Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
07f28d33
Commit
07f28d33
authored
Jun 05, 2011
by
Alexander Mordvintsev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added python cv2 port of letter_recog sample
parent
cdda5ec4
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
136 additions
and
0 deletions
+136
-0
letter_recog.py
samples/python2/letter_recog.py
+136
-0
No files found.
samples/python2/letter_recog.py
0 → 100644
View file @
07f28d33
import
numpy
as
np
import
cv2
def
load_base
(
fn
):
a
=
np
.
loadtxt
(
fn
,
np
.
float32
,
delimiter
=
','
,
converters
=
{
0
:
lambda
ch
:
ord
(
ch
)
-
ord
(
'A'
)
})
samples
,
responses
=
a
[:,
1
:],
a
[:,
0
]
return
samples
,
responses
# TODO move these to cv2
CV_ROW_SAMPLE
=
1
CV_VAR_NUMERICAL
=
0
CV_VAR_ORDERED
=
0
CV_VAR_CATEGORICAL
=
1
class
LetterStatModel
(
object
):
train_ratio
=
0.5
def
load
(
self
,
fn
):
self
.
model
.
load
(
fn
)
def
save
(
self
,
fn
):
self
.
model
.
save
(
fn
)
class
RTrees
(
LetterStatModel
):
def
__init__
(
self
):
self
.
model
=
cv2
.
RTrees
()
def
train
(
self
,
samples
,
responses
):
sample_n
,
var_n
=
samples
.
shape
var_types
=
np
.
array
([
CV_VAR_NUMERICAL
]
*
var_n
+
[
CV_VAR_CATEGORICAL
],
np
.
uint8
)
#CvRTParams(10,10,0,false,15,0,true,4,100,0.01f,CV_TERMCRIT_ITER));
params
=
dict
(
max_depth
=
10
)
self
.
model
.
train
(
samples
,
CV_ROW_SAMPLE
,
responses
,
varType
=
var_types
,
params
=
params
)
def
predict
(
self
,
samples
):
return
np
.
float32
(
[
self
.
model
.
predict
(
s
)
for
s
in
samples
]
)
class
KNearest
(
LetterStatModel
):
def
__init__
(
self
):
self
.
model
=
cv2
.
KNearest
()
def
train
(
self
,
samples
,
responses
):
self
.
model
.
train
(
samples
,
responses
)
def
predict
(
self
,
samples
):
retval
,
results
,
neigh_resp
,
dists
=
self
.
model
.
find_nearest
(
samples
,
k
=
10
)
return
results
.
ravel
()
class
Boost
(
LetterStatModel
):
def
__init__
(
self
):
self
.
model
=
cv2
.
Boost
()
self
.
class_n
=
26
def
train
(
self
,
samples
,
responses
):
sample_n
,
var_n
=
samples
.
shape
new_samples
=
self
.
unroll_samples
(
samples
)
new_responses
=
self
.
unroll_responses
(
responses
)
var_types
=
np
.
array
([
CV_VAR_NUMERICAL
]
*
var_n
+
[
CV_VAR_CATEGORICAL
,
CV_VAR_CATEGORICAL
],
np
.
uint8
)
#CvBoostParams(CvBoost::REAL, 100, 0.95, 5, false, 0 )
params
=
dict
(
max_depth
=
5
)
#, use_surrogates=False)
self
.
model
.
train
(
new_samples
,
CV_ROW_SAMPLE
,
new_responses
,
varType
=
var_types
,
params
=
params
)
def
predict
(
self
,
samples
):
new_samples
=
self
.
unroll_samples
(
samples
)
pred
=
np
.
array
(
[
self
.
model
.
predict
(
s
,
returnSum
=
True
)
for
s
in
new_samples
]
)
pred
=
pred
.
reshape
(
-
1
,
self
.
class_n
)
.
argmax
(
1
)
return
pred
def
unroll_samples
(
self
,
samples
):
sample_n
,
var_n
=
samples
.
shape
new_samples
=
np
.
zeros
((
sample_n
*
self
.
class_n
,
var_n
+
1
),
np
.
float32
)
new_samples
[:,:
-
1
]
=
np
.
repeat
(
samples
,
self
.
class_n
,
axis
=
0
)
new_samples
[:,
-
1
]
=
np
.
tile
(
np
.
arange
(
self
.
class_n
),
sample_n
)
return
new_samples
def
unroll_responses
(
self
,
responses
):
sample_n
=
len
(
responses
)
new_responses
=
np
.
zeros
(
sample_n
*
self
.
class_n
,
np
.
int32
)
resp_idx
=
np
.
int32
(
responses
+
np
.
arange
(
sample_n
)
*
self
.
class_n
)
new_responses
[
resp_idx
]
=
1
return
new_responses
class
SVM
(
LetterStatModel
):
train_ratio
=
0.1
def
__init__
(
self
):
self
.
model
=
cv2
.
SVM
()
def
train
(
self
,
samples
,
responses
):
params
=
dict
(
kernel_type
=
cv2
.
SVM_LINEAR
,
svm_type
=
cv2
.
SVM_C_SVC
,
C
=
1
)
self
.
model
.
train
(
samples
,
responses
,
params
=
params
)
def
predict
(
self
,
samples
):
return
np
.
float32
(
[
self
.
model
.
predict
(
s
)
for
s
in
samples
]
)
if
__name__
==
'__main__'
:
import
argparse
models
=
[
RTrees
,
KNearest
,
Boost
,
SVM
]
# MLP, NBayes
models
=
dict
(
[(
cls
.
__name__
.
lower
(),
cls
)
for
cls
in
models
]
)
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'-model'
,
default
=
'rtrees'
,
choices
=
models
.
keys
())
parser
.
add_argument
(
'-data'
,
nargs
=
1
,
default
=
'letter-recognition.data'
)
parser
.
add_argument
(
'-load'
,
nargs
=
1
)
parser
.
add_argument
(
'-save'
,
nargs
=
1
)
args
=
parser
.
parse_args
()
print
'loading data
%
s ...'
%
args
.
data
samples
,
responses
=
load_base
(
args
.
data
)
Model
=
models
[
args
.
model
]
model
=
Model
()
train_n
=
int
(
len
(
samples
)
*
model
.
train_ratio
)
if
args
.
load
is
None
:
print
'training
%
s ...'
%
Model
.
__name__
model
.
train
(
samples
[:
train_n
],
responses
[:
train_n
])
else
:
fn
=
args
.
load
[
0
]
print
'loading model from
%
s ...'
%
fn
model
.
load
(
fn
)
print
'testing...'
train_rate
=
np
.
mean
(
model
.
predict
(
samples
[:
train_n
])
==
responses
[:
train_n
])
test_rate
=
np
.
mean
(
model
.
predict
(
samples
[
train_n
:])
==
responses
[
train_n
:])
print
'train rate:
%
f test rate:
%
f'
%
(
train_rate
*
100
,
test_rate
*
100
)
if
args
.
save
is
not
None
:
fn
=
args
.
save
[
0
]
print
'saving model to
%
s ...'
%
fn
model
.
save
(
fn
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment