Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
0876f69d
Commit
0876f69d
authored
Jun 15, 2011
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added variational stereo correspondence (by Sergey Kosov) and polynomial fitting (by Onkar Raut)
parent
0d09352f
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
583 additions
and
133 deletions
+583
-133
contrib.hpp
modules/contrib/include/opencv2/contrib/contrib.hpp
+169
-127
polyfit.cpp
modules/contrib/src/polyfit.cpp
+72
-0
stereovar.cpp
modules/contrib/src/stereovar.cpp
+315
-0
stereo_match.cpp
samples/cpp/stereo_match.cpp
+27
-6
No files found.
modules/contrib/include/opencv2/contrib/contrib.hpp
View file @
0876f69d
...
...
@@ -431,137 +431,179 @@ namespace cv
DEFAULT_NUM_DISTANCE_BUCKETS
=
7
};
};
typedef
bool
(
*
BundleAdjustCallback
)(
int
iteration
,
double
norm_error
,
void
*
user_data
);
class
LevMarqSparse
{
public
:
LevMarqSparse
();
LevMarqSparse
(
int
npoints
,
// number of points
int
ncameras
,
// number of cameras
int
nPointParams
,
// number of params per one point (3 in case of 3D points)
int
nCameraParams
,
// number of parameters per one camera
int
nErrParams
,
// number of parameters in measurement vector
// for 1 point at one camera (2 in case of 2D projections)
Mat
&
visibility
,
// visibility matrix. rows correspond to points, columns correspond to cameras
// 1 - point is visible for the camera, 0 - invisible
Mat
&
P0
,
// starting vector of parameters, first cameras then points
Mat
&
X
,
// measurements, in order of visibility. non visible cases are skipped
TermCriteria
criteria
,
// termination criteria
// callback for estimation of Jacobian matrices
void
(
CV_CDECL
*
fjac
)(
int
i
,
int
j
,
Mat
&
point_params
,
Mat
&
cam_params
,
Mat
&
A
,
Mat
&
B
,
void
*
data
),
// callback for estimation of backprojection errors
void
(
CV_CDECL
*
func
)(
int
i
,
int
j
,
Mat
&
point_params
,
Mat
&
cam_params
,
Mat
&
estim
,
void
*
data
),
void
*
data
,
// user-specific data passed to the callbacks
BundleAdjustCallback
cb
,
void
*
user_data
);
virtual
~
LevMarqSparse
();
virtual
void
run
(
int
npoints
,
// number of points
int
ncameras
,
// number of cameras
int
nPointParams
,
// number of params per one point (3 in case of 3D points)
int
nCameraParams
,
// number of parameters per one camera
int
nErrParams
,
// number of parameters in measurement vector
// for 1 point at one camera (2 in case of 2D projections)
Mat
&
visibility
,
// visibility matrix. rows correspond to points, columns correspond to cameras
// 1 - point is visible for the camera, 0 - invisible
Mat
&
P0
,
// starting vector of parameters, first cameras then points
Mat
&
X
,
// measurements, in order of visibility. non visible cases are skipped
TermCriteria
criteria
,
// termination criteria
// callback for estimation of Jacobian matrices
void
(
CV_CDECL
*
fjac
)(
int
i
,
int
j
,
Mat
&
point_params
,
Mat
&
cam_params
,
Mat
&
A
,
Mat
&
B
,
void
*
data
),
// callback for estimation of backprojection errors
void
(
CV_CDECL
*
func
)(
int
i
,
int
j
,
Mat
&
point_params
,
Mat
&
cam_params
,
Mat
&
estim
,
void
*
data
),
void
*
data
// user-specific data passed to the callbacks
);
virtual
void
clear
();
// useful function to do simple bundle adjustment tasks
static
void
bundleAdjust
(
vector
<
Point3d
>&
points
,
// positions of points in global coordinate system (input and output)
const
vector
<
vector
<
Point2d
>
>&
imagePoints
,
// projections of 3d points for every camera
const
vector
<
vector
<
int
>
>&
visibility
,
// visibility of 3d points for every camera
vector
<
Mat
>&
cameraMatrix
,
// intrinsic matrices of all cameras (input and output)
vector
<
Mat
>&
R
,
// rotation matrices of all cameras (input and output)
vector
<
Mat
>&
T
,
// translation vector of all cameras (input and output)
vector
<
Mat
>&
distCoeffs
,
// distortion coefficients of all cameras (input and output)
const
TermCriteria
&
criteria
=
TermCriteria
(
TermCriteria
::
COUNT
+
TermCriteria
::
EPS
,
30
,
DBL_EPSILON
),
BundleAdjustCallback
cb
=
0
,
void
*
user_data
=
0
);
public
:
virtual
void
optimize
(
CvMat
&
_vis
);
//main function that runs minimization
//iteratively asks for measurement for visible camera-point pairs
void
ask_for_proj
(
CvMat
&
_vis
,
bool
once
=
false
);
//iteratively asks for Jacobians for every camera_point pair
void
ask_for_projac
(
CvMat
&
_vis
);
CvMat
*
err
;
//error X-hX
double
prevErrNorm
,
errNorm
;
double
lambda
;
CvTermCriteria
criteria
;
int
iters
;
CvMat
**
U
;
//size of array is equal to number of cameras
CvMat
**
V
;
//size of array is equal to number of points
CvMat
**
inv_V_star
;
//inverse of V*
CvMat
**
A
;
CvMat
**
B
;
CvMat
**
W
;
CvMat
*
X
;
//measurement
CvMat
*
hX
;
//current measurement extimation given new parameter vector
CvMat
*
prevP
;
//current already accepted parameter.
CvMat
*
P
;
// parameters used to evaluate function with new params
// this parameters may be rejected
typedef
bool
(
*
BundleAdjustCallback
)(
int
iteration
,
double
norm_error
,
void
*
user_data
);
CvMat
*
deltaP
;
//computed increase of parameters (result of normal system solution )
CvMat
**
ea
;
// sum_i AijT * e_ij , used as right part of normal equation
// length of array is j = number of cameras
CvMat
**
eb
;
// sum_j BijT * e_ij , used as right part of normal equation
// length of array is i = number of points
CvMat
**
Yj
;
//length of array is i = num_points
CvMat
*
S
;
//big matrix of block Sjk , each block has size num_cam_params x num_cam_params
CvMat
*
JtJ_diag
;
//diagonal of JtJ, used to backup diagonal elements before augmentation
CvMat
*
Vis_index
;
// matrix which element is index of measurement for point i and camera j
int
num_cams
;
int
num_points
;
int
num_err_param
;
int
num_cam_param
;
int
num_point_param
;
//target function and jacobian pointers, which needs to be initialized
void
(
*
fjac
)(
int
i
,
int
j
,
Mat
&
point_params
,
Mat
&
cam_params
,
Mat
&
A
,
Mat
&
B
,
void
*
data
);
void
(
*
func
)(
int
i
,
int
j
,
Mat
&
point_params
,
Mat
&
cam_params
,
Mat
&
estim
,
void
*
data
);
void
*
data
;
BundleAdjustCallback
cb
;
void
*
user_data
;
};
class
LevMarqSparse
{
public
:
LevMarqSparse
();
LevMarqSparse
(
int
npoints
,
// number of points
int
ncameras
,
// number of cameras
int
nPointParams
,
// number of params per one point (3 in case of 3D points)
int
nCameraParams
,
// number of parameters per one camera
int
nErrParams
,
// number of parameters in measurement vector
// for 1 point at one camera (2 in case of 2D projections)
Mat
&
visibility
,
// visibility matrix. rows correspond to points, columns correspond to cameras
// 1 - point is visible for the camera, 0 - invisible
Mat
&
P0
,
// starting vector of parameters, first cameras then points
Mat
&
X
,
// measurements, in order of visibility. non visible cases are skipped
TermCriteria
criteria
,
// termination criteria
// callback for estimation of Jacobian matrices
void
(
CV_CDECL
*
fjac
)(
int
i
,
int
j
,
Mat
&
point_params
,
Mat
&
cam_params
,
Mat
&
A
,
Mat
&
B
,
void
*
data
),
// callback for estimation of backprojection errors
void
(
CV_CDECL
*
func
)(
int
i
,
int
j
,
Mat
&
point_params
,
Mat
&
cam_params
,
Mat
&
estim
,
void
*
data
),
void
*
data
,
// user-specific data passed to the callbacks
BundleAdjustCallback
cb
,
void
*
user_data
);
virtual
~
LevMarqSparse
();
virtual
void
run
(
int
npoints
,
// number of points
int
ncameras
,
// number of cameras
int
nPointParams
,
// number of params per one point (3 in case of 3D points)
int
nCameraParams
,
// number of parameters per one camera
int
nErrParams
,
// number of parameters in measurement vector
// for 1 point at one camera (2 in case of 2D projections)
Mat
&
visibility
,
// visibility matrix. rows correspond to points, columns correspond to cameras
// 1 - point is visible for the camera, 0 - invisible
Mat
&
P0
,
// starting vector of parameters, first cameras then points
Mat
&
X
,
// measurements, in order of visibility. non visible cases are skipped
TermCriteria
criteria
,
// termination criteria
// callback for estimation of Jacobian matrices
void
(
CV_CDECL
*
fjac
)(
int
i
,
int
j
,
Mat
&
point_params
,
Mat
&
cam_params
,
Mat
&
A
,
Mat
&
B
,
void
*
data
),
// callback for estimation of backprojection errors
void
(
CV_CDECL
*
func
)(
int
i
,
int
j
,
Mat
&
point_params
,
Mat
&
cam_params
,
Mat
&
estim
,
void
*
data
),
void
*
data
// user-specific data passed to the callbacks
);
virtual
void
clear
();
// useful function to do simple bundle adjustment tasks
static
void
bundleAdjust
(
vector
<
Point3d
>&
points
,
// positions of points in global coordinate system (input and output)
const
vector
<
vector
<
Point2d
>
>&
imagePoints
,
// projections of 3d points for every camera
const
vector
<
vector
<
int
>
>&
visibility
,
// visibility of 3d points for every camera
vector
<
Mat
>&
cameraMatrix
,
// intrinsic matrices of all cameras (input and output)
vector
<
Mat
>&
R
,
// rotation matrices of all cameras (input and output)
vector
<
Mat
>&
T
,
// translation vector of all cameras (input and output)
vector
<
Mat
>&
distCoeffs
,
// distortion coefficients of all cameras (input and output)
const
TermCriteria
&
criteria
=
TermCriteria
(
TermCriteria
::
COUNT
+
TermCriteria
::
EPS
,
30
,
DBL_EPSILON
),
BundleAdjustCallback
cb
=
0
,
void
*
user_data
=
0
);
public
:
virtual
void
optimize
(
CvMat
&
_vis
);
//main function that runs minimization
//iteratively asks for measurement for visible camera-point pairs
void
ask_for_proj
(
CvMat
&
_vis
,
bool
once
=
false
);
//iteratively asks for Jacobians for every camera_point pair
void
ask_for_projac
(
CvMat
&
_vis
);
CvMat
*
err
;
//error X-hX
double
prevErrNorm
,
errNorm
;
double
lambda
;
CvTermCriteria
criteria
;
int
iters
;
CvMat
**
U
;
//size of array is equal to number of cameras
CvMat
**
V
;
//size of array is equal to number of points
CvMat
**
inv_V_star
;
//inverse of V*
CvMat
**
A
;
CvMat
**
B
;
CvMat
**
W
;
CvMat
*
X
;
//measurement
CvMat
*
hX
;
//current measurement extimation given new parameter vector
CvMat
*
prevP
;
//current already accepted parameter.
CvMat
*
P
;
// parameters used to evaluate function with new params
// this parameters may be rejected
CvMat
*
deltaP
;
//computed increase of parameters (result of normal system solution )
CvMat
**
ea
;
// sum_i AijT * e_ij , used as right part of normal equation
// length of array is j = number of cameras
CvMat
**
eb
;
// sum_j BijT * e_ij , used as right part of normal equation
// length of array is i = number of points
CvMat
**
Yj
;
//length of array is i = num_points
CvMat
*
S
;
//big matrix of block Sjk , each block has size num_cam_params x num_cam_params
CvMat
*
JtJ_diag
;
//diagonal of JtJ, used to backup diagonal elements before augmentation
CvMat
*
Vis_index
;
// matrix which element is index of measurement for point i and camera j
int
num_cams
;
int
num_points
;
int
num_err_param
;
int
num_cam_param
;
int
num_point_param
;
//target function and jacobian pointers, which needs to be initialized
void
(
*
fjac
)(
int
i
,
int
j
,
Mat
&
point_params
,
Mat
&
cam_params
,
Mat
&
A
,
Mat
&
B
,
void
*
data
);
void
(
*
func
)(
int
i
,
int
j
,
Mat
&
point_params
,
Mat
&
cam_params
,
Mat
&
estim
,
void
*
data
);
void
*
data
;
BundleAdjustCallback
cb
;
void
*
user_data
;
};
CV_EXPORTS
int
chamerMatching
(
Mat
&
img
,
Mat
&
templ
,
vector
<
vector
<
Point
>
>&
results
,
vector
<
float
>&
cost
,
double
templScale
=
1
,
int
maxMatches
=
20
,
double
minMatchDistance
=
1.0
,
int
padX
=
3
,
int
padY
=
3
,
int
scales
=
5
,
double
minScale
=
0.6
,
double
maxScale
=
1.6
,
double
orientationWeight
=
0.5
,
double
truncate
=
20
);
vector
<
vector
<
Point
>
>&
results
,
vector
<
float
>&
cost
,
double
templScale
=
1
,
int
maxMatches
=
20
,
double
minMatchDistance
=
1.0
,
int
padX
=
3
,
int
padY
=
3
,
int
scales
=
5
,
double
minScale
=
0.6
,
double
maxScale
=
1.6
,
double
orientationWeight
=
0.5
,
double
truncate
=
20
);
class
CV_EXPORTS
StereoVar
{
public
:
// Flags
enum
{
USE_INITIAL_DISPARITY
=
1
,
USE_EQUALIZE_HIST
=
2
,
USE_SMART_ID
=
4
,
USE_MEDIAN_FILTERING
=
8
};
enum
{
CYCLE_O
,
CYCLE_V
};
enum
{
PENALIZATION_TICHONOV
,
PENALIZATION_CHARBONNIER
,
PENALIZATION_PERONA_MALIK
};
//! the default constructor
CV_WRAP
StereoVar
();
//! the full constructor taking all the necessary algorithm parameters
CV_WRAP
StereoVar
(
int
levels
,
double
pyrScale
,
int
nIt
,
int
minDisp
,
int
maxDisp
,
int
poly_n
,
double
poly_sigma
,
float
fi
,
float
lambda
,
int
penalization
,
int
cycle
,
int
flags
);
//! the destructor
virtual
~
StereoVar
();
//! the stereo correspondence operator that computes disparity map for the specified rectified stereo pair
CV_WRAP_AS
(
compute
)
virtual
void
operator
()(
const
Mat
&
left
,
const
Mat
&
right
,
Mat
&
disp
);
CV_PROP_RW
int
levels
;
CV_PROP_RW
double
pyrScale
;
CV_PROP_RW
int
nIt
;
CV_PROP_RW
int
minDisp
;
CV_PROP_RW
int
maxDisp
;
CV_PROP_RW
int
poly_n
;
CV_PROP_RW
double
poly_sigma
;
CV_PROP_RW
float
fi
;
CV_PROP_RW
float
lambda
;
CV_PROP_RW
int
penalization
;
CV_PROP_RW
int
cycle
;
CV_PROP_RW
int
flags
;
private
:
void
FMG
(
Mat
&
I1
,
Mat
&
I2
,
Mat
&
I2x
,
Mat
&
u
,
int
level
);
void
VCycle_MyFAS
(
Mat
&
I1_h
,
Mat
&
I2_h
,
Mat
&
I2x_h
,
Mat
&
u_h
,
int
level
);
void
VariationalSolver
(
Mat
&
I1_h
,
Mat
&
I2_h
,
Mat
&
I2x_h
,
Mat
&
u_h
,
int
level
);
};
CV_EXPORTS
void
polyfit
(
const
Mat
&
srcx
,
const
Mat
&
srcy
,
Mat
&
dst
,
int
order
);
}
...
...
modules/contrib/src/polyfit.cpp
0 → 100644
View file @
0876f69d
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
// This original code was written by
// Onkar Raut
// Graduate Student,
// University of North Carolina at Charlotte
#include "precomp.hpp"
void
cv
::
polyfit
(
const
Mat
&
src_x
,
const
Mat
&
src_y
,
Mat
&
dst
,
int
order
)
{
CV_Assert
((
src_x
.
rows
>
0
)
&&
(
src_y
.
rows
>
0
)
&&
(
src_x
.
cols
==
1
)
&&
(
src_y
.
cols
==
1
)
&&
(
dst
.
cols
==
1
)
&&
(
dst
.
rows
==
(
order
+
1
))
&&
(
order
>=
1
));
Mat
X
;
X
=
Mat
::
zeros
(
src_x
.
rows
,
order
+
1
,
CV_32FC1
);
Mat
copy
;
for
(
int
i
=
0
;
i
<=
order
;
i
++
)
{
copy
=
src_x
.
clone
();
pow
(
copy
,
i
,
copy
);
Mat
M1
=
X
.
col
(
i
);
copy
.
col
(
0
).
copyTo
(
M1
);
}
Mat
X_t
,
X_inv
;
transpose
(
X
,
X_t
);
Mat
temp
=
X_t
*
X
;
Mat
temp2
;
invert
(
temp
,
temp2
);
Mat
temp3
=
temp2
*
X_t
;
Mat
W
=
temp3
*
src_y
;
W
.
copyTo
(
dst
);
}
modules/contrib/src/stereovar.cpp
0 → 100755
View file @
0876f69d
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/*
This is a modification of the variational stereo correspondence algorithm, described in:
S. Kosov, T. Thormaehlen, H.-P. Seidel "Accurate Real-Time Disparity Estimation with Variational Methods"
Proceedings of the 5th International Symposium on Visual Computing, Vegas, USA
This code is written by Sergey G. Kosov for "Visir PX" application as part of Project X (www.project-10.de)
*/
#include "precomp.hpp"
#include <limits.h>
namespace
cv
{
StereoVar
::
StereoVar
()
:
levels
(
3
),
pyrScale
(
0.5
),
nIt
(
3
),
minDisp
(
0
),
maxDisp
(
16
),
poly_n
(
5
),
poly_sigma
(
1.2
),
fi
(
1000.0
f
),
lambda
(
0.0
f
),
penalization
(
PENALIZATION_TICHONOV
),
cycle
(
CYCLE_V
),
flags
(
USE_SMART_ID
)
{
}
StereoVar
::
StereoVar
(
int
_levels
,
double
_pyrScale
,
int
_nIt
,
int
_minDisp
,
int
_maxDisp
,
int
_poly_n
,
double
_poly_sigma
,
float
_fi
,
float
_lambda
,
int
_penalization
,
int
_cycle
,
int
_flags
)
:
levels
(
_levels
),
pyrScale
(
_pyrScale
),
nIt
(
_nIt
),
minDisp
(
_minDisp
),
maxDisp
(
_maxDisp
),
poly_n
(
_poly_n
),
poly_sigma
(
_poly_sigma
),
fi
(
_fi
),
lambda
(
_lambda
),
penalization
(
_penalization
),
cycle
(
_cycle
),
flags
(
_flags
)
{
// No Parameters check, since they are all public
}
StereoVar
::~
StereoVar
()
{
}
static
Mat
diffX
(
Mat
&
img
)
{
// TODO try pointers or assm
register
int
x
,
y
;
Mat
dst
(
img
.
size
(),
img
.
type
());
dst
.
setTo
(
0
);
for
(
x
=
0
;
x
<
img
.
cols
-
1
;
x
++
)
for
(
y
=
0
;
y
<
img
.
rows
;
y
++
)
dst
.
at
<
float
>
(
y
,
x
)
=
img
.
at
<
float
>
(
y
,
x
+
1
)
-
img
.
at
<
float
>
(
y
,
x
);
return
dst
;
}
static
Mat
Gradient
(
Mat
&
img
)
{
Mat
sobel
,
sobelX
,
sobelY
;
img
.
copyTo
(
sobelX
);
img
.
copyTo
(
sobelY
);
Sobel
(
img
,
sobelX
,
sobelX
.
type
(),
1
,
0
,
1
);
Sobel
(
img
,
sobelY
,
sobelY
.
type
(),
0
,
1
,
1
);
sobelX
=
abs
(
sobelX
);
sobelY
=
abs
(
sobelY
);
add
(
sobelX
,
sobelY
,
sobel
);
sobelX
.
release
();
sobelY
.
release
();
return
sobel
;
}
static
float
g_c
(
Mat
z
,
int
x
,
int
y
,
float
l
)
{
return
0.5
f
*
l
/
sqrtf
(
l
*
l
+
z
.
at
<
float
>
(
y
,
x
)
*
z
.
at
<
float
>
(
y
,
x
));
}
static
float
g_p
(
Mat
z
,
int
x
,
int
y
,
float
l
)
{
return
0.5
f
*
l
*
l
/
(
l
*
l
+
z
.
at
<
float
>
(
y
,
x
)
*
z
.
at
<
float
>
(
y
,
x
))
;
}
void
StereoVar
::
VariationalSolver
(
Mat
&
I1
,
Mat
&
I2
,
Mat
&
I2x
,
Mat
&
u
,
int
level
)
{
register
int
n
,
x
,
y
;
float
gl
=
1
,
gr
=
1
,
gu
=
1
,
gd
=
1
,
gc
=
4
;
Mat
U
;
Mat
Sobel
;
u
.
copyTo
(
U
);
int
N
=
nIt
;
float
l
=
lambda
;
float
Fi
=
fi
;
double
scale
=
pow
(
pyrScale
,
(
double
)
level
);
if
(
flags
&
USE_SMART_ID
)
{
N
=
(
int
)
(
N
/
scale
);
Fi
/=
(
float
)
scale
;
l
*=
(
float
)
scale
;
}
for
(
n
=
0
;
n
<
N
;
n
++
)
{
if
(
penalization
!=
PENALIZATION_TICHONOV
)
{
if
(
!
Sobel
.
empty
())
Sobel
.
release
();
Sobel
=
Gradient
(
U
);}
for
(
x
=
1
;
x
<
u
.
cols
-
1
;
x
++
)
{
for
(
y
=
1
;
y
<
u
.
rows
-
1
;
y
++
)
{
switch
(
penalization
)
{
case
PENALIZATION_CHARBONNIER
:
gc
=
g_c
(
Sobel
,
x
,
y
,
l
);
gl
=
gc
+
g_c
(
Sobel
,
x
-
1
,
y
,
l
);
gr
=
gc
+
g_c
(
Sobel
,
x
+
1
,
y
,
l
);
gu
=
gc
+
g_c
(
Sobel
,
x
,
y
+
1
,
l
);
gd
=
gc
+
g_c
(
Sobel
,
x
,
y
-
1
,
l
);
gc
=
gl
+
gr
+
gu
+
gd
;
break
;
case
PENALIZATION_PERONA_MALIK
:
gc
=
g_p
(
Sobel
,
x
,
y
,
l
);
gl
=
gc
+
g_p
(
Sobel
,
x
-
1
,
y
,
l
);
gr
=
gc
+
g_p
(
Sobel
,
x
+
1
,
y
,
l
);
gu
=
gc
+
g_p
(
Sobel
,
x
,
y
+
1
,
l
);
gd
=
gc
+
g_p
(
Sobel
,
x
,
y
-
1
,
l
);
gc
=
gl
+
gr
+
gu
+
gd
;
break
;
}
float
fi
=
Fi
;
if
(
maxDisp
>
minDisp
)
{
if
(
U
.
at
<
float
>
(
y
,
x
)
>
maxDisp
*
scale
)
{
fi
*=
1000
;
U
.
at
<
float
>
(
y
,
x
)
=
static_cast
<
float
>
(
maxDisp
*
scale
);}
if
(
U
.
at
<
float
>
(
y
,
x
)
<
minDisp
*
scale
)
{
fi
*=
1000
;
U
.
at
<
float
>
(
y
,
x
)
=
static_cast
<
float
>
(
minDisp
*
scale
);}
}
int
A
=
(
int
)
(
U
.
at
<
float
>
(
y
,
x
));
int
neg
=
0
;
if
(
U
.
at
<
float
>
(
y
,
x
)
<=
0
)
neg
=
-
1
;
if
(
x
+
A
>=
u
.
cols
)
u
.
at
<
float
>
(
y
,
x
)
=
U
.
at
<
float
>
(
y
,
u
.
cols
-
A
-
1
);
else
if
(
x
+
A
+
neg
<
0
)
u
.
at
<
float
>
(
y
,
x
)
=
U
.
at
<
float
>
(
y
,
-
A
+
2
);
else
{
u
.
at
<
float
>
(
y
,
x
)
=
A
+
(
I2x
.
at
<
float
>
(
y
,
x
+
A
+
neg
)
*
(
I1
.
at
<
float
>
(
y
,
x
)
-
I2
.
at
<
float
>
(
y
,
x
+
A
))
+
fi
*
(
gr
*
U
.
at
<
float
>
(
y
,
x
+
1
)
+
gl
*
U
.
at
<
float
>
(
y
,
x
-
1
)
+
gu
*
U
.
at
<
float
>
(
y
+
1
,
x
)
+
gd
*
U
.
at
<
float
>
(
y
-
1
,
x
)
-
gc
*
A
))
/
(
I2x
.
at
<
float
>
(
y
,
x
+
A
+
neg
)
*
I2x
.
at
<
float
>
(
y
,
x
+
A
+
neg
)
+
gc
*
fi
)
;
}
}
//y
u
.
at
<
float
>
(
0
,
x
)
=
u
.
at
<
float
>
(
1
,
x
);
u
.
at
<
float
>
(
u
.
rows
-
1
,
x
)
=
u
.
at
<
float
>
(
u
.
rows
-
2
,
x
);
}
//x
for
(
y
=
0
;
y
<
u
.
rows
;
y
++
)
{
u
.
at
<
float
>
(
y
,
0
)
=
u
.
at
<
float
>
(
y
,
1
);
u
.
at
<
float
>
(
y
,
u
.
cols
-
1
)
=
u
.
at
<
float
>
(
y
,
u
.
cols
-
2
);
}
u
.
copyTo
(
U
);
}
//n
}
void
StereoVar
::
VCycle_MyFAS
(
Mat
&
I1
,
Mat
&
I2
,
Mat
&
I2x
,
Mat
&
_u
,
int
level
)
{
CvSize
imgSize
=
_u
.
size
();
CvSize
frmSize
=
cvSize
((
int
)
(
imgSize
.
width
*
pyrScale
+
0.5
),
(
int
)
(
imgSize
.
height
*
pyrScale
+
0.5
));
Mat
I1_h
,
I2_h
,
I2x_h
,
u_h
,
U
,
U_h
;
//PRE relaxation
VariationalSolver
(
I1
,
I2
,
I2x
,
_u
,
level
);
if
(
level
>=
levels
-
1
)
return
;
level
++
;
//scaling DOWN
resize
(
I1
,
I1_h
,
frmSize
,
0
,
0
,
INTER_AREA
);
resize
(
I2
,
I2_h
,
frmSize
,
0
,
0
,
INTER_AREA
);
resize
(
_u
,
u_h
,
frmSize
,
0
,
0
,
INTER_AREA
);
u_h
.
convertTo
(
u_h
,
u_h
.
type
(),
pyrScale
);
I2x_h
=
diffX
(
I2_h
);
//Next level
U_h
=
u_h
.
clone
();
VCycle_MyFAS
(
I1_h
,
I2_h
,
I2x_h
,
U_h
,
level
);
subtract
(
U_h
,
u_h
,
U_h
);
U_h
.
convertTo
(
U_h
,
U_h
.
type
(),
1.0
/
pyrScale
);
//scaling UP
resize
(
U_h
,
U
,
imgSize
);
//correcting the solution
add
(
_u
,
U
,
_u
);
//POST relaxation
VariationalSolver
(
I1
,
I2
,
I2x
,
_u
,
level
-
1
);
if
(
flags
&
USE_MEDIAN_FILTERING
)
medianBlur
(
_u
,
_u
,
3
);
I1_h
.
release
();
I2_h
.
release
();
I2x_h
.
release
();
u_h
.
release
();
U
.
release
();
U_h
.
release
();
}
void
StereoVar
::
FMG
(
Mat
&
I1
,
Mat
&
I2
,
Mat
&
I2x
,
Mat
&
u
,
int
level
)
{
double
scale
=
pow
(
pyrScale
,
(
double
)
level
);
CvSize
frmSize
=
cvSize
((
int
)
(
u
.
cols
*
scale
+
0.5
),
(
int
)
(
u
.
rows
*
scale
+
0.5
));
Mat
I1_h
,
I2_h
,
I2x_h
,
u_h
;
//scaling DOWN
resize
(
I1
,
I1_h
,
frmSize
,
0
,
0
,
INTER_AREA
);
resize
(
I2
,
I2_h
,
frmSize
,
0
,
0
,
INTER_AREA
);
resize
(
u
,
u_h
,
frmSize
,
0
,
0
,
INTER_AREA
);
u_h
.
convertTo
(
u_h
,
u_h
.
type
(),
scale
);
I2x_h
=
diffX
(
I2_h
);
switch
(
cycle
)
{
case
CYCLE_O
:
VariationalSolver
(
I1_h
,
I2_h
,
I2x_h
,
u_h
,
level
);
break
;
case
CYCLE_V
:
VCycle_MyFAS
(
I1_h
,
I2_h
,
I2x_h
,
u_h
,
level
);
break
;
}
u_h
.
convertTo
(
u_h
,
u_h
.
type
(),
1.0
/
scale
);
//scaling UP
resize
(
u_h
,
u
,
u
.
size
(),
0
,
0
,
INTER_CUBIC
);
I1_h
.
release
();
I2_h
.
release
();
I2x_h
.
release
();
u_h
.
release
();
level
--
;
if
(
flags
&
USE_MEDIAN_FILTERING
)
medianBlur
(
u
,
u
,
3
);
if
(
level
>=
0
)
FMG
(
I1
,
I2
,
I2x
,
u
,
level
);
}
void
StereoVar
::
operator
()(
const
Mat
&
left
,
const
Mat
&
right
,
Mat
&
disp
)
{
CV_Assert
(
left
.
size
()
==
right
.
size
()
&&
left
.
type
()
==
right
.
type
());
CvSize
imgSize
=
left
.
size
();
int
MaxD
=
MAX
(
std
::
abs
(
minDisp
),
std
::
abs
(
maxDisp
));
int
SignD
=
1
;
if
(
MIN
(
minDisp
,
maxDisp
)
<
0
)
SignD
=
-
1
;
if
(
minDisp
>=
maxDisp
)
{
MaxD
=
256
;
SignD
=
1
;}
Mat
u
;
if
((
flags
&
USE_INITIAL_DISPARITY
)
&&
(
!
disp
.
empty
()))
{
CV_Assert
(
disp
.
size
()
==
left
.
size
()
&&
disp
.
type
()
==
CV_8UC1
);
disp
.
convertTo
(
u
,
CV_32FC1
,
static_cast
<
double
>
(
SignD
*
MaxD
)
/
256
);
}
else
{
u
.
create
(
imgSize
,
CV_32FC1
);
u
.
setTo
(
0
);
}
// Preprocessing
Mat
leftgray
,
rightgray
;
if
(
left
.
type
()
!=
CV_8UC1
)
{
cvtColor
(
left
,
leftgray
,
CV_BGR2GRAY
);
cvtColor
(
right
,
rightgray
,
CV_BGR2GRAY
);
}
else
{
left
.
copyTo
(
leftgray
);
right
.
copyTo
(
rightgray
);
}
if
(
flags
&
USE_EQUALIZE_HIST
)
{
equalizeHist
(
leftgray
,
leftgray
);
equalizeHist
(
rightgray
,
rightgray
);
}
if
(
poly_sigma
>
0.0001
)
{
GaussianBlur
(
leftgray
,
leftgray
,
cvSize
(
poly_n
,
poly_n
),
poly_sigma
);
GaussianBlur
(
rightgray
,
rightgray
,
cvSize
(
poly_n
,
poly_n
),
poly_sigma
);
}
Mat
I1
,
I2
;
leftgray
.
convertTo
(
I1
,
CV_32FC1
);
rightgray
.
convertTo
(
I2
,
CV_32FC1
);
leftgray
.
release
();
rightgray
.
release
();
Mat
I2x
=
diffX
(
I2
);
FMG
(
I1
,
I2
,
I2x
,
u
,
levels
-
1
);
I1
.
release
();
I2
.
release
();
I2x
.
release
();
disp
.
create
(
left
.
size
(),
CV_8UC1
);
u
=
abs
(
u
);
u
.
convertTo
(
disp
,
disp
.
type
(),
256
/
MaxD
,
0
);
u
.
release
();
}
}
// namespace
\ No newline at end of file
samples/cpp/stereo_match.cpp
View file @
0876f69d
...
...
@@ -10,6 +10,7 @@
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/contrib/contrib.hpp"
#include <stdio.h>
...
...
@@ -18,7 +19,7 @@ using namespace cv;
void
print_help
()
{
printf
(
"
\n
Demo stereo matching converting L and R images into disparity and point clouds
\n
"
);
printf
(
"
\n
Usage: stereo_match <left_image> <right_image> [--algorithm=bm|sgbm|hh] [--blocksize=<block_size>]
\n
"
printf
(
"
\n
Usage: stereo_match <left_image> <right_image> [--algorithm=bm|sgbm|hh
|var
] [--blocksize=<block_size>]
\n
"
"[--max-disparity=<max_disparity>] [-i <intrinsic_filename>] [-e <extrinsic_filename>]
\n
"
"[--no-display] [-o <disparity_image>] [-p <point_cloud_file>]
\n
"
);
}
...
...
@@ -59,13 +60,14 @@ int main(int argc, char** argv)
const
char
*
disparity_filename
=
0
;
const
char
*
point_cloud_filename
=
0
;
enum
{
STEREO_BM
=
0
,
STEREO_SGBM
=
1
,
STEREO_HH
=
2
};
enum
{
STEREO_BM
=
0
,
STEREO_SGBM
=
1
,
STEREO_HH
=
2
,
STEREO_VAR
=
3
};
int
alg
=
STEREO_SGBM
;
int
SADWindowSize
=
0
,
numberOfDisparities
=
0
;
bool
no_display
=
false
;
StereoBM
bm
;
StereoSGBM
sgbm
;
StereoVar
var
;
for
(
int
i
=
1
;
i
<
argc
;
i
++
)
{
...
...
@@ -81,7 +83,8 @@ int main(int argc, char** argv)
char
*
_alg
=
argv
[
i
]
+
strlen
(
algorithm_opt
);
alg
=
strcmp
(
_alg
,
"bm"
)
==
0
?
STEREO_BM
:
strcmp
(
_alg
,
"sgbm"
)
==
0
?
STEREO_SGBM
:
strcmp
(
_alg
,
"hh"
)
==
0
?
STEREO_HH
:
-
1
;
strcmp
(
_alg
,
"hh"
)
==
0
?
STEREO_HH
:
strcmp
(
_alg
,
"var"
)
==
0
?
STEREO_VAR
:
-
1
;
if
(
alg
<
0
)
{
printf
(
"Command-line parameter error: Unknown stereo algorithm
\n\n
"
);
...
...
@@ -192,7 +195,7 @@ int main(int argc, char** argv)
img2
=
img2r
;
}
numberOfDisparities
=
numberOfDisparities
>
0
?
numberOfDisparities
:
img_size
.
width
/
8
;
numberOfDisparities
=
numberOfDisparities
>
0
?
numberOfDisparities
:
((
img_size
.
width
/
8
)
+
15
)
&
-
16
;
bm
.
state
->
roi1
=
roi1
;
bm
.
state
->
roi2
=
roi2
;
...
...
@@ -221,6 +224,19 @@ int main(int argc, char** argv)
sgbm
.
disp12MaxDiff
=
1
;
sgbm
.
fullDP
=
alg
==
STEREO_HH
;
var
.
levels
=
6
;
var
.
pyrScale
=
0.6
;
var
.
nIt
=
3
;
var
.
minDisp
=
-
numberOfDisparities
;
var
.
maxDisp
=
0
;
var
.
poly_n
=
3
;
var
.
poly_sigma
=
0.0
;
var
.
fi
=
5.0
f
;
var
.
lambda
=
0.1
;
var
.
penalization
=
var
.
PENALIZATION_TICHONOV
;
var
.
cycle
=
var
.
CYCLE_V
;
var
.
flags
=
var
.
USE_SMART_ID
|
var
.
USE_INITIAL_DISPARITY
|
1
*
var
.
USE_MEDIAN_FILTERING
;
Mat
disp
,
disp8
;
//Mat img1p, img2p, dispp;
//copyMakeBorder(img1, img1p, 0, 0, numberOfDisparities, 0, IPL_BORDER_REPLICATE);
...
...
@@ -229,13 +245,18 @@ int main(int argc, char** argv)
int64
t
=
getTickCount
();
if
(
alg
==
STEREO_BM
)
bm
(
img1
,
img2
,
disp
);
else
else
if
(
alg
==
STEREO_VAR
)
var
(
img1
,
img2
,
disp
);
else
if
(
alg
==
STEREO_SGBM
||
alg
==
STEREO_HH
)
sgbm
(
img1
,
img2
,
disp
);
t
=
getTickCount
()
-
t
;
printf
(
"Time elapsed: %fms
\n
"
,
t
*
1000
/
getTickFrequency
());
//disp = dispp.colRange(numberOfDisparities, img1p.cols);
disp
.
convertTo
(
disp8
,
CV_8U
,
255
/
(
numberOfDisparities
*
16.
));
if
(
alg
!=
STEREO_VAR
)
disp
.
convertTo
(
disp8
,
CV_8U
,
255
/
(
numberOfDisparities
*
16.
));
else
disp
.
convertTo
(
disp8
,
CV_8U
);
if
(
!
no_display
)
{
namedWindow
(
"left"
,
1
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment