
0.0
,
borderType
));
OCL_ON
(
cv
::
sepFilter2D
(
usrc_roi
,
udst_roi
,
-
1
,
kernelX
,
kernelY
,
anchor
,
0.0
,
borderType
));
Near
(
1.0
);
}
}
OCL_INSTANTIATE_TEST_CASE_P
(
ImageProc
,
SepFilter2D
,
Combine
(
Values
(
CV_8U
,
CV_32F
),
Values
(
1
,
4
),
Values
(
(
BorderType
)
BORDER_CONSTANT
,
(
BorderType
)
BORDER_REPLICATE
,
(
BorderType
)
BORDER_REFLECT
,
(
BorderType
)
BORDER_REFLECT_101
),
Bool
(),
// BORDER_ISOLATED
Bool
()
// ROI
)
);
}
}
// namespace cvtest::ocl
#endif // HAVE_OPENCL
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment