Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
089de14e
Commit
089de14e
authored
Sep 16, 2012
by
Andrey Kamaev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Fix copy-paste bug in AVX optimization of haar
parent
f32eb05e
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
424 additions
and
352 deletions
+424
-352
haar.cpp
modules/objdetect/src/haar.cpp
+424
-352
No files found.
modules/objdetect/src/haar.cpp
View file @
089de14e
...
...
@@ -45,7 +45,6 @@
#include <stdio.h>
#include "opencv2/core/internal.hpp"
#if CV_SSE2 || CV_SSE3
# if !CV_SSE4_1 && !CV_SSE4_2
# define _mm_blendv_pd(a, b, m) _mm_xor_pd(a, _mm_and_pd(_mm_xor_pd(b, a), m))
...
...
@@ -53,13 +52,13 @@
# endif
#endif
#
if
CV_AVX
#
define CV_HAAR_USE_AVX 1
#
else
#
if
CV_SSE2 || CV_SSE3
#
define CV_HAAR_USE_SSE 1
#
endif
#
endif
#
if
CV_AVX
# define CV_HAAR_USE_AVX 1
#else
#
if
CV_SSE2 || CV_SSE3
# define CV_HAAR_USE_SSE 1
# endif
#endif
/* these settings affect the quality of detection: change with care */
#define CV_ADJUST_FEATURES 1
...
...
@@ -76,8 +75,7 @@ typedef struct CvHidHaarFeature
float
weight
;
}
rect
[
CV_HAAR_FEATURE_MAX
];
}
CvHidHaarFeature
;
}
CvHidHaarFeature
;
typedef
struct
CvHidHaarTreeNode
...
...
@@ -86,8 +84,7 @@ typedef struct CvHidHaarTreeNode
float
threshold
;
int
left
;
int
right
;
}
CvHidHaarTreeNode
;
}
CvHidHaarTreeNode
;
typedef
struct
CvHidHaarClassifier
...
...
@@ -96,8 +93,7 @@ typedef struct CvHidHaarClassifier
//CvHaarFeature* orig_feature;
CvHidHaarTreeNode
*
node
;
float
*
alpha
;
}
CvHidHaarClassifier
;
}
CvHidHaarClassifier
;
typedef
struct
CvHidHaarStageClassifier
...
...
@@ -110,11 +106,10 @@ typedef struct CvHidHaarStageClassifier
struct
CvHidHaarStageClassifier
*
next
;
struct
CvHidHaarStageClassifier
*
child
;
struct
CvHidHaarStageClassifier
*
parent
;
}
CvHidHaarStageClassifier
;
}
CvHidHaarStageClassifier
;
struct
CvHidHaarClassifierCascade
typedef
struct
CvHidHaarClassifierCascade
{
int
count
;
int
isStumpBased
;
...
...
@@ -127,7 +122,7 @@ struct CvHidHaarClassifierCascade
sumtype
*
p0
,
*
p1
,
*
p2
,
*
p3
;
void
**
ipp_stages
;
};
}
CvHidHaarClassifierCascade
;
const
int
icv_object_win_border
=
1
;
...
...
@@ -634,21 +629,21 @@ cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* _cascade,
}
//AVX version icvEvalHidHaarClassifier. Process 8 CvHidHaarClassifiers per call. Check AVX support before invocation!!
//
AVX version icvEvalHidHaarClassifier. Process 8 CvHidHaarClassifiers per call. Check AVX support before invocation!!
#ifdef CV_HAAR_USE_AVX
CV_INLINE
double
icvEvalHidHaarClassifierAVX
(
CvHidHaarClassifier
*
classifier
,
double
variance_norm_factor
,
size_t
p_offset
)
{
int
CV_DECL_ALIGNED
(
32
)
idxV
[
8
]
=
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
char
flags
[
8
]
=
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
u
char
flags
[
8
]
=
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
CvHidHaarTreeNode
*
nodes
[
8
];
double
res
=
0
;
char
exitConditionFlag
=
0
;
u
char
exitConditionFlag
=
0
;
for
(;;)
{
float
CV_DECL_ALIGNED
(
32
)
tmp
[
8
]
=
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
nodes
[
0
]
=
classifier
->
node
+
idxV
[
0
];
float
CV_DECL_ALIGNED
(
32
)
tmp
[
8
]
=
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
nodes
[
0
]
=
(
classifier
+
0
)
->
node
+
idxV
[
0
];
nodes
[
1
]
=
(
classifier
+
1
)
->
node
+
idxV
[
1
];
nodes
[
2
]
=
(
classifier
+
2
)
->
node
+
idxV
[
2
];
nodes
[
3
]
=
(
classifier
+
3
)
->
node
+
idxV
[
3
];
...
...
@@ -658,46 +653,79 @@ double icvEvalHidHaarClassifierAVX( CvHidHaarClassifier* classifier,
nodes
[
7
]
=
(
classifier
+
7
)
->
node
+
idxV
[
7
];
__m256
t
=
_mm256_set1_ps
(
variance_norm_factor
);
t
=
_mm256_mul_ps
(
t
,
_mm256_set_ps
(
nodes
[
7
]
->
threshold
,
nodes
[
6
]
->
threshold
,
nodes
[
5
]
->
threshold
,
nodes
[
4
]
->
threshold
,
nodes
[
3
]
->
threshold
,
nodes
[
2
]
->
threshold
,
nodes
[
1
]
->
threshold
,
nodes
[
0
]
->
threshold
));
__m256
offset
=
_mm256_set_ps
(
calc_sum
(
nodes
[
7
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
6
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
5
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
4
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
3
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
2
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
1
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
0
]
->
feature
.
rect
[
0
],
p_offset
));
__m256
weight
=
_mm256_set_ps
(
nodes
[
7
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
6
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
5
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
4
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
3
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
2
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
1
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
0
]
->
feature
.
rect
[
0
].
weight
);
__m256
sum
=
_mm256_mul_ps
(
offset
,
weight
);
t
=
_mm256_mul_ps
(
t
,
_mm256_set_ps
(
nodes
[
7
]
->
threshold
,
nodes
[
6
]
->
threshold
,
nodes
[
5
]
->
threshold
,
nodes
[
4
]
->
threshold
,
nodes
[
3
]
->
threshold
,
nodes
[
2
]
->
threshold
,
nodes
[
1
]
->
threshold
,
nodes
[
0
]
->
threshold
));
__m256
offset
=
_mm256_set_ps
(
calc_sum
(
nodes
[
7
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
6
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
5
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
4
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
3
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
2
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
1
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
0
]
->
feature
.
rect
[
0
],
p_offset
));
__m256
weight
=
_mm256_set_ps
(
nodes
[
7
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
6
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
5
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
4
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
3
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
2
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
1
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
0
]
->
feature
.
rect
[
0
].
weight
);
offset
=
_mm256_set_ps
(
calc_sum
(
nodes
[
7
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
6
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
5
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
4
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
3
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
2
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
1
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
0
]
->
feature
.
rect
[
1
],
p_offset
));
weight
=
_mm256_set_ps
(
nodes
[
7
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
6
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
5
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
4
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
3
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
2
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
1
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
0
]
->
feature
.
rect
[
1
].
weight
);
__m256
sum
=
_mm256_mul_ps
(
offset
,
weight
);
sum
=
_mm256_add_ps
(
sum
,
_mm256_mul_ps
(
offset
,
weight
));
offset
=
_mm256_set_ps
(
calc_sum
(
nodes
[
7
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
6
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
5
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
4
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
3
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
2
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
1
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
0
]
->
feature
.
rect
[
1
],
p_offset
));
weight
=
_mm256_set_ps
(
nodes
[
7
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
6
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
5
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
4
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
3
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
2
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
1
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
0
]
->
feature
.
rect
[
1
].
weight
);
sum
=
_mm256_add_ps
(
sum
,
_mm256_mul_ps
(
offset
,
weight
));
if
(
nodes
[
0
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
0
]
=
calc_sum
(
nodes
[
0
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
0
]
->
feature
.
rect
[
2
].
weight
;
tmp
[
0
]
=
calc_sum
(
nodes
[
0
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
0
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
1
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
1
]
=
calc_sum
(
nodes
[
1
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
1
]
->
feature
.
rect
[
2
].
weight
;
tmp
[
1
]
=
calc_sum
(
nodes
[
1
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
1
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
2
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
2
]
=
calc_sum
(
nodes
[
2
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
2
]
->
feature
.
rect
[
2
].
weight
;
tmp
[
2
]
=
calc_sum
(
nodes
[
2
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
2
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
3
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
3
]
=
calc_sum
(
nodes
[
3
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
3
]
->
feature
.
rect
[
2
].
weight
;
tmp
[
3
]
=
calc_sum
(
nodes
[
3
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
3
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
4
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
4
]
=
calc_sum
(
nodes
[
4
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
4
]
->
feature
.
rect
[
2
].
weight
;
tmp
[
4
]
=
calc_sum
(
nodes
[
4
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
4
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
5
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
5
]
=
calc_sum
(
nodes
[
5
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
5
]
->
feature
.
rect
[
2
].
weight
;
tmp
[
5
]
=
calc_sum
(
nodes
[
5
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
5
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
6
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
6
]
=
calc_sum
(
nodes
[
6
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
6
]
->
feature
.
rect
[
2
].
weight
;
tmp
[
6
]
=
calc_sum
(
nodes
[
6
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
6
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
7
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
7
]
=
calc_sum
(
nodes
[
7
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
7
]
->
feature
.
rect
[
2
].
weight
;
tmp
[
7
]
=
calc_sum
(
nodes
[
7
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
7
]
->
feature
.
rect
[
2
].
weight
;
sum
=
_mm256_add_ps
(
sum
,
_mm256_load_ps
(
tmp
));
__m256
left
=
_mm256_set_ps
(
nodes
[
7
]
->
left
,
nodes
[
6
]
->
left
,
nodes
[
5
]
->
left
,
nodes
[
4
]
->
left
,
nodes
[
3
]
->
left
,
nodes
[
2
]
->
left
,
nodes
[
1
]
->
left
,
nodes
[
0
]
->
left
);
__m256
left
=
_mm256_set_ps
(
nodes
[
7
]
->
left
,
nodes
[
6
]
->
left
,
nodes
[
5
]
->
left
,
nodes
[
4
]
->
left
,
nodes
[
3
]
->
left
,
nodes
[
2
]
->
left
,
nodes
[
1
]
->
left
,
nodes
[
0
]
->
left
);
__m256
right
=
_mm256_set_ps
(
nodes
[
7
]
->
right
,
nodes
[
6
]
->
right
,
nodes
[
5
]
->
right
,
nodes
[
4
]
->
right
,
nodes
[
3
]
->
right
,
nodes
[
2
]
->
right
,
nodes
[
1
]
->
right
,
nodes
[
0
]
->
right
);
_mm256_store_si256
((
__m256i
*
)
idxV
,
_mm256_cvttps_epi32
(
_mm256_blendv_ps
(
right
,
left
,
_mm256_cmp_ps
(
sum
,
t
,
_CMP_LT_OQ
))));
_mm256_store_si256
((
__m256i
*
)
idxV
,
_mm256_cvttps_epi32
(
_mm256_blendv_ps
(
right
,
left
,
_mm256_cmp_ps
(
sum
,
t
,
_CMP_LT_OQ
))));
for
(
int
i
=
0
;
i
<
8
;
i
++
)
{
...
...
@@ -706,17 +734,17 @@ double icvEvalHidHaarClassifierAVX( CvHidHaarClassifier* classifier,
if
(
!
flags
[
i
])
{
exitConditionFlag
++
;
flags
[
i
]
=
1
;
res
+=
((
classifier
+
i
)
->
alpha
[
-
idxV
[
i
]])
;
flags
[
i
]
=
1
;
res
+=
(
classifier
+
i
)
->
alpha
[
-
idxV
[
i
]]
;
}
idxV
[
i
]
=
0
;
}
}
if
(
exitConditionFlag
==
8
)
if
(
exitConditionFlag
==
8
)
return
res
;
}
}
#endif
#endif
//CV_HAAR_USE_AVX
CV_INLINE
double
icvEvalHidHaarClassifier
(
CvHidHaarClassifier
*
classifier
,
...
...
@@ -778,18 +806,16 @@ static int
cvRunHaarClassifierCascadeSum
(
const
CvHaarClassifierCascade
*
_cascade
,
CvPoint
pt
,
double
&
stage_sum
,
int
start_stage
)
{
#ifdef CV_HAAR_USE_AVX
bool
haveAVX
=
false
;
if
(
cv
::
checkHardwareSupport
(
CV_CPU_AVX
))
if
(
__xgetbv
()
&
0x6
)
// Check if the OS will save the YMM registers
{
haveAVX
=
true
;
}
#else
#ifdef CV_HAAR_USE_SSE
bool
haveSSE2
=
cv
::
checkHardwareSupport
(
CV_CPU_SSE2
);
#endif
#endif
#ifdef CV_HAAR_USE_AVX
bool
haveAVX
=
false
;
if
(
cv
::
checkHardwareSupport
(
CV_CPU_AVX
))
if
(
__xgetbv
()
&
0x6
)
// Check if the OS will save the YMM registers
haveAVX
=
true
;
#else
# ifdef CV_HAAR_USE_SSE
bool
haveSSE2
=
cv
::
checkHardwareSupport
(
CV_CPU_SSE2
);
# endif
#endif
int
p_offset
,
pq_offset
;
int
i
,
j
;
...
...
@@ -828,19 +854,20 @@ cvRunHaarClassifierCascadeSum( const CvHaarClassifierCascade* _cascade,
while
(
ptr
)
{
stage_sum
=
0.0
;
j
=
0
;
#ifdef CV_HAAR_USE_AVX
#ifdef CV_HAAR_USE_AVX
if
(
haveAVX
)
{
for
(
;
j
<
cascade
->
stage_classifier
[
i
].
count
-
8
;
j
+=
8
)
for
(
;
j
<
=
ptr
->
count
-
8
;
j
+=
8
)
{
stage_sum
+=
icvEvalHidHaarClassifierAVX
(
cascade
->
stage_classifier
[
i
].
classifier
+
j
,
ptr
->
classifier
+
j
,
variance_norm_factor
,
p_offset
);
}
}
#endif
for
(
j
=
0
;
j
<
ptr
->
count
;
j
++
)
#endif
for
(
;
j
<
ptr
->
count
;
j
++
)
{
stage_sum
+=
icvEvalHidHaarClassifier
(
ptr
->
classifier
+
j
,
variance_norm_factor
,
p_offset
);
}
...
...
@@ -860,283 +887,369 @@ cvRunHaarClassifierCascadeSum( const CvHaarClassifierCascade* _cascade,
}
else
if
(
cascade
->
isStumpBased
)
{
#ifdef CV_HAAR_USE_AVX
if
(
haveAVX
)
#ifdef CV_HAAR_USE_AVX
if
(
haveAVX
)
{
CvHidHaarClassifier
*
classifiers
[
8
];
CvHidHaarTreeNode
*
nodes
[
8
];
for
(
i
=
start_stage
;
i
<
cascade
->
count
;
i
++
)
{
CvHidHaarClassifier
*
classifiers
[
8
];
CvHidHaarTreeNode
*
nodes
[
8
];
for
(
i
=
start_stage
;
i
<
cascade
->
count
;
i
++
)
stage_sum
=
0.0
;
j
=
0
;
float
CV_DECL_ALIGNED
(
32
)
buf
[
8
];
if
(
cascade
->
stage_classifier
[
i
].
two_rects
)
{
stage_sum
=
0.0
;
j
=
0
;
float
CV_DECL_ALIGNED
(
32
)
buf
[
8
];
if
(
cascade
->
stage_classifier
[
i
].
two_rects
)
for
(
;
j
<=
cascade
->
stage_classifier
[
i
].
count
-
8
;
j
+=
8
)
{
for
(
;
j
<=
cascade
->
stage_classifier
[
i
].
count
-
8
;
j
+=
8
)
{
//__m256 stage_sumPart = _mm256_setzero_ps();
classifiers
[
0
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
;
nodes
[
0
]
=
classifiers
[
0
]
->
node
;
classifiers
[
1
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
1
;
nodes
[
1
]
=
classifiers
[
1
]
->
node
;
classifiers
[
2
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
2
;
nodes
[
2
]
=
classifiers
[
2
]
->
node
;
classifiers
[
3
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
3
;
nodes
[
3
]
=
classifiers
[
3
]
->
node
;
classifiers
[
4
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
4
;
nodes
[
4
]
=
classifiers
[
4
]
->
node
;
classifiers
[
5
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
5
;
nodes
[
5
]
=
classifiers
[
5
]
->
node
;
classifiers
[
6
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
6
;
nodes
[
6
]
=
classifiers
[
6
]
->
node
;
classifiers
[
7
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
7
;
nodes
[
7
]
=
classifiers
[
7
]
->
node
;
__m256
t
=
_mm256_set1_ps
(
variance_norm_factor
);
t
=
_mm256_mul_ps
(
t
,
_mm256_set_ps
(
nodes
[
7
]
->
threshold
,
nodes
[
6
]
->
threshold
,
nodes
[
5
]
->
threshold
,
nodes
[
4
]
->
threshold
,
nodes
[
3
]
->
threshold
,
nodes
[
2
]
->
threshold
,
nodes
[
1
]
->
threshold
,
nodes
[
0
]
->
threshold
));
__m256
offset
=
_mm256_set_ps
(
calc_sum
(
nodes
[
7
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
6
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
5
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
4
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
3
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
2
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
1
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
0
]
->
feature
.
rect
[
0
],
p_offset
));
__m256
weight
=
_mm256_set_ps
(
nodes
[
7
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
6
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
5
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
4
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
3
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
2
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
1
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
0
]
->
feature
.
rect
[
0
].
weight
);
__m256
sum
=
_mm256_mul_ps
(
offset
,
weight
);
offset
=
_mm256_set_ps
(
calc_sum
(
nodes
[
7
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
6
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
5
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
4
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
3
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
2
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
1
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
0
]
->
feature
.
rect
[
1
],
p_offset
));
weight
=
_mm256_set_ps
(
nodes
[
7
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
6
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
5
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
4
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
3
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
2
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
1
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
0
]
->
feature
.
rect
[
1
].
weight
);
sum
=
_mm256_add_ps
(
sum
,
_mm256_mul_ps
(
offset
,
weight
));
__m256
alpha0
=
_mm256_set_ps
(
classifiers
[
7
]
->
alpha
[
0
],
classifiers
[
6
]
->
alpha
[
0
],
classifiers
[
5
]
->
alpha
[
0
],
classifiers
[
4
]
->
alpha
[
0
],
classifiers
[
3
]
->
alpha
[
0
],
classifiers
[
2
]
->
alpha
[
0
],
classifiers
[
1
]
->
alpha
[
0
],
classifiers
[
0
]
->
alpha
[
0
]);
__m256
alpha1
=
_mm256_set_ps
(
classifiers
[
7
]
->
alpha
[
1
],
classifiers
[
6
]
->
alpha
[
1
],
classifiers
[
5
]
->
alpha
[
1
],
classifiers
[
4
]
->
alpha
[
1
],
classifiers
[
3
]
->
alpha
[
1
],
classifiers
[
2
]
->
alpha
[
1
],
classifiers
[
1
]
->
alpha
[
1
],
classifiers
[
0
]
->
alpha
[
1
]);
_mm256_store_ps
(
buf
,
_mm256_blendv_ps
(
alpha0
,
alpha1
,
_mm256_cmp_ps
(
t
,
sum
,
_CMP_LE_OQ
)));
stage_sum
+=
(
buf
[
0
]
+
buf
[
1
]
+
buf
[
2
]
+
buf
[
3
]
+
buf
[
4
]
+
buf
[
5
]
+
buf
[
6
]
+
buf
[
7
]);
}
classifiers
[
0
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
;
nodes
[
0
]
=
classifiers
[
0
]
->
node
;
classifiers
[
1
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
1
;
nodes
[
1
]
=
classifiers
[
1
]
->
node
;
classifiers
[
2
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
2
;
nodes
[
2
]
=
classifiers
[
2
]
->
node
;
classifiers
[
3
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
3
;
nodes
[
3
]
=
classifiers
[
3
]
->
node
;
classifiers
[
4
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
4
;
nodes
[
4
]
=
classifiers
[
4
]
->
node
;
classifiers
[
5
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
5
;
nodes
[
5
]
=
classifiers
[
5
]
->
node
;
classifiers
[
6
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
6
;
nodes
[
6
]
=
classifiers
[
6
]
->
node
;
classifiers
[
7
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
7
;
nodes
[
7
]
=
classifiers
[
7
]
->
node
;
__m256
t
=
_mm256_set1_ps
(
variance_norm_factor
);
t
=
_mm256_mul_ps
(
t
,
_mm256_set_ps
(
nodes
[
7
]
->
threshold
,
nodes
[
6
]
->
threshold
,
nodes
[
5
]
->
threshold
,
nodes
[
4
]
->
threshold
,
nodes
[
3
]
->
threshold
,
nodes
[
2
]
->
threshold
,
nodes
[
1
]
->
threshold
,
nodes
[
0
]
->
threshold
));
__m256
offset
=
_mm256_set_ps
(
calc_sum
(
nodes
[
7
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
6
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
5
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
4
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
3
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
2
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
1
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
0
]
->
feature
.
rect
[
0
],
p_offset
));
__m256
weight
=
_mm256_set_ps
(
nodes
[
7
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
6
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
5
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
4
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
3
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
2
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
1
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
0
]
->
feature
.
rect
[
0
].
weight
);
__m256
sum
=
_mm256_mul_ps
(
offset
,
weight
);
offset
=
_mm256_set_ps
(
calc_sum
(
nodes
[
7
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
6
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
5
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
4
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
3
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
2
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
1
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
0
]
->
feature
.
rect
[
1
],
p_offset
));
weight
=
_mm256_set_ps
(
nodes
[
7
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
6
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
5
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
4
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
3
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
2
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
1
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
0
]
->
feature
.
rect
[
1
].
weight
);
sum
=
_mm256_add_ps
(
sum
,
_mm256_mul_ps
(
offset
,
weight
));
__m256
alpha0
=
_mm256_set_ps
(
classifiers
[
7
]
->
alpha
[
0
],
classifiers
[
6
]
->
alpha
[
0
],
classifiers
[
5
]
->
alpha
[
0
],
classifiers
[
4
]
->
alpha
[
0
],
classifiers
[
3
]
->
alpha
[
0
],
classifiers
[
2
]
->
alpha
[
0
],
classifiers
[
1
]
->
alpha
[
0
],
classifiers
[
0
]
->
alpha
[
0
]);
__m256
alpha1
=
_mm256_set_ps
(
classifiers
[
7
]
->
alpha
[
1
],
classifiers
[
6
]
->
alpha
[
1
],
classifiers
[
5
]
->
alpha
[
1
],
classifiers
[
4
]
->
alpha
[
1
],
classifiers
[
3
]
->
alpha
[
1
],
classifiers
[
2
]
->
alpha
[
1
],
classifiers
[
1
]
->
alpha
[
1
],
classifiers
[
0
]
->
alpha
[
1
]);
_mm256_store_ps
(
buf
,
_mm256_blendv_ps
(
alpha0
,
alpha1
,
_mm256_cmp_ps
(
t
,
sum
,
_CMP_LE_OQ
)));
stage_sum
+=
(
buf
[
0
]
+
buf
[
1
]
+
buf
[
2
]
+
buf
[
3
]
+
buf
[
4
]
+
buf
[
5
]
+
buf
[
6
]
+
buf
[
7
]);
}
for
(
;
j
<
cascade
->
stage_classifier
[
i
].
count
;
j
++
)
{
CvHidHaarClassifier
*
classifier
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
;
CvHidHaarTreeNode
*
node
=
classifier
->
node
;
for
(
;
j
<
cascade
->
stage_classifier
[
i
].
count
;
j
++
)
{
CvHidHaarClassifier
*
classifier
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
;
CvHidHaarTreeNode
*
node
=
classifier
->
node
;
double
t
=
node
->
threshold
*
variance_norm_factor
;
double
sum
=
calc_sum
(
node
->
feature
.
rect
[
0
],
p_offset
)
*
node
->
feature
.
rect
[
0
].
weight
;
sum
+=
calc_sum
(
node
->
feature
.
rect
[
1
],
p_offset
)
*
node
->
feature
.
rect
[
1
].
weight
;
stage_sum
+=
classifier
->
alpha
[
sum
>=
t
];
}
double
t
=
node
->
threshold
*
variance_norm_factor
;
double
sum
=
calc_sum
(
node
->
feature
.
rect
[
0
],
p_offset
)
*
node
->
feature
.
rect
[
0
].
weight
;
sum
+=
calc_sum
(
node
->
feature
.
rect
[
1
],
p_offset
)
*
node
->
feature
.
rect
[
1
].
weight
;
stage_sum
+=
classifier
->
alpha
[
sum
>=
t
];
}
else
}
else
{
for
(
;
j
<=
(
cascade
->
stage_classifier
[
i
].
count
)
-
8
;
j
+=
8
)
{
for
(
;
j
<=
(
cascade
->
stage_classifier
[
i
].
count
)
-
8
;
j
+=
8
)
{
float
CV_DECL_ALIGNED
(
32
)
tmp
[
8
]
=
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
classifiers
[
0
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
;
nodes
[
0
]
=
classifiers
[
0
]
->
node
;
classifiers
[
1
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
1
;
nodes
[
1
]
=
classifiers
[
1
]
->
node
;
classifiers
[
2
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
2
;
nodes
[
2
]
=
classifiers
[
2
]
->
node
;
classifiers
[
3
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
3
;
nodes
[
3
]
=
classifiers
[
3
]
->
node
;
classifiers
[
4
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
4
;
nodes
[
4
]
=
classifiers
[
4
]
->
node
;
classifiers
[
5
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
5
;
nodes
[
5
]
=
classifiers
[
5
]
->
node
;
classifiers
[
6
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
6
;
nodes
[
6
]
=
classifiers
[
6
]
->
node
;
classifiers
[
7
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
7
;
nodes
[
7
]
=
classifiers
[
7
]
->
node
;
__m256
t
=
_mm256_set1_ps
(
variance_norm_factor
);
t
=
_mm256_mul_ps
(
t
,
_mm256_set_ps
(
nodes
[
7
]
->
threshold
,
nodes
[
6
]
->
threshold
,
nodes
[
5
]
->
threshold
,
nodes
[
4
]
->
threshold
,
nodes
[
3
]
->
threshold
,
nodes
[
2
]
->
threshold
,
nodes
[
1
]
->
threshold
,
nodes
[
0
]
->
threshold
));
__m256
offset
=
_mm256_set_ps
(
calc_sum
(
nodes
[
7
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
6
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
5
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
4
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
3
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
2
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
1
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
0
]
->
feature
.
rect
[
0
],
p_offset
));
__m256
weight
=
_mm256_set_ps
(
nodes
[
7
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
6
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
5
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
4
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
3
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
2
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
1
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
0
]
->
feature
.
rect
[
0
].
weight
);
__m256
sum
=
_mm256_mul_ps
(
offset
,
weight
);
offset
=
_mm256_set_ps
(
calc_sum
(
nodes
[
7
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
6
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
5
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
4
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
3
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
2
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
1
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
0
]
->
feature
.
rect
[
1
],
p_offset
));
weight
=
_mm256_set_ps
(
nodes
[
7
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
6
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
5
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
4
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
3
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
2
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
1
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
0
]
->
feature
.
rect
[
1
].
weight
);
sum
=
_mm256_add_ps
(
sum
,
_mm256_mul_ps
(
offset
,
weight
));
if
(
nodes
[
0
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
0
]
=
calc_sum
(
nodes
[
0
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
0
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
1
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
1
]
=
calc_sum
(
nodes
[
1
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
1
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
2
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
2
]
=
calc_sum
(
nodes
[
2
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
2
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
3
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
3
]
=
calc_sum
(
nodes
[
3
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
3
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
4
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
4
]
=
calc_sum
(
nodes
[
4
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
4
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
5
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
5
]
=
calc_sum
(
nodes
[
5
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
5
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
6
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
6
]
=
calc_sum
(
nodes
[
6
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
6
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
7
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
7
]
=
calc_sum
(
nodes
[
7
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
7
]
->
feature
.
rect
[
2
].
weight
;
sum
=
_mm256_add_ps
(
sum
,
_mm256_load_ps
(
tmp
));
__m256
alpha0
=
_mm256_set_ps
(
classifiers
[
7
]
->
alpha
[
0
],
classifiers
[
6
]
->
alpha
[
0
],
classifiers
[
5
]
->
alpha
[
0
],
classifiers
[
4
]
->
alpha
[
0
],
classifiers
[
3
]
->
alpha
[
0
],
classifiers
[
2
]
->
alpha
[
0
],
classifiers
[
1
]
->
alpha
[
0
],
classifiers
[
0
]
->
alpha
[
0
]);
__m256
alpha1
=
_mm256_set_ps
(
classifiers
[
7
]
->
alpha
[
1
],
classifiers
[
6
]
->
alpha
[
1
],
classifiers
[
5
]
->
alpha
[
1
],
classifiers
[
4
]
->
alpha
[
1
],
classifiers
[
3
]
->
alpha
[
1
],
classifiers
[
2
]
->
alpha
[
1
],
classifiers
[
1
]
->
alpha
[
1
],
classifiers
[
0
]
->
alpha
[
1
]);
__m256
outBuf
=
_mm256_blendv_ps
(
alpha0
,
alpha1
,
_mm256_cmp_ps
(
t
,
sum
,
_CMP_LE_OQ
));
outBuf
=
_mm256_hadd_ps
(
outBuf
,
outBuf
);
outBuf
=
_mm256_hadd_ps
(
outBuf
,
outBuf
);
_mm256_store_ps
(
buf
,
outBuf
);
stage_sum
+=
(
buf
[
0
]
+
buf
[
4
]);
//(buf[0]+buf[1]+buf[2]+buf[3]+buf[4]+buf[5]+buf[6]+buf[7]);
}
float
CV_DECL_ALIGNED
(
32
)
tmp
[
8
]
=
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
classifiers
[
0
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
;
nodes
[
0
]
=
classifiers
[
0
]
->
node
;
classifiers
[
1
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
1
;
nodes
[
1
]
=
classifiers
[
1
]
->
node
;
classifiers
[
2
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
2
;
nodes
[
2
]
=
classifiers
[
2
]
->
node
;
classifiers
[
3
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
3
;
nodes
[
3
]
=
classifiers
[
3
]
->
node
;
classifiers
[
4
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
4
;
nodes
[
4
]
=
classifiers
[
4
]
->
node
;
classifiers
[
5
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
5
;
nodes
[
5
]
=
classifiers
[
5
]
->
node
;
classifiers
[
6
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
6
;
nodes
[
6
]
=
classifiers
[
6
]
->
node
;
classifiers
[
7
]
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
+
7
;
nodes
[
7
]
=
classifiers
[
7
]
->
node
;
__m256
t
=
_mm256_set1_ps
(
variance_norm_factor
);
t
=
_mm256_mul_ps
(
t
,
_mm256_set_ps
(
nodes
[
7
]
->
threshold
,
nodes
[
6
]
->
threshold
,
nodes
[
5
]
->
threshold
,
nodes
[
4
]
->
threshold
,
nodes
[
3
]
->
threshold
,
nodes
[
2
]
->
threshold
,
nodes
[
1
]
->
threshold
,
nodes
[
0
]
->
threshold
));
__m256
offset
=
_mm256_set_ps
(
calc_sum
(
nodes
[
7
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
6
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
5
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
4
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
3
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
2
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
1
]
->
feature
.
rect
[
0
],
p_offset
),
calc_sum
(
nodes
[
0
]
->
feature
.
rect
[
0
],
p_offset
));
__m256
weight
=
_mm256_set_ps
(
nodes
[
7
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
6
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
5
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
4
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
3
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
2
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
1
]
->
feature
.
rect
[
0
].
weight
,
nodes
[
0
]
->
feature
.
rect
[
0
].
weight
);
__m256
sum
=
_mm256_mul_ps
(
offset
,
weight
);
offset
=
_mm256_set_ps
(
calc_sum
(
nodes
[
7
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
6
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
5
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
4
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
3
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
2
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
1
]
->
feature
.
rect
[
1
],
p_offset
),
calc_sum
(
nodes
[
0
]
->
feature
.
rect
[
1
],
p_offset
));
weight
=
_mm256_set_ps
(
nodes
[
7
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
6
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
5
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
4
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
3
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
2
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
1
]
->
feature
.
rect
[
1
].
weight
,
nodes
[
0
]
->
feature
.
rect
[
1
].
weight
);
sum
=
_mm256_add_ps
(
sum
,
_mm256_mul_ps
(
offset
,
weight
));
if
(
nodes
[
0
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
0
]
=
calc_sum
(
nodes
[
0
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
0
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
1
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
1
]
=
calc_sum
(
nodes
[
1
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
1
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
2
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
2
]
=
calc_sum
(
nodes
[
2
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
2
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
3
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
3
]
=
calc_sum
(
nodes
[
3
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
3
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
4
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
4
]
=
calc_sum
(
nodes
[
4
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
4
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
5
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
5
]
=
calc_sum
(
nodes
[
5
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
5
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
6
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
6
]
=
calc_sum
(
nodes
[
6
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
6
]
->
feature
.
rect
[
2
].
weight
;
if
(
nodes
[
7
]
->
feature
.
rect
[
2
].
p0
)
tmp
[
7
]
=
calc_sum
(
nodes
[
7
]
->
feature
.
rect
[
2
],
p_offset
)
*
nodes
[
7
]
->
feature
.
rect
[
2
].
weight
;
sum
=
_mm256_add_ps
(
sum
,
_mm256_load_ps
(
tmp
));
__m256
alpha0
=
_mm256_set_ps
(
classifiers
[
7
]
->
alpha
[
0
],
classifiers
[
6
]
->
alpha
[
0
],
classifiers
[
5
]
->
alpha
[
0
],
classifiers
[
4
]
->
alpha
[
0
],
classifiers
[
3
]
->
alpha
[
0
],
classifiers
[
2
]
->
alpha
[
0
],
classifiers
[
1
]
->
alpha
[
0
],
classifiers
[
0
]
->
alpha
[
0
]);
__m256
alpha1
=
_mm256_set_ps
(
classifiers
[
7
]
->
alpha
[
1
],
classifiers
[
6
]
->
alpha
[
1
],
classifiers
[
5
]
->
alpha
[
1
],
classifiers
[
4
]
->
alpha
[
1
],
classifiers
[
3
]
->
alpha
[
1
],
classifiers
[
2
]
->
alpha
[
1
],
classifiers
[
1
]
->
alpha
[
1
],
classifiers
[
0
]
->
alpha
[
1
]);
__m256
outBuf
=
_mm256_blendv_ps
(
alpha0
,
alpha1
,
_mm256_cmp_ps
(
t
,
sum
,
_CMP_LE_OQ
));
outBuf
=
_mm256_hadd_ps
(
outBuf
,
outBuf
);
outBuf
=
_mm256_hadd_ps
(
outBuf
,
outBuf
);
_mm256_store_ps
(
buf
,
outBuf
);
stage_sum
+=
(
buf
[
0
]
+
buf
[
4
]);
}
for
(
;
j
<
cascade
->
stage_classifier
[
i
].
count
;
j
++
)
{
CvHidHaarClassifier
*
classifier
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
;
CvHidHaarTreeNode
*
node
=
classifier
->
node
;
double
t
=
node
->
threshold
*
variance_norm_factor
;
double
sum
=
calc_sum
(
node
->
feature
.
rect
[
0
],
p_offset
)
*
node
->
feature
.
rect
[
0
].
weight
;
sum
+=
calc_sum
(
node
->
feature
.
rect
[
1
],
p_offset
)
*
node
->
feature
.
rect
[
1
].
weight
;
if
(
node
->
feature
.
rect
[
2
].
p0
)
sum
+=
calc_sum
(
node
->
feature
.
rect
[
2
],
p_offset
)
*
node
->
feature
.
rect
[
2
].
weight
;
stage_sum
+=
classifier
->
alpha
[
sum
>=
t
];
}
for
(
;
j
<
cascade
->
stage_classifier
[
i
].
count
;
j
++
)
{
CvHidHaarClassifier
*
classifier
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
;
CvHidHaarTreeNode
*
node
=
classifier
->
node
;
double
t
=
node
->
threshold
*
variance_norm_factor
;
double
sum
=
calc_sum
(
node
->
feature
.
rect
[
0
],
p_offset
)
*
node
->
feature
.
rect
[
0
].
weight
;
sum
+=
calc_sum
(
node
->
feature
.
rect
[
1
],
p_offset
)
*
node
->
feature
.
rect
[
1
].
weight
;
if
(
node
->
feature
.
rect
[
2
].
p0
)
sum
+=
calc_sum
(
node
->
feature
.
rect
[
2
],
p_offset
)
*
node
->
feature
.
rect
[
2
].
weight
;
stage_sum
+=
classifier
->
alpha
[
sum
>=
t
];
}
if
(
stage_sum
<
cascade
->
stage_classifier
[
i
].
threshold
)
return
-
i
;
}
if
(
stage_sum
<
cascade
->
stage_classifier
[
i
].
threshold
)
return
-
i
;
}
else
#endif
#if defined CV_HAAR_USE_SSE && CV_HAAR_USE_SSE && (!defined CV_HAAR_USE_AVX || !CV_HAAR_USE_AVX) //old SSE optimization
if
(
haveSSE2
)
}
else
#elif defined CV_HAAR_USE_SSE //old SSE optimization
if
(
haveSSE2
)
{
for
(
i
=
start_stage
;
i
<
cascade
->
count
;
i
++
)
{
for
(
i
=
start_stage
;
i
<
cascade
->
count
;
i
++
)
__m128d
vstage_sum
=
_mm_setzero_pd
();
if
(
cascade
->
stage_classifier
[
i
].
two_rects
)
{
__m128d
vstage_sum
=
_mm_setzero_pd
();
if
(
cascade
->
stage_classifier
[
i
].
two_rects
)
for
(
j
=
0
;
j
<
cascade
->
stage_classifier
[
i
].
count
;
j
++
)
{
for
(
j
=
0
;
j
<
cascade
->
stage_classifier
[
i
].
count
;
j
++
)
{
CvHidHaarClassifier
*
classifier
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
;
CvHidHaarTreeNode
*
node
=
classifier
->
node
;
// ayasin - NHM perf optim. Avoid use of costly flaky jcc
__m128d
t
=
_mm_set_sd
(
node
->
threshold
*
variance_norm_factor
);
__m128d
a
=
_mm_set_sd
(
classifier
->
alpha
[
0
]);
__m128d
b
=
_mm_set_sd
(
classifier
->
alpha
[
1
]);
__m128d
sum
=
_mm_set_sd
(
calc_sum
(
node
->
feature
.
rect
[
0
],
p_offset
)
*
node
->
feature
.
rect
[
0
].
weight
+
calc_sum
(
node
->
feature
.
rect
[
1
],
p_offset
)
*
node
->
feature
.
rect
[
1
].
weight
);
t
=
_mm_cmpgt_sd
(
t
,
sum
);
vstage_sum
=
_mm_add_sd
(
vstage_sum
,
_mm_blendv_pd
(
b
,
a
,
t
));
}
CvHidHaarClassifier
*
classifier
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
;
CvHidHaarTreeNode
*
node
=
classifier
->
node
;
// ayasin - NHM perf optim. Avoid use of costly flaky jcc
__m128d
t
=
_mm_set_sd
(
node
->
threshold
*
variance_norm_factor
);
__m128d
a
=
_mm_set_sd
(
classifier
->
alpha
[
0
]);
__m128d
b
=
_mm_set_sd
(
classifier
->
alpha
[
1
]);
__m128d
sum
=
_mm_set_sd
(
calc_sum
(
node
->
feature
.
rect
[
0
],
p_offset
)
*
node
->
feature
.
rect
[
0
].
weight
+
calc_sum
(
node
->
feature
.
rect
[
1
],
p_offset
)
*
node
->
feature
.
rect
[
1
].
weight
);
t
=
_mm_cmpgt_sd
(
t
,
sum
);
vstage_sum
=
_mm_add_sd
(
vstage_sum
,
_mm_blendv_pd
(
b
,
a
,
t
));
}
else
}
else
{
for
(
j
=
0
;
j
<
cascade
->
stage_classifier
[
i
].
count
;
j
++
)
{
for
(
j
=
0
;
j
<
cascade
->
stage_classifier
[
i
].
count
;
j
++
)
{
CvHidHaarClassifier
*
classifier
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
;
CvHidHaarTreeNode
*
node
=
classifier
->
node
;
// ayasin - NHM perf optim. Avoid use of costly flaky jcc
__m128d
t
=
_mm_set_sd
(
node
->
threshold
*
variance_norm_factor
);
__m128d
a
=
_mm_set_sd
(
classifier
->
alpha
[
0
]);
__m128d
b
=
_mm_set_sd
(
classifier
->
alpha
[
1
]);
double
_sum
=
calc_sum
(
node
->
feature
.
rect
[
0
],
p_offset
)
*
node
->
feature
.
rect
[
0
].
weight
;
_sum
+=
calc_sum
(
node
->
feature
.
rect
[
1
],
p_offset
)
*
node
->
feature
.
rect
[
1
].
weight
;
if
(
node
->
feature
.
rect
[
2
].
p0
)
_sum
+=
calc_sum
(
node
->
feature
.
rect
[
2
],
p_offset
)
*
node
->
feature
.
rect
[
2
].
weight
;
__m128d
sum
=
_mm_set_sd
(
_sum
);
t
=
_mm_cmpgt_sd
(
t
,
sum
);
vstage_sum
=
_mm_add_sd
(
vstage_sum
,
_mm_blendv_pd
(
b
,
a
,
t
));
}
CvHidHaarClassifier
*
classifier
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
;
CvHidHaarTreeNode
*
node
=
classifier
->
node
;
// ayasin - NHM perf optim. Avoid use of costly flaky jcc
__m128d
t
=
_mm_set_sd
(
node
->
threshold
*
variance_norm_factor
);
__m128d
a
=
_mm_set_sd
(
classifier
->
alpha
[
0
]);
__m128d
b
=
_mm_set_sd
(
classifier
->
alpha
[
1
]);
double
_sum
=
calc_sum
(
node
->
feature
.
rect
[
0
],
p_offset
)
*
node
->
feature
.
rect
[
0
].
weight
;
_sum
+=
calc_sum
(
node
->
feature
.
rect
[
1
],
p_offset
)
*
node
->
feature
.
rect
[
1
].
weight
;
if
(
node
->
feature
.
rect
[
2
].
p0
)
_sum
+=
calc_sum
(
node
->
feature
.
rect
[
2
],
p_offset
)
*
node
->
feature
.
rect
[
2
].
weight
;
__m128d
sum
=
_mm_set_sd
(
_sum
);
t
=
_mm_cmpgt_sd
(
t
,
sum
);
vstage_sum
=
_mm_add_sd
(
vstage_sum
,
_mm_blendv_pd
(
b
,
a
,
t
));
}
__m128d
i_threshold
=
_mm_set1_pd
(
cascade
->
stage_classifier
[
i
].
threshold
);
if
(
_mm_comilt_sd
(
vstage_sum
,
i_threshold
)
)
return
-
i
;
}
__m128d
i_threshold
=
_mm_set1_pd
(
cascade
->
stage_classifier
[
i
].
threshold
);
if
(
_mm_comilt_sd
(
vstage_sum
,
i_threshold
)
)
return
-
i
;
}
else
#endif
}
else
#endif // AVX or SSE
{
for
(
i
=
start_stage
;
i
<
cascade
->
count
;
i
++
)
{
for
(
i
=
start_stage
;
i
<
cascade
->
count
;
i
++
)
stage_sum
=
0.0
;
if
(
cascade
->
stage_classifier
[
i
].
two_rects
)
{
stage_sum
=
0.0
;
if
(
cascade
->
stage_classifier
[
i
].
two_rects
)
for
(
j
=
0
;
j
<
cascade
->
stage_classifier
[
i
].
count
;
j
++
)
{
for
(
j
=
0
;
j
<
cascade
->
stage_classifier
[
i
].
count
;
j
++
)
{
CvHidHaarClassifier
*
classifier
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
;
CvHidHaarTreeNode
*
node
=
classifier
->
node
;
double
t
=
node
->
threshold
*
variance_norm_factor
;
double
sum
=
calc_sum
(
node
->
feature
.
rect
[
0
],
p_offset
)
*
node
->
feature
.
rect
[
0
].
weight
;
sum
+=
calc_sum
(
node
->
feature
.
rect
[
1
],
p_offset
)
*
node
->
feature
.
rect
[
1
].
weight
;
stage_sum
+=
classifier
->
alpha
[
sum
>=
t
];
}
CvHidHaarClassifier
*
classifier
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
;
CvHidHaarTreeNode
*
node
=
classifier
->
node
;
double
t
=
node
->
threshold
*
variance_norm_factor
;
double
sum
=
calc_sum
(
node
->
feature
.
rect
[
0
],
p_offset
)
*
node
->
feature
.
rect
[
0
].
weight
;
sum
+=
calc_sum
(
node
->
feature
.
rect
[
1
],
p_offset
)
*
node
->
feature
.
rect
[
1
].
weight
;
stage_sum
+=
classifier
->
alpha
[
sum
>=
t
];
}
else
}
else
{
for
(
j
=
0
;
j
<
cascade
->
stage_classifier
[
i
].
count
;
j
++
)
{
for
(
j
=
0
;
j
<
cascade
->
stage_classifier
[
i
].
count
;
j
++
)
{
CvHidHaarClassifier
*
classifier
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
;
CvHidHaarTreeNode
*
node
=
classifier
->
node
;
double
t
=
node
->
threshold
*
variance_norm_factor
;
double
sum
=
calc_sum
(
node
->
feature
.
rect
[
0
],
p_offset
)
*
node
->
feature
.
rect
[
0
].
weight
;
sum
+=
calc_sum
(
node
->
feature
.
rect
[
1
],
p_offset
)
*
node
->
feature
.
rect
[
1
].
weight
;
if
(
node
->
feature
.
rect
[
2
].
p0
)
sum
+=
calc_sum
(
node
->
feature
.
rect
[
2
],
p_offset
)
*
node
->
feature
.
rect
[
2
].
weight
;
stage_sum
+=
classifier
->
alpha
[
sum
>=
t
];
}
CvHidHaarClassifier
*
classifier
=
cascade
->
stage_classifier
[
i
].
classifier
+
j
;
CvHidHaarTreeNode
*
node
=
classifier
->
node
;
double
t
=
node
->
threshold
*
variance_norm_factor
;
double
sum
=
calc_sum
(
node
->
feature
.
rect
[
0
],
p_offset
)
*
node
->
feature
.
rect
[
0
].
weight
;
sum
+=
calc_sum
(
node
->
feature
.
rect
[
1
],
p_offset
)
*
node
->
feature
.
rect
[
1
].
weight
;
if
(
node
->
feature
.
rect
[
2
].
p0
)
sum
+=
calc_sum
(
node
->
feature
.
rect
[
2
],
p_offset
)
*
node
->
feature
.
rect
[
2
].
weight
;
stage_sum
+=
classifier
->
alpha
[
sum
>=
t
];
}
if
(
stage_sum
<
cascade
->
stage_classifier
[
i
].
threshold
)
return
-
i
;
}
if
(
stage_sum
<
cascade
->
stage_classifier
[
i
].
threshold
)
return
-
i
;
}
}
}
else
{
for
(
i
=
start_stage
;
i
<
cascade
->
count
;
i
++
)
{
stage_sum
=
0.0
;
int
k
=
0
;
#ifdef CV_HAAR_USE_AVX
#ifdef CV_HAAR_USE_AVX
if
(
haveAVX
)
{
for
(
;
k
<
cascade
->
stage_classifier
[
i
].
count
-
8
;
k
+=
8
)
for
(
;
k
<
cascade
->
stage_classifier
[
i
].
count
-
8
;
k
+=
8
)
{
stage_sum
+=
icvEvalHidHaarClassifierAVX
(
cascade
->
stage_classifier
[
i
].
classifier
+
k
,
cascade
->
stage_classifier
[
i
].
classifier
+
k
,
variance_norm_factor
,
p_offset
);
}
}
#endif
for
(;
k
<
cascade
->
stage_classifier
[
i
].
count
;
k
++
)
{
#endif
for
(;
k
<
cascade
->
stage_classifier
[
i
].
count
;
k
++
)
{
stage_sum
+=
icvEvalHidHaarClassifier
(
cascade
->
stage_classifier
[
i
].
classifier
+
k
,
variance_norm_factor
,
p_offset
);
}
stage_sum
+=
icvEvalHidHaarClassifier
(
cascade
->
stage_classifier
[
i
].
classifier
+
k
,
variance_norm_factor
,
p_offset
);
}
if
(
stage_sum
<
cascade
->
stage_classifier
[
i
].
threshold
)
return
-
i
;
}
}
//_mm256_zeroupper();
return
1
;
}
...
...
@@ -1186,7 +1299,7 @@ struct HaarDetectObjects_ScaleImage_Invoker
Size
ssz
(
sum1
.
cols
-
1
-
winSize0
.
width
,
y2
-
y1
);
int
x
,
y
,
ystep
=
factor
>
2
?
1
:
2
;
#ifdef HAVE_IPP
#ifdef HAVE_IPP
if
(
cascade
->
hid_cascade
->
ipp_stages
)
{
IppiRect
iequRect
=
{
equRect
.
x
,
equRect
.
y
,
equRect
.
width
,
equRect
.
height
};
...
...
@@ -1241,7 +1354,7 @@ struct HaarDetectObjects_ScaleImage_Invoker
}
}
else
#endif
#endif
// IPP
for
(
y
=
y1
;
y
<
y2
;
y
+=
ystep
)
for
(
x
=
0
;
x
<
ssz
.
width
;
x
+=
ystep
)
{
...
...
@@ -1880,18 +1993,18 @@ cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** _cascade )
#define ICV_HAAR_SIZE_NAME "size"
#define ICV_HAAR_STAGES_NAME "stages"
#define ICV_HAAR_TREES_NAME
"trees"
#define ICV_HAAR_FEATURE_NAME
"feature"
#define ICV_HAAR_RECTS_NAME
"rects"
#define ICV_HAAR_TILTED_NAME
"tilted"
#define ICV_HAAR_THRESHOLD_NAME
"threshold"
#define ICV_HAAR_LEFT_NODE_NAME
"left_node"
#define ICV_HAAR_LEFT_VAL_NAME
"left_val"
#define ICV_HAAR_RIGHT_NODE_NAME
"right_node"
#define ICV_HAAR_RIGHT_VAL_NAME
"right_val"
#define ICV_HAAR_STAGE_THRESHOLD_NAME
"stage_threshold"
#define ICV_HAAR_PARENT_NAME
"parent"
#define ICV_HAAR_NEXT_NAME
"next"
#define ICV_HAAR_TREES_NAME "trees"
#define ICV_HAAR_FEATURE_NAME "feature"
#define ICV_HAAR_RECTS_NAME "rects"
#define ICV_HAAR_TILTED_NAME "tilted"
#define ICV_HAAR_THRESHOLD_NAME "threshold"
#define ICV_HAAR_LEFT_NODE_NAME "left_node"
#define ICV_HAAR_LEFT_VAL_NAME "left_val"
#define ICV_HAAR_RIGHT_NODE_NAME "right_node"
#define ICV_HAAR_RIGHT_VAL_NAME "right_val"
#define ICV_HAAR_STAGE_THRESHOLD_NAME "stage_threshold"
#define ICV_HAAR_PARENT_NAME "parent"
#define ICV_HAAR_NEXT_NAME "next"
static
int
icvIsHaarClassifier
(
const
void
*
struct_ptr
)
...
...
@@ -2418,45 +2531,4 @@ CvType haar_type( CV_TYPE_NAME_HAAR, icvIsHaarClassifier,
icvReadHaarClassifier
,
icvWriteHaarClassifier
,
icvCloneHaarClassifier
);
#if 0
namespace cv
{
HaarClassifierCascade::HaarClassifierCascade() {}
HaarClassifierCascade::HaarClassifierCascade(const String& filename)
{ load(filename); }
bool HaarClassifierCascade::load(const String& filename)
{
cascade = Ptr<CvHaarClassifierCascade>((CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0));
return (CvHaarClassifierCascade*)cascade != 0;
}
void HaarClassifierCascade::detectMultiScale( const Mat& image,
Vector<Rect>& objects, double scaleFactor,
int minNeighbors, int flags,
Size minSize )
{
MemStorage storage(cvCreateMemStorage(0));
CvMat _image = image;
CvSeq* _objects = cvHaarDetectObjects( &_image, cascade, storage, scaleFactor,
minNeighbors, flags, minSize );
Seq<Rect>(_objects).copyTo(objects);
}
int HaarClassifierCascade::runAt(Point pt, int startStage, int) const
{
return cvRunHaarClassifierCascade(cascade, pt, startStage);
}
void HaarClassifierCascade::setImages( const Mat& sum, const Mat& sqsum,
const Mat& tilted, double scale )
{
CvMat _sum = sum, _sqsum = sqsum, _tilted = tilted;
cvSetImagesForHaarClassifierCascade( cascade, &_sum, &_sqsum, &_tilted, scale );
}
}
#endif
/* End of file. */
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment