Commit 07d92d9e authored by Andrey Kamaev's avatar Andrey Kamaev

Fix android build warnings

parent 8325a28d
...@@ -81,46 +81,46 @@ Mat BOWMSCTrainer::cluster() const { ...@@ -81,46 +81,46 @@ Mat BOWMSCTrainer::cluster() const {
return cluster(mergedDescriptors); return cluster(mergedDescriptors);
} }
Mat BOWMSCTrainer::cluster(const Mat& descriptors) const { Mat BOWMSCTrainer::cluster(const Mat& _descriptors) const {
CV_Assert(!descriptors.empty()); CV_Assert(!_descriptors.empty());
// TODO: sort the descriptors before clustering. // TODO: sort the descriptors before clustering.
Mat icovar = Mat::eye(descriptors.cols,descriptors.cols,descriptors.type()); Mat icovar = Mat::eye(_descriptors.cols,_descriptors.cols,_descriptors.type());
vector<Mat> initialCentres; vector<Mat> initialCentres;
initialCentres.push_back(descriptors.row(0)); initialCentres.push_back(_descriptors.row(0));
for (int i = 1; i < descriptors.rows; i++) { for (int i = 1; i < _descriptors.rows; i++) {
double minDist = DBL_MAX; double minDist = DBL_MAX;
for (size_t j = 0; j < initialCentres.size(); j++) { for (size_t j = 0; j < initialCentres.size(); j++) {
minDist = std::min(minDist, minDist = std::min(minDist,
cv::Mahalanobis(descriptors.row(i),initialCentres[j], cv::Mahalanobis(_descriptors.row(i),initialCentres[j],
icovar)); icovar));
} }
if (minDist > clusterSize) if (minDist > clusterSize)
initialCentres.push_back(descriptors.row(i)); initialCentres.push_back(_descriptors.row(i));
} }
std::vector<std::list<cv::Mat> > clusters; std::vector<std::list<cv::Mat> > clusters;
clusters.resize(initialCentres.size()); clusters.resize(initialCentres.size());
for (int i = 0; i < descriptors.rows; i++) { for (int i = 0; i < _descriptors.rows; i++) {
int index = 0; double dist = 0, minDist = DBL_MAX; int index = 0; double dist = 0, minDist = DBL_MAX;
for (size_t j = 0; j < initialCentres.size(); j++) { for (size_t j = 0; j < initialCentres.size(); j++) {
dist = cv::Mahalanobis(descriptors.row(i),initialCentres[j],icovar); dist = cv::Mahalanobis(_descriptors.row(i),initialCentres[j],icovar);
if (dist < minDist) { if (dist < minDist) {
minDist = dist; minDist = dist;
index = (int)j; index = (int)j;
} }
} }
clusters[index].push_back(descriptors.row(i)); clusters[index].push_back(_descriptors.row(i));
} }
// TODO: throw away small clusters. // TODO: throw away small clusters.
Mat vocabulary; Mat vocabulary;
Mat centre = Mat::zeros(1,descriptors.cols,descriptors.type()); Mat centre = Mat::zeros(1,_descriptors.cols,_descriptors.type());
for (size_t i = 0; i < clusters.size(); i++) { for (size_t i = 0; i < clusters.size(); i++) {
centre.setTo(0); centre.setTo(0);
for (std::list<cv::Mat>::iterator Ci = clusters[i].begin(); Ci != clusters[i].end(); Ci++) { for (std::list<cv::Mat>::iterator Ci = clusters[i].begin(); Ci != clusters[i].end(); Ci++) {
......
...@@ -63,7 +63,7 @@ namespace of2 { ...@@ -63,7 +63,7 @@ namespace of2 {
static double logsumexp(double a, double b) { static double logsumexp(double a, double b) {
return a > b ? log(1 + exp(b - a)) + a : log(1 + exp(a - b)) + b; return a > b ? log(1 + exp(b - a)) + a : log(1 + exp(a - b)) + b;
} }
FabMap::FabMap(const Mat& _clTree, double _PzGe, FabMap::FabMap(const Mat& _clTree, double _PzGe,
double _PzGNe, int _flags, int _numSamples) : double _PzGNe, int _flags, int _numSamples) :
clTree(_clTree), PzGe(_PzGe), PzGNe(_PzGNe), flags( clTree(_clTree), PzGe(_PzGe), PzGNe(_PzGNe), flags(
...@@ -445,16 +445,16 @@ FabMap1::~FabMap1() { ...@@ -445,16 +445,16 @@ FabMap1::~FabMap1() {
} }
void FabMap1::getLikelihoods(const Mat& queryImgDescriptor, void FabMap1::getLikelihoods(const Mat& queryImgDescriptor,
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) { const vector<Mat>& testImageDescriptors, vector<IMatch>& matches) {
for (size_t i = 0; i < testImgDescriptors.size(); i++) { for (size_t i = 0; i < testImageDescriptors.size(); i++) {
bool zq, zpq, Lzq; bool zq, zpq, Lzq;
double logP = 0; double logP = 0;
for (int q = 0; q < clTree.cols; q++) { for (int q = 0; q < clTree.cols; q++) {
zq = queryImgDescriptor.at<float>(0,q) > 0; zq = queryImgDescriptor.at<float>(0,q) > 0;
zpq = queryImgDescriptor.at<float>(0,pq(q)) > 0; zpq = queryImgDescriptor.at<float>(0,pq(q)) > 0;
Lzq = testImgDescriptors[i].at<float>(0,q) > 0; Lzq = testImageDescriptors[i].at<float>(0,q) > 0;
logP += log((this->*PzGL)(q, zq, zpq, Lzq)); logP += log((this->*PzGL)(q, zq, zpq, Lzq));
...@@ -490,16 +490,16 @@ FabMapLUT::~FabMapLUT() { ...@@ -490,16 +490,16 @@ FabMapLUT::~FabMapLUT() {
} }
void FabMapLUT::getLikelihoods(const Mat& queryImgDescriptor, void FabMapLUT::getLikelihoods(const Mat& queryImgDescriptor,
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) { const vector<Mat>& testImageDescriptors, vector<IMatch>& matches) {
double precFactor = (double)pow(10.0, -precision); double precFactor = (double)pow(10.0, -precision);
for (size_t i = 0; i < testImgDescriptors.size(); i++) { for (size_t i = 0; i < testImageDescriptors.size(); i++) {
unsigned long long int logP = 0; unsigned long long int logP = 0;
for (int q = 0; q < clTree.cols; q++) { for (int q = 0; q < clTree.cols; q++) {
logP += table[q][(queryImgDescriptor.at<float>(0,pq(q)) > 0) + logP += table[q][(queryImgDescriptor.at<float>(0,pq(q)) > 0) +
((queryImgDescriptor.at<float>(0, q) > 0) << 1) + ((queryImgDescriptor.at<float>(0, q) > 0) << 1) +
((testImgDescriptors[i].at<float>(0,q) > 0) << 2)]; ((testImageDescriptors[i].at<float>(0,q) > 0) << 2)];
} }
matches.push_back(IMatch(0,(int)i,-precFactor*(double)logP,0)); matches.push_back(IMatch(0,(int)i,-precFactor*(double)logP,0));
} }
...@@ -518,7 +518,7 @@ FabMapFBO::~FabMapFBO() { ...@@ -518,7 +518,7 @@ FabMapFBO::~FabMapFBO() {
} }
void FabMapFBO::getLikelihoods(const Mat& queryImgDescriptor, void FabMapFBO::getLikelihoods(const Mat& queryImgDescriptor,
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) { const vector<Mat>& testImageDescriptors, vector<IMatch>& matches) {
std::multiset<WordStats> wordData; std::multiset<WordStats> wordData;
setWordStatistics(queryImgDescriptor, wordData); setWordStatistics(queryImgDescriptor, wordData);
...@@ -526,7 +526,7 @@ void FabMapFBO::getLikelihoods(const Mat& queryImgDescriptor, ...@@ -526,7 +526,7 @@ void FabMapFBO::getLikelihoods(const Mat& queryImgDescriptor,
vector<int> matchIndices; vector<int> matchIndices;
vector<IMatch> queryMatches; vector<IMatch> queryMatches;
for (size_t i = 0; i < testImgDescriptors.size(); i++) { for (size_t i = 0; i < testImageDescriptors.size(); i++) {
queryMatches.push_back(IMatch(0,(int)i,0,0)); queryMatches.push_back(IMatch(0,(int)i,0,0));
matchIndices.push_back((int)i); matchIndices.push_back((int)i);
} }
...@@ -543,7 +543,7 @@ void FabMapFBO::getLikelihoods(const Mat& queryImgDescriptor, ...@@ -543,7 +543,7 @@ void FabMapFBO::getLikelihoods(const Mat& queryImgDescriptor,
for (size_t i = 0; i < matchIndices.size(); i++) { for (size_t i = 0; i < matchIndices.size(); i++) {
bool Lzq = bool Lzq =
testImgDescriptors[matchIndices[i]].at<float>(0,wordIter->q) > 0; testImageDescriptors[matchIndices[i]].at<float>(0,wordIter->q) > 0;
queryMatches[matchIndices[i]].likelihood += queryMatches[matchIndices[i]].likelihood +=
log((this->*PzGL)(wordIter->q,zq,zpq,Lzq)); log((this->*PzGL)(wordIter->q,zq,zpq,Lzq));
currBest = currBest =
...@@ -689,17 +689,17 @@ void FabMap2::add(const vector<Mat>& queryImgDescriptors) { ...@@ -689,17 +689,17 @@ void FabMap2::add(const vector<Mat>& queryImgDescriptors) {
} }
void FabMap2::getLikelihoods(const Mat& queryImgDescriptor, void FabMap2::getLikelihoods(const Mat& queryImgDescriptor,
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) { const vector<Mat>& testImageDescriptors, vector<IMatch>& matches) {
if (&testImgDescriptors== &(this->testImgDescriptors)) { if (&testImageDescriptors == &testImgDescriptors) {
getIndexLikelihoods(queryImgDescriptor, testDefaults, testInvertedMap, getIndexLikelihoods(queryImgDescriptor, testDefaults, testInvertedMap,
matches); matches);
} else { } else {
CV_Assert(!(flags & MOTION_MODEL)); CV_Assert(!(flags & MOTION_MODEL));
vector<double> defaults; vector<double> defaults;
std::map<int, vector<int> > invertedMap; std::map<int, vector<int> > invertedMap;
for (size_t i = 0; i < testImgDescriptors.size(); i++) { for (size_t i = 0; i < testImageDescriptors.size(); i++) {
addToIndex(testImgDescriptors[i],defaults,invertedMap); addToIndex(testImageDescriptors[i],defaults,invertedMap);
} }
getIndexLikelihoods(queryImgDescriptor, defaults, invertedMap, matches); getIndexLikelihoods(queryImgDescriptor, defaults, invertedMap, matches);
} }
......
This diff is collapsed.
/* /*
* pca.cpp * pca.cpp
* *
* Author: * Author:
* Kevin Hughes <kevinhughes27[at]gmail[dot]com> * Kevin Hughes <kevinhughes27[at]gmail[dot]com>
* *
* Special Thanks to: * Special Thanks to:
* Philipp Wagner <bytefish[at]gmx[dot]de> * Philipp Wagner <bytefish[at]gmx[dot]de>
* *
* This program demonstrates how to use OpenCV PCA with a * This program demonstrates how to use OpenCV PCA with a
* specified amount of variance to retain. The effect * specified amount of variance to retain. The effect
* is illustrated further by using a trackbar to * is illustrated further by using a trackbar to
* change the value for retained varaince. * change the value for retained varaince.
...@@ -17,9 +17,9 @@ ...@@ -17,9 +17,9 @@
* on this list of images. The author recommends using * on this list of images. The author recommends using
* the first 15 faces of the AT&T face data set: * the first 15 faces of the AT&T face data set:
* http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html * http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
* *
* so for example your input text file would look like this: * so for example your input text file would look like this:
* *
* <path_to_at&t_faces>/orl_faces/s1/1.pgm * <path_to_at&t_faces>/orl_faces/s1/1.pgm
* <path_to_at&t_faces>/orl_faces/s2/1.pgm * <path_to_at&t_faces>/orl_faces/s2/1.pgm
* <path_to_at&t_faces>/orl_faces/s3/1.pgm * <path_to_at&t_faces>/orl_faces/s3/1.pgm
...@@ -50,7 +50,7 @@ using namespace std; ...@@ -50,7 +50,7 @@ using namespace std;
/////////////////////// ///////////////////////
// Functions // Functions
void read_imgList(const string& filename, vector<Mat>& images) { static void read_imgList(const string& filename, vector<Mat>& images) {
std::ifstream file(filename.c_str(), ifstream::in); std::ifstream file(filename.c_str(), ifstream::in);
if (!file) { if (!file) {
string error_message = "No valid input file was given, please check the given filename."; string error_message = "No valid input file was given, please check the given filename.";
...@@ -62,19 +62,19 @@ void read_imgList(const string& filename, vector<Mat>& images) { ...@@ -62,19 +62,19 @@ void read_imgList(const string& filename, vector<Mat>& images) {
} }
} }
Mat formatImagesForPCA(const vector<Mat> &data) static Mat formatImagesForPCA(const vector<Mat> &data)
{ {
Mat dst(data.size(), data[0].rows*data[0].cols, CV_32F); Mat dst(data.size(), data[0].rows*data[0].cols, CV_32F);
for(unsigned int i = 0; i < data.size(); i++) for(unsigned int i = 0; i < data.size(); i++)
{ {
Mat image_row = data[i].clone().reshape(1,1); Mat image_row = data[i].clone().reshape(1,1);
Mat row_i = dst.row(i); Mat row_i = dst.row(i);
image_row.convertTo(row_i,CV_32F); image_row.convertTo(row_i,CV_32F);
} }
return dst; return dst;
} }
Mat toGrayscale(InputArray _src) { static Mat toGrayscale(InputArray _src) {
Mat src = _src.getMat(); Mat src = _src.getMat();
// only allow one channel // only allow one channel
if(src.channels() != 1) { if(src.channels() != 1) {
...@@ -95,22 +95,22 @@ struct params ...@@ -95,22 +95,22 @@ struct params
string winName; string winName;
}; };
void onTrackbar(int pos, void* ptr) static void onTrackbar(int pos, void* ptr)
{ {
cout << "Retained Variance = " << pos << "% "; cout << "Retained Variance = " << pos << "% ";
cout << "re-calculating PCA..." << std::flush; cout << "re-calculating PCA..." << std::flush;
double var = pos / 100.0; double var = pos / 100.0;
struct params *p = (struct params *)ptr; struct params *p = (struct params *)ptr;
p->pca = PCA(p->data, cv::Mat(), CV_PCA_DATA_AS_ROW, var); p->pca = PCA(p->data, cv::Mat(), CV_PCA_DATA_AS_ROW, var);
Mat point = p->pca.project(p->data.row(0)); Mat point = p->pca.project(p->data.row(0));
Mat reconstruction = p->pca.backProject(point); Mat reconstruction = p->pca.backProject(point);
reconstruction = reconstruction.reshape(p->ch, p->rows); reconstruction = reconstruction.reshape(p->ch, p->rows);
reconstruction = toGrayscale(reconstruction); reconstruction = toGrayscale(reconstruction);
imshow(p->winName, reconstruction); imshow(p->winName, reconstruction);
cout << "done! # of principal components: " << p->pca.eigenvectors.rows << endl; cout << "done! # of principal components: " << p->pca.eigenvectors.rows << endl;
} }
...@@ -118,19 +118,19 @@ void onTrackbar(int pos, void* ptr) ...@@ -118,19 +118,19 @@ void onTrackbar(int pos, void* ptr)
/////////////////////// ///////////////////////
// Main // Main
int main(int argc, char** argv) int main(int argc, char** argv)
{ {
if (argc != 2) { if (argc != 2) {
cout << "usage: " << argv[0] << " <image_list.txt>" << endl; cout << "usage: " << argv[0] << " <image_list.txt>" << endl;
exit(1); exit(1);
} }
// Get the path to your CSV. // Get the path to your CSV.
string imgList = string(argv[1]); string imgList = string(argv[1]);
// vector to hold the images // vector to hold the images
vector<Mat> images; vector<Mat> images;
// Read in the data. This can fail if not valid // Read in the data. This can fail if not valid
try { try {
read_imgList(imgList, images); read_imgList(imgList, images);
...@@ -138,29 +138,29 @@ int main(int argc, char** argv) ...@@ -138,29 +138,29 @@ int main(int argc, char** argv)
cerr << "Error opening file \"" << imgList << "\". Reason: " << e.msg << endl; cerr << "Error opening file \"" << imgList << "\". Reason: " << e.msg << endl;
exit(1); exit(1);
} }
// Quit if there are not enough images for this demo. // Quit if there are not enough images for this demo.
if(images.size() <= 1) { if(images.size() <= 1) {
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!"; string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(CV_StsError, error_message); CV_Error(CV_StsError, error_message);
} }
// Reshape and stack images into a rowMatrix // Reshape and stack images into a rowMatrix
Mat data = formatImagesForPCA(images); Mat data = formatImagesForPCA(images);
// perform PCA // perform PCA
PCA pca(data, cv::Mat(), CV_PCA_DATA_AS_ROW, 0.95); // trackbar is initially set here, also this is a common value for retainedVariance PCA pca(data, cv::Mat(), CV_PCA_DATA_AS_ROW, 0.95); // trackbar is initially set here, also this is a common value for retainedVariance
// Demonstration of the effect of retainedVariance on the first image // Demonstration of the effect of retainedVariance on the first image
Mat point = pca.project(data.row(0)); // project into the eigenspace, thus the image becomes a "point" Mat point = pca.project(data.row(0)); // project into the eigenspace, thus the image becomes a "point"
Mat reconstruction = pca.backProject(point); // re-create the image from the "point" Mat reconstruction = pca.backProject(point); // re-create the image from the "point"
reconstruction = reconstruction.reshape(images[0].channels(), images[0].rows); // reshape from a row vector into image shape reconstruction = reconstruction.reshape(images[0].channels(), images[0].rows); // reshape from a row vector into image shape
reconstruction = toGrayscale(reconstruction); // re-scale for displaying purposes reconstruction = toGrayscale(reconstruction); // re-scale for displaying purposes
// init highgui window // init highgui window
string winName = "Reconstruction | press 'q' to quit"; string winName = "Reconstruction | press 'q' to quit";
namedWindow(winName, CV_WINDOW_NORMAL); namedWindow(winName, CV_WINDOW_NORMAL);
// params struct to pass to the trackbar handler // params struct to pass to the trackbar handler
params p; params p;
p.data = data; p.data = data;
...@@ -168,17 +168,17 @@ int main(int argc, char** argv) ...@@ -168,17 +168,17 @@ int main(int argc, char** argv)
p.rows = images[0].rows; p.rows = images[0].rows;
p.pca = pca; p.pca = pca;
p.winName = winName; p.winName = winName;
// create the tracbar // create the tracbar
int pos = 95; int pos = 95;
createTrackbar("Retained Variance (%)", winName, &pos, 100, onTrackbar, (void*)&p); createTrackbar("Retained Variance (%)", winName, &pos, 100, onTrackbar, (void*)&p);
// display until user presses q // display until user presses q
imshow(winName, reconstruction); imshow(winName, reconstruction);
char key = 0; char key = 0;
while(key != 'q') while(key != 'q')
key = waitKey(); key = waitKey();
return 0; return 0;
} }
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment