Commit 06f4a564 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

converted flood fill, getrectsubpix & cornersubpix to C++

parent c527340c
......@@ -7,10 +7,11 @@
// copy or use the software.
//
//
// Intel License Agreement
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
......@@ -23,7 +24,7 @@
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
......@@ -40,119 +41,43 @@
//M*/
#include "precomp.hpp"
CV_IMPL void
cvFindCornerSubPix( const void* srcarr, CvPoint2D32f* corners,
int count, CvSize win, CvSize zeroZone,
CvTermCriteria criteria )
void cv::cornerSubPix( InputArray _image, InputOutputArray _corners,
Size win, Size zeroZone, TermCriteria criteria )
{
cv::AutoBuffer<float> buffer;
const int MAX_ITERS = 100;
const float drv[] = { -1.f, 0.f, 1.f };
float *maskX;
float *maskY;
float *mask;
float *src_buffer;
float *gx_buffer;
float *gy_buffer;
int win_w = win.width * 2 + 1, win_h = win.height * 2 + 1;
int win_rect_size = (win_w + 4) * (win_h + 4);
double coeff;
CvSize size, src_buf_size;
int i, j, k, pt_i;
int max_iters = 10;
double eps = 0;
CvMat stub, *src = (CvMat*)srcarr;
src = cvGetMat( srcarr, &stub );
if( CV_MAT_TYPE( src->type ) != CV_8UC1 )
CV_Error( CV_StsUnsupportedFormat, "The source image must be 8-bit single-channel (CV_8UC1)" );
int i, j, k;
int max_iters = (criteria.type & CV_TERMCRIT_ITER) ? MIN(MAX(criteria.maxCount, 1), MAX_ITERS) : MAX_ITERS;
double eps = (criteria.type & CV_TERMCRIT_EPS) ? MAX(criteria.epsilon, 0.) : 0;
eps *= eps; // use square of error in comparsion operations
if( !corners )
CV_Error( CV_StsNullPtr, "" );
if( count < 0 )
CV_Error( CV_StsBadSize, "" );
cv::Mat src = _image.getMat(), cornersmat = _corners.getMat();
int count = cornersmat.checkVector(2, CV_32F);
CV_Assert( count >= 0 );
Point2f* corners = (Point2f*)cornersmat.data;
if( count == 0 )
return;
if( win.width <= 0 || win.height <= 0 )
CV_Error( CV_StsBadSize, "" );
size = cvGetMatSize( src );
CV_Assert( win.width > 0 && win.height > 0 );
CV_Assert( src.cols >= win_w + 4 && src.rows >= win_h + 4 );
CV_Assert( src.channels() == 1 );
if( size.width < win_w + 4 || size.height < win_h + 4 )
CV_Error( CV_StsBadSize, "" );
/* initialize variables, controlling loop termination */
switch( criteria.type )
{
case CV_TERMCRIT_ITER:
eps = 0.f;
max_iters = criteria.max_iter;
break;
case CV_TERMCRIT_EPS:
eps = criteria.epsilon;
max_iters = MAX_ITERS;
break;
case CV_TERMCRIT_ITER | CV_TERMCRIT_EPS:
eps = criteria.epsilon;
max_iters = criteria.max_iter;
break;
default:
assert( 0 );
CV_Error( CV_StsBadFlag, "" );
}
eps = MAX( eps, 0 );
eps *= eps; /* use square of error in comparsion operations. */
max_iters = MAX( max_iters, 1 );
max_iters = MIN( max_iters, MAX_ITERS );
buffer.allocate( win_rect_size * 5 + win_w + win_h + 32 );
/* assign pointers */
maskX = buffer;
maskY = maskX + win_w + 4;
mask = maskY + win_h + 4;
src_buffer = mask + win_w * win_h;
gx_buffer = src_buffer + win_rect_size;
gy_buffer = gx_buffer + win_rect_size;
coeff = 1. / (win.width * win.width);
/* calculate mask */
for( i = -win.width, k = 0; i <= win.width; i++, k++ )
{
maskX[k] = (float)exp( -i * i * coeff );
}
if( win.width == win.height )
{
maskY = maskX;
}
else
{
coeff = 1. / (win.height * win.height);
for( i = -win.height, k = 0; i <= win.height; i++, k++ )
{
maskY[k] = (float) exp( -i * i * coeff );
}
}
Mat maskm(win_h, win_w, CV_32F), subpix_buf(win_h+2, win_w+2, CV_32F);
float* mask = maskm.ptr<float>();
for( i = 0; i < win_h; i++ )
{
float y = (float)(i - win.height)/win.height;
float vy = std::exp(-y*y);
for( j = 0; j < win_w; j++ )
{
mask[i * win_w + j] = maskX[j] * maskY[i];
float x = (float)(j - win.width)/win.width;
mask[i * win_w + j] = (float)(vy*std::exp(-x*x));
}
}
/* make zero_zone */
// make zero_zone
if( zeroZone.width >= 0 && zeroZone.height >= 0 &&
zeroZone.width * 2 + 1 < win_w && zeroZone.height * 2 + 1 < win_h )
{
......@@ -165,46 +90,31 @@ cvFindCornerSubPix( const void* srcarr, CvPoint2D32f* corners,
}
}
/* set sizes of image rectangles, used in convolutions */
src_buf_size.width = win_w + 2;
src_buf_size.height = win_h + 2;
/* do optimization loop for all the points */
for( pt_i = 0; pt_i < count; pt_i++ )
// do optimization loop for all the points
for( int pt_i = 0; pt_i < count; pt_i++ )
{
CvPoint2D32f cT = corners[pt_i], cI = cT;
Point2f cT = corners[pt_i], cI = cT;
int iter = 0;
double err;
double err = 0;
do
{
CvPoint2D32f cI2;
double a, b, c, bb1, bb2;
IPPI_CALL( icvGetRectSubPix_8u32f_C1R( (uchar*)src->data.ptr, src->step, size,
src_buffer, (win_w + 2) * sizeof( src_buffer[0] ),
cvSize( win_w + 2, win_h + 2 ), cI ));
/* calc derivatives */
icvSepConvSmall3_32f( src_buffer+src_buf_size.width, src_buf_size.width * sizeof(src_buffer[0]),
gx_buffer, win_w * sizeof(gx_buffer[0]),
src_buf_size, drv, NULL, NULL );
icvSepConvSmall3_32f( src_buffer+1, src_buf_size.width * sizeof(src_buffer[0]),
gy_buffer, win_w * sizeof(gy_buffer[0]),
src_buf_size, NULL, drv, NULL );
Point2f cI2;
double a = 0, b = 0, c = 0, bb1 = 0, bb2 = 0;
a = b = c = bb1 = bb2 = 0;
getRectSubPix(src, Size(win_w+2, win_h+2), cI, subpix_buf, subpix_buf.type());
const float* subpix = &subpix_buf.at<float>(1,1);
/* process gradient */
for( i = 0, k = 0; i < win_h; i++ )
// process gradient
for( i = 0, k = 0; i < win_h; i++, subpix += win_w + 2 )
{
double py = i - win.height;
for( j = 0; j < win_w; j++, k++ )
{
double m = mask[k];
double tgx = gx_buffer[k];
double tgy = gy_buffer[k];
double tgx = subpix[1] - subpix[-1];
double tgy = subpix[win_w+2] - subpix[-win_w-2];
double gxx = tgx * tgx * m;
double gxy = tgx * tgy * m;
double gyy = tgy * tgy * m;
......@@ -220,46 +130,38 @@ cvFindCornerSubPix( const void* srcarr, CvPoint2D32f* corners,
}
double det=a*c-b*b;
if( fabs( det ) > DBL_EPSILON*DBL_EPSILON )
{
if( fabs( det ) <= DBL_EPSILON*DBL_EPSILON )
break;
// 2x2 matrix inversion
double scale=1.0/det;
cI2.x = (float)(cI.x + c*scale*bb1 - b*scale*bb2);
cI2.y = (float)(cI.y - b*scale*bb1 + a*scale*bb2);
}
else
{
cI2 = cI;
}
err = (cI2.x - cI.x) * (cI2.x - cI.x) + (cI2.y - cI.y) * (cI2.y - cI.y);
cI = cI2;
}
while( ++iter < max_iters && err > eps );
/* if new point is too far from initial, it means poor convergence.
leave initial point as the result */
// if new point is too far from initial, it means poor convergence.
// leave initial point as the result
if( fabs( cI.x - cT.x ) > win.width || fabs( cI.y - cT.y ) > win.height )
{
cI = cT;
}
corners[pt_i] = cI; /* store result */
corners[pt_i] = cI;
}
}
void cv::cornerSubPix( InputArray _image, InputOutputArray _corners,
Size winSize, Size zeroZone,
TermCriteria criteria )
CV_IMPL void
cvFindCornerSubPix( const void* srcarr, CvPoint2D32f* _corners,
int count, CvSize win, CvSize zeroZone,
CvTermCriteria criteria )
{
Mat corners = _corners.getMat();
int ncorners = corners.checkVector(2);
CV_Assert( ncorners >= 0 && corners.depth() == CV_32F );
Mat image = _image.getMat();
CvMat c_image = image;
if(!_corners || count <= 0)
return;
cvFindCornerSubPix( &c_image, (CvPoint2D32f*)corners.data, ncorners,
winSize, zeroZone, criteria );
cv::Mat src = cv::cvarrToMat(srcarr), corners(count, 1, CV_32FC2, _corners);
cv::cornerSubPix(src, corners, win, zeroZone, criteria);
}
/* End of file. */
......@@ -43,83 +43,6 @@
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
static IppStatus sts = ippInit();
#endif
/****************************************************************************************/
/* lightweight convolution with 3x3 kernel */
void icvSepConvSmall3_32f( float* src, int src_step, float* dst, int dst_step,
CvSize src_size, const float* kx, const float* ky, float* buffer )
{
int dst_width, buffer_step = 0;
int x, y;
bool fast_kx = true, fast_ky = true;
assert( src && dst && src_size.width > 2 && src_size.height > 2 &&
(src_step & 3) == 0 && (dst_step & 3) == 0 &&
(kx || ky) && (buffer || !kx || !ky));
src_step /= sizeof(src[0]);
dst_step /= sizeof(dst[0]);
dst_width = src_size.width - 2;
if( !kx )
{
/* set vars, so that vertical convolution
will write results into destination ROI and
horizontal convolution won't run */
src_size.width = dst_width;
buffer_step = dst_step;
buffer = dst;
dst_width = 0;
}
else
fast_kx = kx[1] == 0.f && kx[0] == -kx[2] && kx[0] == -1.f;
assert( src_step >= src_size.width && dst_step >= dst_width );
src_size.height -= 2;
if( !ky )
{
/* set vars, so that vertical convolution won't run and
horizontal convolution will write results into destination ROI */
src_size.height += 2;
buffer_step = src_step;
buffer = src;
src_size.width = 0;
}
else
fast_ky = ky[1] == 0.f && ky[0] == -ky[2] && ky[0] == -1.f;
for( y = 0; y < src_size.height; y++, src += src_step,
dst += dst_step,
buffer += buffer_step )
{
float* src2 = src + src_step;
float* src3 = src + src_step*2;
if( fast_ky )
for( x = 0; x < src_size.width; x++ )
{
buffer[x] = (float)(src3[x] - src[x]);
}
else
for( x = 0; x < src_size.width; x++ )
{
buffer[x] = (float)(ky[0]*src[x] + ky[1]*src2[x] + ky[2]*src3[x]);
}
if( fast_kx )
for( x = 0; x < dst_width; x++ )
{
dst[x] = (float)(buffer[x+2] - buffer[x]);
}
else
for( x = 0; x < dst_width; x++ )
{
dst[x] = (float)(kx[0]*buffer[x] + kx[1]*buffer[x+1] + kx[2]*buffer[x+2]);
}
}
}
/****************************************************************************************\
Sobel & Scharr Derivative Filters
......
......@@ -7,10 +7,11 @@
// copy or use the software.
//
//
// Intel License Agreement
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
......@@ -23,7 +24,7 @@
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
......@@ -41,7 +42,10 @@
#include "precomp.hpp"
typedef struct CvFFillSegment
namespace cv
{
struct FFillSegment
{
ushort y;
ushort l;
......@@ -49,11 +53,13 @@ typedef struct CvFFillSegment
ushort prevl;
ushort prevr;
short dir;
}
CvFFillSegment;
};
#define UP 1
#define DOWN -1
enum
{
UP = 1,
DOWN = -1
};
#define ICV_PUSH( Y, L, R, PREV_L, PREV_R, DIR ) \
{ \
......@@ -65,7 +71,7 @@ CvFFillSegment;
tail->dir = (short)(DIR); \
if( ++tail == buffer_end ) \
{ \
buffer->resize(buffer->size() * 2); \
buffer->resize(buffer->size() * 3/2); \
tail = &buffer->front() + (tail - head); \
head = &buffer->front(); \
buffer_end = head + buffer->size(); \
......@@ -83,23 +89,52 @@ CvFFillSegment;
DIR = tail->dir; \
}
/****************************************************************************************\
* Simple Floodfill (repainting single-color connected component) *
\****************************************************************************************/
struct ConnectedComp
{
ConnectedComp();
Rect rect;
Point pt;
int threshold;
int label;
int area;
int harea;
int carea;
int perimeter;
int nholes;
int ninflections;
double mx;
double my;
Scalar avg;
Scalar sdv;
};
ConnectedComp::ConnectedComp()
{
rect = Rect(0, 0, 0, 0);
pt = Point(-1, -1);
threshold = -1;
label = -1;
area = harea = carea = perimeter = nholes = ninflections = 0;
mx = my = 0;
avg = sdv = Scalar::all(0);
}
// Simple Floodfill (repainting single-color connected component)
template<typename _Tp>
static void
icvFloodFill_CnIR( uchar* pImage, int step, CvSize roi, CvPoint seed,
_Tp newVal, CvConnectedComp* region, int flags,
std::vector<CvFFillSegment>* buffer )
floodFill_CnIR( Mat& image, Point seed,
_Tp newVal, ConnectedComp* region, int flags,
std::vector<FFillSegment>* buffer )
{
typedef typename cv::DataType<_Tp>::channel_type _CTp;
_Tp* img = (_Tp*)(pImage + step * seed.y);
typedef typename DataType<_Tp>::channel_type _CTp;
_Tp* img = (_Tp*)(image.data + image.step * seed.y);
Size roi = image.size();
int i, L, R;
int area = 0;
int XMin, XMax, YMin = seed.y, YMax = seed.y;
int _8_connectivity = (flags & 255) == 8;
CvFFillSegment* buffer_end = &buffer->front() + buffer->size(), *head = &buffer->front(), *tail = &buffer->front();
FFillSegment* buffer_end = &buffer->front() + buffer->size(), *head = &buffer->front(), *tail = &buffer->front();
L = R = XMin = XMax = seed.x;
......@@ -142,7 +177,7 @@ icvFloodFill_CnIR( uchar* pImage, int step, CvSize roi, CvPoint seed,
for( k = 0; k < 3; k++ )
{
dir = data[k][0];
img = (_Tp*)(pImage + (YC + dir) * step);
img = (_Tp*)(image.data + (YC + dir) * image.step);
int left = data[k][1];
int right = data[k][2];
......@@ -169,12 +204,12 @@ icvFloodFill_CnIR( uchar* pImage, int step, CvSize roi, CvPoint seed,
if( region )
{
region->pt = seed;
region->area = area;
region->rect.x = XMin;
region->rect.y = YMin;
region->rect.width = XMax - XMin + 1;
region->rect.height = YMax - YMin + 1;
region->value = cv::Scalar(newVal);
}
}
......@@ -192,12 +227,12 @@ struct Diff8uC1
struct Diff8uC3
{
Diff8uC3(cv::Vec3b _lo, cv::Vec3b _up)
Diff8uC3(Vec3b _lo, Vec3b _up)
{
for( int k = 0; k < 3; k++ )
lo[k] = _lo[k], interval[k] = _lo[k] + _up[k];
}
bool operator()(const cv::Vec3b* a, const cv::Vec3b* b) const
bool operator()(const Vec3b* a, const Vec3b* b) const
{
return (unsigned)(a[0][0] - b[0][0] + lo[0]) <= interval[0] &&
(unsigned)(a[0][1] - b[0][1] + lo[1]) <= interval[1] &&
......@@ -233,37 +268,30 @@ struct DiffC3
};
typedef DiffC1<int> Diff32sC1;
typedef DiffC3<cv::Vec3i> Diff32sC3;
typedef DiffC3<Vec3i> Diff32sC3;
typedef DiffC1<float> Diff32fC1;
typedef DiffC3<cv::Vec3f> Diff32fC3;
typedef DiffC3<Vec3f> Diff32fC3;
static cv::Vec3i& operator += (cv::Vec3i& a, const cv::Vec3b& b)
{
a[0] += b[0];
a[1] += b[1];
a[2] += b[2];
return a;
}
template<typename _Tp, typename _WTp, class Diff>
template<typename _Tp, typename _MTp, typename _WTp, class Diff>
static void
icvFloodFillGrad_CnIR( uchar* pImage, int step, uchar* pMask, int maskStep,
CvSize /*roi*/, CvPoint seed, _Tp newVal, Diff diff,
CvConnectedComp* region, int flags,
std::vector<CvFFillSegment>* buffer )
floodFillGrad_CnIR( Mat& image, Mat& msk,
Point seed, _Tp newVal, _MTp newMaskVal,
Diff diff, ConnectedComp* region, int flags,
std::vector<FFillSegment>* buffer )
{
typedef typename cv::DataType<_Tp>::channel_type _CTp;
typedef typename DataType<_Tp>::channel_type _CTp;
int step = (int)image.step, maskStep = (int)msk.step;
uchar* pImage = image.data;
_Tp* img = (_Tp*)(pImage + step*seed.y);
uchar* mask = (pMask += maskStep + 1) + maskStep*seed.y;
uchar* pMask = msk.data + maskStep + sizeof(_MTp);
_MTp* mask = (_MTp*)(pMask + maskStep*seed.y);
int i, L, R;
int area = 0;
_WTp sum = _WTp((typename cv::DataType<_Tp>::channel_type)0);
int XMin, XMax, YMin = seed.y, YMax = seed.y;
int _8_connectivity = (flags & 255) == 8;
int fixedRange = flags & CV_FLOODFILL_FIXED_RANGE;
int fillImage = (flags & CV_FLOODFILL_MASK_ONLY) == 0;
uchar newMaskVal = (uchar)(flags & 0xff00 ? flags >> 8 : 1);
CvFFillSegment* buffer_end = &buffer->front() + buffer->size(), *head = &buffer->front(), *tail = &buffer->front();
int fixedRange = flags & FLOODFILL_FIXED_RANGE;
int fillImage = (flags & FLOODFILL_MASK_ONLY) == 0;
FFillSegment* buffer_end = &buffer->front() + buffer->size(), *head = &buffer->front(), *tail = &buffer->front();
L = R = seed.x;
if( mask[L] )
......@@ -323,7 +351,7 @@ icvFloodFillGrad_CnIR( uchar* pImage, int step, uchar* pMask, int maskStep,
dir = data[k][0];
img = (_Tp*)(pImage + (YC + dir) * step);
_Tp* img1 = (_Tp*)(pImage + YC * step);
mask = pMask + (YC + dir) * maskStep;
mask = (_MTp*)(pMask + (YC + dir) * maskStep);
int left = data[k][1];
int right = data[k][2];
......@@ -401,56 +429,40 @@ icvFloodFillGrad_CnIR( uchar* pImage, int step, uchar* pMask, int maskStep,
if( fillImage )
for( i = L; i <= R; i++ )
img[i] = newVal;
else if( region )
/*else if( region )
for( i = L; i <= R; i++ )
sum += img[i];
sum += img[i];*/
}
if( region )
{
region->pt = seed;
region->label = saturate_cast<int>(newMaskVal);
region->area = area;
region->rect.x = XMin;
region->rect.y = YMin;
region->rect.width = XMax - XMin + 1;
region->rect.height = YMax - YMin + 1;
if( fillImage )
region->value = cv::Scalar(newVal);
else
{
double iarea = area ? 1./area : 0;
region->value = cv::Scalar(sum*iarea);
}
}
}
}
/****************************************************************************************\
* External Functions *
\****************************************************************************************/
typedef void (*CvFloodFillFunc)(
void* img, int step, CvSize size, CvPoint seed, void* newval,
CvConnectedComp* comp, int flags, void* buffer, int cn );
typedef void (*CvFloodFillGradFunc)(
void* img, int step, uchar* mask, int maskStep, CvSize size,
CvPoint seed, void* newval, void* d_lw, void* d_up, void* ccomp,
int flags, void* buffer, int cn );
CV_IMPL void
cvFloodFill( CvArr* arr, CvPoint seed_point,
CvScalar newVal, CvScalar lo_diff, CvScalar up_diff,
CvConnectedComp* comp, int flags, CvArr* maskarr )
int cv::floodFill( InputOutputArray _image, InputOutputArray _mask,
Point seedPoint, Scalar newVal, Rect* rect,
Scalar loDiff, Scalar upDiff, int flags )
{
cv::Ptr<CvMat> tempMask;
std::vector<CvFFillSegment> buffer;
ConnectedComp comp;
vector<FFillSegment> buffer;
if( comp )
memset( comp, 0, sizeof(*comp) );
if( rect )
*rect = Rect();
int i, type, depth, cn, is_simple;
int buffer_size, connectivity = flags & 255;
int i, connectivity = flags & 255;
union {
uchar b[4];
int i[4];
......@@ -459,166 +471,148 @@ cvFloodFill( CvArr* arr, CvPoint seed_point,
} nv_buf;
nv_buf._[0] = nv_buf._[1] = nv_buf._[2] = nv_buf._[3] = 0;
struct { cv::Vec3b b; cv::Vec3i i; cv::Vec3f f; } ld_buf, ud_buf;
CvMat stub, *img = cvGetMat(arr, &stub);
CvMat maskstub, *mask = (CvMat*)maskarr;
CvSize size;
struct { Vec3b b; Vec3i i; Vec3f f; } ld_buf, ud_buf;
Mat img = _image.getMat(), mask;
if( !_mask.empty() )
mask = _mask.getMat();
Size size = img.size();
type = CV_MAT_TYPE( img->type );
depth = CV_MAT_DEPTH(type);
cn = CV_MAT_CN(type);
int type = img.type();
int depth = img.depth();
int cn = img.channels();
if( connectivity == 0 )
connectivity = 4;
else if( connectivity != 4 && connectivity != 8 )
CV_Error( CV_StsBadFlag, "Connectivity must be 4, 0(=4) or 8" );
is_simple = mask == 0 && (flags & CV_FLOODFILL_MASK_ONLY) == 0;
bool is_simple = mask.empty() && (flags & FLOODFILL_MASK_ONLY) == 0;
for( i = 0; i < cn; i++ )
{
if( lo_diff.val[i] < 0 || up_diff.val[i] < 0 )
if( loDiff[i] < 0 || upDiff[i] < 0 )
CV_Error( CV_StsBadArg, "lo_diff and up_diff must be non-negative" );
is_simple &= fabs(lo_diff.val[i]) < DBL_EPSILON && fabs(up_diff.val[i]) < DBL_EPSILON;
is_simple = is_simple && fabs(loDiff[i]) < DBL_EPSILON && fabs(upDiff[i]) < DBL_EPSILON;
}
size = cvGetMatSize( img );
if( (unsigned)seed_point.x >= (unsigned)size.width ||
(unsigned)seed_point.y >= (unsigned)size.height )
if( (unsigned)seedPoint.x >= (unsigned)size.width ||
(unsigned)seedPoint.y >= (unsigned)size.height )
CV_Error( CV_StsOutOfRange, "Seed point is outside of image" );
cvScalarToRawData( &newVal, &nv_buf, type, 0 );
buffer_size = MAX( size.width, size.height ) * 2;
scalarToRawData( newVal, &nv_buf, type, 0);
size_t buffer_size = MAX( size.width, size.height ) * 2;
buffer.resize( buffer_size );
if( is_simple )
{
int elem_size = CV_ELEM_SIZE(type);
const uchar* seed_ptr = img->data.ptr + img->step*seed_point.y + elem_size*seed_point.x;
int elem_size = img.elemSize();
const uchar* seed_ptr = img.data + img.step*seedPoint.y + elem_size*seedPoint.x;
for(i = 0; i < elem_size; i++)
if (seed_ptr[i] != nv_buf.b[i])
break;
if (i != elem_size)
if( i != elem_size )
{
if( type == CV_8UC1 )
icvFloodFill_CnIR(img->data.ptr, img->step, size, seed_point, nv_buf.b[0],
comp, flags, &buffer);
floodFill_CnIR(img, seedPoint, nv_buf.b[0], &comp, flags, &buffer);
else if( type == CV_8UC3 )
icvFloodFill_CnIR(img->data.ptr, img->step, size, seed_point, cv::Vec3b(nv_buf.b),
comp, flags, &buffer);
floodFill_CnIR(img, seedPoint, Vec3b(nv_buf.b), &comp, flags, &buffer);
else if( type == CV_32SC1 )
icvFloodFill_CnIR(img->data.ptr, img->step, size, seed_point, nv_buf.i[0],
comp, flags, &buffer);
floodFill_CnIR(img, seedPoint, nv_buf.i[0], &comp, flags, &buffer);
else if( type == CV_32FC1 )
icvFloodFill_CnIR(img->data.ptr, img->step, size, seed_point, nv_buf.f[0],
comp, flags, &buffer);
floodFill_CnIR(img, seedPoint, nv_buf.f[0], &comp, flags, &buffer);
else if( type == CV_32SC3 )
icvFloodFill_CnIR(img->data.ptr, img->step, size, seed_point, cv::Vec3i(nv_buf.i),
comp, flags, &buffer);
floodFill_CnIR(img, seedPoint, Vec3i(nv_buf.i), &comp, flags, &buffer);
else if( type == CV_32FC3 )
icvFloodFill_CnIR(img->data.ptr, img->step, size, seed_point, cv::Vec3f(nv_buf.f),
comp, flags, &buffer);
floodFill_CnIR(img, seedPoint, Vec3f(nv_buf.f), &comp, flags, &buffer);
else
CV_Error( CV_StsUnsupportedFormat, "" );
return;
if( rect )
*rect = comp.rect;
return comp.area;
}
}
if( !mask )
if( mask.empty() )
{
/* created mask will be 8-byte aligned */
tempMask = cvCreateMat( size.height + 2, (size.width + 9) & -8, CV_8UC1 );
Mat tempMask( size.height + 2, size.width + 2, CV_8UC1 );
tempMask.setTo(Scalar::all(0));
mask = tempMask;
}
else
{
mask = cvGetMat( mask, &maskstub );
if( !CV_IS_MASK_ARR( mask ))
CV_Error( CV_StsBadMask, "" );
if( mask->width != size.width + 2 || mask->height != size.height + 2 )
CV_Error( CV_StsUnmatchedSizes, "mask must be 2 pixel wider "
"and 2 pixel taller than filled image" );
CV_Assert( mask.rows == size.height+2 && mask.cols == size.width+2 );
CV_Assert( mask.type() == CV_8U );
}
int width = tempMask ? mask->step : size.width + 2;
uchar* mask_row = mask->data.ptr + mask->step;
memset( mask_row - mask->step, 1, width );
memset( mask.data, 1, mask.cols );
memset( mask.data + mask.step*(mask.rows-1), 1, mask.cols );
for( i = 1; i <= size.height; i++, mask_row += mask->step )
for( i = 1; i <= size.height; i++ )
{
if( tempMask )
memset( mask_row, 0, width );
mask_row[0] = mask_row[size.width+1] = (uchar)1;
mask.at<uchar>(i, 0) = mask.at<uchar>(i, mask.cols-1) = (uchar)1;
}
memset( mask_row, 1, width );
if( depth == CV_8U )
for( i = 0; i < cn; i++ )
{
int t = cvFloor(lo_diff.val[i]);
ld_buf.b[i] = CV_CAST_8U(t);
t = cvFloor(up_diff.val[i]);
ud_buf.b[i] = CV_CAST_8U(t);
ld_buf.b[i] = saturate_cast<uchar>(cvFloor(loDiff[i]));
ud_buf.b[i] = saturate_cast<uchar>(cvFloor(upDiff[i]));
}
else if( depth == CV_32S )
for( i = 0; i < cn; i++ )
{
int t = cvFloor(lo_diff.val[i]);
ld_buf.i[i] = t;
t = cvFloor(up_diff.val[i]);
ud_buf.i[i] = t;
ld_buf.i[i] = cvFloor(loDiff[i]);
ud_buf.i[i] = cvFloor(upDiff[i]);
}
else if( depth == CV_32F )
for( i = 0; i < cn; i++ )
{
ld_buf.f[i] = (float)lo_diff.val[i];
ud_buf.f[i] = (float)up_diff.val[i];
ld_buf.f[i] = (float)loDiff[i];
ud_buf.f[i] = (float)upDiff[i];
}
else
CV_Error( CV_StsUnsupportedFormat, "" );
uchar newMaskVal = (uchar)((flags & ~0xff) == 0 ? 1 : ((flags >> 8) & 255));
if( type == CV_8UC1 )
icvFloodFillGrad_CnIR<uchar, int, Diff8uC1>(
img->data.ptr, img->step, mask->data.ptr, mask->step,
size, seed_point, nv_buf.b[0],
floodFillGrad_CnIR<uchar, uchar, int, Diff8uC1>(
img, mask, seedPoint, nv_buf.b[0], newMaskVal,
Diff8uC1(ld_buf.b[0], ud_buf.b[0]),
comp, flags, &buffer);
&comp, flags, &buffer);
else if( type == CV_8UC3 )
icvFloodFillGrad_CnIR<cv::Vec3b, cv::Vec3i, Diff8uC3>(
img->data.ptr, img->step, mask->data.ptr, mask->step,
size, seed_point, cv::Vec3b(nv_buf.b),
floodFillGrad_CnIR<Vec3b, uchar, Vec3i, Diff8uC3>(
img, mask, seedPoint, Vec3b(nv_buf.b), newMaskVal,
Diff8uC3(ld_buf.b, ud_buf.b),
comp, flags, &buffer);
&comp, flags, &buffer);
else if( type == CV_32SC1 )
icvFloodFillGrad_CnIR<int, int, Diff32sC1>(
img->data.ptr, img->step, mask->data.ptr, mask->step,
size, seed_point, nv_buf.i[0],
floodFillGrad_CnIR<int, uchar, int, Diff32sC1>(
img, mask, seedPoint, nv_buf.i[0], newMaskVal,
Diff32sC1(ld_buf.i[0], ud_buf.i[0]),
comp, flags, &buffer);
&comp, flags, &buffer);
else if( type == CV_32SC3 )
icvFloodFillGrad_CnIR<cv::Vec3i, cv::Vec3i, Diff32sC3>(
img->data.ptr, img->step, mask->data.ptr, mask->step,
size, seed_point, cv::Vec3i(nv_buf.i),
floodFillGrad_CnIR<Vec3i, uchar, Vec3i, Diff32sC3>(
img, mask, seedPoint, Vec3i(nv_buf.i), newMaskVal,
Diff32sC3(ld_buf.i, ud_buf.i),
comp, flags, &buffer);
&comp, flags, &buffer);
else if( type == CV_32FC1 )
icvFloodFillGrad_CnIR<float, float, Diff32fC1>(
img->data.ptr, img->step, mask->data.ptr, mask->step,
size, seed_point, nv_buf.f[0],
floodFillGrad_CnIR<float, uchar, float, Diff32fC1>(
img, mask, seedPoint, nv_buf.f[0], newMaskVal,
Diff32fC1(ld_buf.f[0], ud_buf.f[0]),
comp, flags, &buffer);
&comp, flags, &buffer);
else if( type == CV_32FC3 )
icvFloodFillGrad_CnIR<cv::Vec3f, cv::Vec3f, Diff32fC3>(
img->data.ptr, img->step, mask->data.ptr, mask->step,
size, seed_point, cv::Vec3f(nv_buf.f),
floodFillGrad_CnIR<Vec3f, uchar, Vec3f, Diff32fC3>(
img, mask, seedPoint, Vec3f(nv_buf.f), newMaskVal,
Diff32fC3(ld_buf.f, ud_buf.f),
comp, flags, &buffer);
&comp, flags, &buffer);
else
CV_Error(CV_StsUnsupportedFormat, "");
if( rect )
*rect = comp.rect;
return comp.area;
}
......@@ -626,24 +620,27 @@ int cv::floodFill( InputOutputArray _image, Point seedPoint,
Scalar newVal, Rect* rect,
Scalar loDiff, Scalar upDiff, int flags )
{
CvConnectedComp ccomp;
CvMat c_image = _image.getMat();
cvFloodFill(&c_image, seedPoint, newVal, loDiff, upDiff, &ccomp, flags, 0);
if( rect )
*rect = ccomp.rect;
return cvRound(ccomp.area);
return floodFill(_image, Mat(), seedPoint, newVal, rect, loDiff, upDiff, flags);
}
int cv::floodFill( InputOutputArray _image, InputOutputArray _mask,
Point seedPoint, Scalar newVal, Rect* rect,
Scalar loDiff, Scalar upDiff, int flags )
CV_IMPL void
cvFloodFill( CvArr* arr, CvPoint seed_point,
CvScalar newVal, CvScalar lo_diff, CvScalar up_diff,
CvConnectedComp* comp, int flags, CvArr* maskarr )
{
CvConnectedComp ccomp;
CvMat c_image = _image.getMat(), c_mask = _mask.getMat();
cvFloodFill(&c_image, seedPoint, newVal, loDiff, upDiff, &ccomp, flags, c_mask.data.ptr ? &c_mask : 0);
if( rect )
*rect = ccomp.rect;
return cvRound(ccomp.area);
if( comp )
memset( comp, 0, sizeof(*comp) );
cv::Mat img = cv::cvarrToMat(arr), mask = cv::cvarrToMat(maskarr);
int area = cv::floodFill(img, mask, seed_point, newVal,
comp ? (cv::Rect*)&comp->rect : 0,
lo_diff, up_diff, flags );
if( comp )
{
comp->area = area;
comp->value = newVal;
}
}
/* End of file. */
......@@ -2891,10 +2891,10 @@ class RemapInvoker :
{
public:
RemapInvoker(const Mat& _src, Mat& _dst, const Mat *_m1,
const Mat *_m2, int _interpolation, int _borderType, const Scalar &_borderValue,
const Mat *_m2, int _borderType, const Scalar &_borderValue,
int _planar_input, RemapNNFunc _nnfunc, RemapFunc _ifunc, const void *_ctab) :
ParallelLoopBody(), src(&_src), dst(&_dst), m1(_m1), m2(_m2),
interpolation(_interpolation), borderType(_borderType), borderValue(_borderValue),
borderType(_borderType), borderValue(_borderValue),
planar_input(_planar_input), nnfunc(_nnfunc), ifunc(_ifunc), ctab(_ctab)
{
}
......@@ -3077,7 +3077,7 @@ private:
const Mat* src;
Mat* dst;
const Mat *m1, *m2;
int interpolation, borderType;
int borderType;
Scalar borderValue;
int planar_input;
RemapNNFunc nnfunc;
......@@ -3178,7 +3178,7 @@ void cv::remap( InputArray _src, OutputArray _dst,
planar_input = map1.channels() == 1;
}
RemapInvoker invoker(src, dst, m1, m2, interpolation,
RemapInvoker invoker(src, dst, m1, m2,
borderType, borderValue, planar_input, nnfunc, ifunc,
ctab);
parallel_for_(Range(0, dst.rows), invoker, dst.total()/(double)(1<<16));
......
......@@ -116,41 +116,12 @@ CvPyramid;
#define CV_SET( dst, val, len, idx ) \
for( (idx) = 0; (idx) < (len); (idx)++) (dst)[idx] = (val)
/* performs convolution of 2d floating-point array with 3x1, 1x3 or separable 3x3 mask */
void icvSepConvSmall3_32f( float* src, int src_step, float* dst, int dst_step,
CvSize src_size, const float* kx, const float* ky, float* buffer );
#undef CV_CALC_MIN
#define CV_CALC_MIN(a, b) if((a) > (b)) (a) = (b)
#undef CV_CALC_MAX
#define CV_CALC_MAX(a, b) if((a) < (b)) (a) = (b)
CvStatus CV_STDCALL
icvCopyReplicateBorder_8u( const uchar* src, int srcstep, CvSize srcroi,
uchar* dst, int dststep, CvSize dstroi,
int left, int right, int cn, const uchar* value = 0 );
CvStatus CV_STDCALL icvGetRectSubPix_8u_C1R
( const uchar* src, int src_step, CvSize src_size,
uchar* dst, int dst_step, CvSize win_size, CvPoint2D32f center );
CvStatus CV_STDCALL icvGetRectSubPix_8u32f_C1R
( const uchar* src, int src_step, CvSize src_size,
float* dst, int dst_step, CvSize win_size, CvPoint2D32f center );
CvStatus CV_STDCALL icvGetRectSubPix_32f_C1R
( const float* src, int src_step, CvSize src_size,
float* dst, int dst_step, CvSize win_size, CvPoint2D32f center );
CvStatus CV_STDCALL icvGetQuadrangleSubPix_8u_C1R
( const uchar* src, int src_step, CvSize src_size,
uchar* dst, int dst_step, CvSize win_size, const float *matrix );
CvStatus CV_STDCALL icvGetQuadrangleSubPix_8u32f_C1R
( const uchar* src, int src_step, CvSize src_size,
float* dst, int dst_step, CvSize win_size, const float *matrix );
CvStatus CV_STDCALL icvGetQuadrangleSubPix_32f_C1R
( const float* src, int src_step, CvSize src_size,
float* dst, int dst_step, CvSize win_size, const float *matrix );
#include "_geom.h"
#endif /*__OPENCV_CV_INTERNAL_H_*/
......@@ -7,10 +7,11 @@
// copy or use the software.
//
//
// Intel License Agreement
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
......@@ -23,7 +24,7 @@
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
......@@ -41,49 +42,15 @@
#include "precomp.hpp"
/**************************************************************************************\
* line samplers *
\**************************************************************************************/
CV_IMPL int
cvSampleLine( const void* img, CvPoint pt1, CvPoint pt2,
void* _buffer, int connectivity )
namespace cv
{
int count = -1;
int i, coi = 0, pix_size;
CvMat stub, *mat = cvGetMat( img, &stub, &coi );
CvLineIterator iterator;
uchar* buffer = (uchar*)_buffer;
if( coi != 0 )
CV_Error( CV_BadCOI, "" );
if( !buffer )
CV_Error( CV_StsNullPtr, "" );
count = cvInitLineIterator( mat, pt1, pt2, &iterator, connectivity );
pix_size = CV_ELEM_SIZE(mat->type);
for( i = 0; i < count; i++ )
{
for( int j = 0; j < pix_size; j++ )
buffer[j] = iterator.ptr[j];
buffer += pix_size;
CV_NEXT_LINE_POINT( iterator );
}
return count;
}
static const void*
icvAdjustRect( const void* srcptr, int src_step, int pix_size,
CvSize src_size, CvSize win_size,
CvPoint ip, CvRect* pRect )
static const uchar*
adjustRect( const uchar* src, int src_step, int pix_size,
Size src_size, Size win_size,
Point ip, Rect* pRect )
{
CvRect rect;
const char* src = (const char*)srcptr;
Rect rect;
if( ip.x >= 0 )
{
......@@ -135,256 +102,40 @@ icvAdjustRect( const void* srcptr, int src_step, int pix_size,
}
#define ICV_DEF_GET_RECT_SUB_PIX_FUNC( flavor, srctype, dsttype, worktype, \
cast_macro, scale_macro, cast_macro2 )\
CvStatus CV_STDCALL icvGetRectSubPix_##flavor##_C1R \
( const srctype* src, int src_step, CvSize src_size, \
dsttype* dst, int dst_step, CvSize win_size, CvPoint2D32f center ) \
{ \
CvPoint ip; \
worktype a11, a12, a21, a22, b1, b2; \
float a, b; \
int i, j; \
\
center.x -= (win_size.width-1)*0.5f; \
center.y -= (win_size.height-1)*0.5f; \
\
ip.x = cvFloor( center.x ); \
ip.y = cvFloor( center.y ); \
\
a = center.x - ip.x; \
b = center.y - ip.y; \
a11 = scale_macro((1.f-a)*(1.f-b)); \
a12 = scale_macro(a*(1.f-b)); \
a21 = scale_macro((1.f-a)*b); \
a22 = scale_macro(a*b); \
b1 = scale_macro(1.f - b); \
b2 = scale_macro(b); \
\
src_step /= sizeof(src[0]); \
dst_step /= sizeof(dst[0]); \
\
if( 0 <= ip.x && ip.x + win_size.width < src_size.width && \
0 <= ip.y && ip.y + win_size.height < src_size.height ) \
{ \
/* extracted rectangle is totally inside the image */ \
src += ip.y * src_step + ip.x; \
\
for( i = 0; i < win_size.height; i++, src += src_step, \
dst += dst_step ) \
{ \
for( j = 0; j <= win_size.width - 2; j += 2 ) \
{ \
worktype s0 = cast_macro(src[j])*a11 + \
cast_macro(src[j+1])*a12 + \
cast_macro(src[j+src_step])*a21 + \
cast_macro(src[j+src_step+1])*a22; \
worktype s1 = cast_macro(src[j+1])*a11 + \
cast_macro(src[j+2])*a12 + \
cast_macro(src[j+src_step+1])*a21 + \
cast_macro(src[j+src_step+2])*a22; \
\
dst[j] = (dsttype)cast_macro2(s0); \
dst[j+1] = (dsttype)cast_macro2(s1); \
} \
\
for( ; j < win_size.width; j++ ) \
{ \
worktype s0 = cast_macro(src[j])*a11 + \
cast_macro(src[j+1])*a12 + \
cast_macro(src[j+src_step])*a21 + \
cast_macro(src[j+src_step+1])*a22; \
\
dst[j] = (dsttype)cast_macro2(s0); \
} \
} \
} \
else \
{ \
CvRect r; \
\
src = (const srctype*)icvAdjustRect( src, src_step*sizeof(*src), \
sizeof(*src), src_size, win_size,ip, &r); \
\
for( i = 0; i < win_size.height; i++, dst += dst_step ) \
{ \
const srctype *src2 = src + src_step; \
\
if( i < r.y || i >= r.height ) \
src2 -= src_step; \
\
for( j = 0; j < r.x; j++ ) \
{ \
worktype s0 = cast_macro(src[r.x])*b1 + \
cast_macro(src2[r.x])*b2; \
\
dst[j] = (dsttype)cast_macro2(s0); \
} \
\
for( ; j < r.width; j++ ) \
{ \
worktype s0 = cast_macro(src[j])*a11 + \
cast_macro(src[j+1])*a12 + \
cast_macro(src2[j])*a21 + \
cast_macro(src2[j+1])*a22; \
\
dst[j] = (dsttype)cast_macro2(s0); \
} \
\
for( ; j < win_size.width; j++ ) \
{ \
worktype s0 = cast_macro(src[r.width])*b1 + \
cast_macro(src2[r.width])*b2; \
\
dst[j] = (dsttype)cast_macro2(s0); \
} \
\
if( i < r.height ) \
src = src2; \
} \
} \
\
return CV_OK; \
}
enum { SUBPIX_SHIFT=16 };
struct scale_fixpt
{
int operator()(float a) const { return cvRound(a*(1 << SUBPIX_SHIFT)); }
};
#define ICV_DEF_GET_RECT_SUB_PIX_FUNC_C3( flavor, srctype, dsttype, worktype, \
cast_macro, scale_macro, mul_macro )\
static CvStatus CV_STDCALL icvGetRectSubPix_##flavor##_C3R \
( const srctype* src, int src_step, CvSize src_size, \
dsttype* dst, int dst_step, CvSize win_size, CvPoint2D32f center ) \
{ \
CvPoint ip; \
worktype a, b; \
int i, j; \
\
center.x -= (win_size.width-1)*0.5f; \
center.y -= (win_size.height-1)*0.5f; \
\
ip.x = cvFloor( center.x ); \
ip.y = cvFloor( center.y ); \
\
a = scale_macro( center.x - ip.x ); \
b = scale_macro( center.y - ip.y ); \
\
src_step /= sizeof( src[0] ); \
dst_step /= sizeof( dst[0] ); \
\
if( 0 <= ip.x && ip.x + win_size.width < src_size.width && \
0 <= ip.y && ip.y + win_size.height < src_size.height ) \
{ \
/* extracted rectangle is totally inside the image */ \
src += ip.y * src_step + ip.x*3; \
\
for( i = 0; i < win_size.height; i++, src += src_step, \
dst += dst_step ) \
{ \
for( j = 0; j < win_size.width; j++ ) \
{ \
worktype s0 = cast_macro(src[j*3]); \
worktype s1 = cast_macro(src[j*3 + src_step]); \
s0 += mul_macro( a, (cast_macro(src[j*3+3]) - s0)); \
s1 += mul_macro( a, (cast_macro(src[j*3+3+src_step]) - s1));\
dst[j*3] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
\
s0 = cast_macro(src[j*3+1]); \
s1 = cast_macro(src[j*3+1 + src_step]); \
s0 += mul_macro( a, (cast_macro(src[j*3+4]) - s0)); \
s1 += mul_macro( a, (cast_macro(src[j*3+4+src_step]) - s1));\
dst[j*3+1] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
\
s0 = cast_macro(src[j*3+2]); \
s1 = cast_macro(src[j*3+2 + src_step]); \
s0 += mul_macro( a, (cast_macro(src[j*3+5]) - s0)); \
s1 += mul_macro( a, (cast_macro(src[j*3+5+src_step]) - s1));\
dst[j*3+2] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
} \
} \
} \
else \
{ \
CvRect r; \
\
src = (const srctype*)icvAdjustRect( src, src_step*sizeof(*src), \
sizeof(*src)*3, src_size, win_size, ip, &r ); \
\
for( i = 0; i < win_size.height; i++, dst += dst_step ) \
{ \
const srctype *src2 = src + src_step; \
\
if( i < r.y || i >= r.height ) \
src2 -= src_step; \
\
for( j = 0; j < r.x; j++ ) \
{ \
worktype s0 = cast_macro(src[r.x*3]); \
worktype s1 = cast_macro(src2[r.x*3]); \
dst[j*3] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
\
s0 = cast_macro(src[r.x*3+1]); \
s1 = cast_macro(src2[r.x*3+1]); \
dst[j*3+1] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
\
s0 = cast_macro(src[r.x*3+2]); \
s1 = cast_macro(src2[r.x*3+2]); \
dst[j*3+2] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
} \
\
for( ; j < r.width; j++ ) \
{ \
worktype s0 = cast_macro(src[j*3]); \
worktype s1 = cast_macro(src2[j*3]); \
s0 += mul_macro( a, (cast_macro(src[j*3 + 3]) - s0)); \
s1 += mul_macro( a, (cast_macro(src2[j*3 + 3]) - s1)); \
dst[j*3] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
\
s0 = cast_macro(src[j*3+1]); \
s1 = cast_macro(src2[j*3+1]); \
s0 += mul_macro( a, (cast_macro(src[j*3 + 4]) - s0)); \
s1 += mul_macro( a, (cast_macro(src2[j*3 + 4]) - s1)); \
dst[j*3+1] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
\
s0 = cast_macro(src[j*3+2]); \
s1 = cast_macro(src2[j*3+2]); \
s0 += mul_macro( a, (cast_macro(src[j*3 + 5]) - s0)); \
s1 += mul_macro( a, (cast_macro(src2[j*3 + 5]) - s1)); \
dst[j*3+2] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
} \
\
for( ; j < win_size.width; j++ ) \
{ \
worktype s0 = cast_macro(src[r.width*3]); \
worktype s1 = cast_macro(src2[r.width*3]); \
dst[j*3] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
\
s0 = cast_macro(src[r.width*3+1]); \
s1 = cast_macro(src2[r.width*3+1]); \
dst[j*3+1] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
\
s0 = cast_macro(src[r.width*3+2]); \
s1 = cast_macro(src2[r.width*3+2]); \
dst[j*3+2] = (dsttype)(s0 + mul_macro( b, (s1 - s0))); \
} \
\
if( i < r.height ) \
src = src2; \
} \
} \
\
return CV_OK; \
}
struct cast_8u
{
uchar operator()(int a) const { return (uchar)((a + (1 << (SUBPIX_SHIFT-1))) >> SUBPIX_SHIFT); }
};
struct cast_flt_8u
{
uchar operator()(float a) const { return (uchar)cvRound(a); }
};
template<typename _Tp>
struct nop
{
_Tp operator()(_Tp a) const { return a; }
};
CvStatus CV_STDCALL icvGetRectSubPix_8u32f_C1R
( const uchar* src, int src_step, CvSize src_size,
float* dst, int dst_step, CvSize win_size, CvPoint2D32f center )
template<typename _Tp, typename _DTp, typename _WTp, class ScaleOp, class CastOp>
void getRectSubPix_Cn_(const _Tp* src, int src_step, Size src_size,
_DTp* dst, int dst_step, Size win_size, Point2f center, int cn )
{
CvPoint ip;
float a12, a22, b1, b2;
ScaleOp scale_op;
CastOp cast_op;
Point ip;
_WTp a11, a12, a21, a22, b1, b2;
float a, b;
double s = 0;
int i, j;
int i, j, c;
center.x -= (win_size.width-1)*0.5f;
center.y -= (win_size.height-1)*0.5f;
......@@ -392,17 +143,14 @@ CvStatus CV_STDCALL icvGetRectSubPix_8u32f_C1R
ip.x = cvFloor( center.x );
ip.y = cvFloor( center.y );
if( win_size.width <= 0 || win_size.height <= 0 )
return CV_BADRANGE_ERR;
a = center.x - ip.x;
b = center.y - ip.y;
a = MAX(a,0.0001f);
a12 = a*(1.f-b);
a22 = a*b;
b1 = 1.f - b;
b2 = b;
s = (1. - a)/a;
a11 = scale_op((1.f-a)*(1.f-b));
a12 = scale_op(a*(1.f-b));
a21 = scale_op((1.f-a)*b);
a22 = scale_op(a*b);
b1 = scale_op(1.f - b);
b2 = scale_op(b);
src_step /= sizeof(src[0]);
dst_step /= sizeof(dst[0]);
......@@ -411,472 +159,191 @@ CvStatus CV_STDCALL icvGetRectSubPix_8u32f_C1R
0 <= ip.y && ip.y + win_size.height < src_size.height )
{
// extracted rectangle is totally inside the image
src += ip.y * src_step + ip.x;
src += ip.y * src_step + ip.x*cn;
win_size.width *= cn;
#if 0
if( icvCopySubpix_8u32f_C1R_p &&
icvCopySubpix_8u32f_C1R_p( src, src_step, dst,
dst_step*sizeof(dst[0]), win_size, a, b ) >= 0 )
return CV_OK;
#endif
for( ; win_size.height--; src += src_step, dst += dst_step )
for( i = 0; i < win_size.height; i++, src += src_step, dst += dst_step )
{
float prev = (1 - a)*(b1*CV_8TO32F(src[0]) + b2*CV_8TO32F(src[src_step]));
for( j = 0; j <= win_size.width - 2; j += 2 )
{
_WTp s0 = src[j]*a11 + src[j+cn]*a12 + src[j+src_step]*a21 + src[j+src_step+cn]*a22;
_WTp s1 = src[j+1]*a11 + src[j+cn+1]*a12 + src[j+src_step+1]*a21 + src[j+src_step+cn+1]*a22;
dst[j] = cast_op(s0);
dst[j+1] = cast_op(s1);
}
for( j = 0; j < win_size.width; j++ )
{
float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src[j+1+src_step]);
dst[j] = prev + t;
prev = (float)(t*s);
_WTp s0 = src[j]*a11 + src[j+cn]*a12 + src[j+src_step]*a21 + src[j+src_step+cn]*a22;
dst[j] = cast_op(s0);
}
}
}
else
{
CvRect r;
src = (const uchar*)icvAdjustRect( src, src_step*sizeof(*src),
sizeof(*src), src_size, win_size,ip, &r);
Rect r;
src = (const _Tp*)adjustRect( (const uchar*)src, src_step*sizeof(*src),
sizeof(*src)*cn, src_size, win_size, ip, &r);
for( i = 0; i < win_size.height; i++, dst += dst_step )
{
const uchar *src2 = src + src_step;
const _Tp *src2 = src + src_step;
_WTp s0;
if( i < r.y || i >= r.height )
src2 -= src_step;
for( j = 0; j < r.x; j++ )
{
float s0 = CV_8TO32F(src[r.x])*b1 +
CV_8TO32F(src2[r.x])*b2;
dst[j] = (float)(s0);
}
if( j < r.width )
for( c = 0; c < cn; c++ )
{
float prev = (1 - a)*(b1*CV_8TO32F(src[j]) + b2*CV_8TO32F(src2[j]));
for( ; j < r.width; j++ )
{
float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src2[j+1]);
dst[j] = prev + t;
prev = (float)(t*s);
}
s0 = src[r.x*cn + c]*b1 + src2[r.x*cn + c]*b2;
for( j = 0; j < r.x; j++ )
dst[j*cn + c] = cast_op(s0);
s0 = src[r.width*cn + c]*b1 + src2[r.width*cn + c]*b2;
for( j = r.width; j < win_size.width; j++ )
dst[j*cn + c] = cast_op(s0);
}
for( ; j < win_size.width; j++ )
for( j = r.x*cn; j < r.width*cn; j++ )
{
float s0 = CV_8TO32F(src[r.width])*b1 +
CV_8TO32F(src2[r.width])*b2;
dst[j] = (float)(s0);
_WTp s0 = src[j]*a11 + src[j+cn]*a12 + src2[j]*a21 + src2[j+cn]*a22;
dst[j] = cast_op(s0);
}
if( i < r.height )
src = src2;
}
}
return CV_OK;
}
#define ICV_SHIFT 16
#define ICV_SCALE(x) cvRound((x)*(1 << ICV_SHIFT))
#define ICV_MUL_SCALE(x,y) (((x)*(y) + (1 << (ICV_SHIFT-1))) >> ICV_SHIFT)
#define ICV_DESCALE(x) (((x)+(1 << (ICV_SHIFT-1))) >> ICV_SHIFT)
/*icvCopySubpix_8u_C1R_t icvCopySubpix_8u_C1R_p = 0;
icvCopySubpix_8u32f_C1R_t icvCopySubpix_8u32f_C1R_p = 0;
icvCopySubpix_32f_C1R_t icvCopySubpix_32f_C1R_p = 0;*/
ICV_DEF_GET_RECT_SUB_PIX_FUNC( 8u, uchar, uchar, int, CV_NOP, ICV_SCALE, ICV_DESCALE )
//ICV_DEF_GET_RECT_SUB_PIX_FUNC( 8u32f, uchar, float, float, CV_8TO32F, CV_NOP, CV_NOP )
ICV_DEF_GET_RECT_SUB_PIX_FUNC( 32f, float, float, float, CV_NOP, CV_NOP, CV_NOP )
ICV_DEF_GET_RECT_SUB_PIX_FUNC_C3( 8u, uchar, uchar, int, CV_NOP, ICV_SCALE, ICV_MUL_SCALE )
ICV_DEF_GET_RECT_SUB_PIX_FUNC_C3( 8u32f, uchar, float, float, CV_8TO32F, CV_NOP, CV_MUL )
ICV_DEF_GET_RECT_SUB_PIX_FUNC_C3( 32f, float, float, float, CV_NOP, CV_NOP, CV_MUL )
#define ICV_DEF_INIT_SUBPIX_TAB( FUNCNAME, FLAG ) \
static void icvInit##FUNCNAME##FLAG##Table( CvFuncTable* tab ) \
{ \
tab->fn_2d[CV_8U] = (void*)icv##FUNCNAME##_8u_##FLAG; \
tab->fn_2d[CV_32F] = (void*)icv##FUNCNAME##_32f_##FLAG; \
\
tab->fn_2d[1] = (void*)icv##FUNCNAME##_8u32f_##FLAG; \
}
ICV_DEF_INIT_SUBPIX_TAB( GetRectSubPix, C1R )
ICV_DEF_INIT_SUBPIX_TAB( GetRectSubPix, C3R )
typedef CvStatus (CV_STDCALL *CvGetRectSubPixFunc)( const void* src, int src_step,
CvSize src_size, void* dst,
int dst_step, CvSize win_size,
CvPoint2D32f center );
CV_IMPL void
cvGetRectSubPix( const void* srcarr, void* dstarr, CvPoint2D32f center )
static void getRectSubPix_8u32f
( const uchar* src, int src_step, Size src_size,
float* dst, int dst_step, Size win_size, Point2f center0, int cn )
{
static CvFuncTable gr_tab[2];
static int inittab = 0;
Point2f center = center0;
Point ip;
CvMat srcstub, *src = (CvMat*)srcarr;
CvMat dststub, *dst = (CvMat*)dstarr;
CvSize src_size, dst_size;
CvGetRectSubPixFunc func;
int cn, src_step, dst_step;
if( !inittab )
{
icvInitGetRectSubPixC1RTable( gr_tab + 0 );
icvInitGetRectSubPixC3RTable( gr_tab + 1 );
inittab = 1;
}
if( !CV_IS_MAT(src))
src = cvGetMat( src, &srcstub );
if( !CV_IS_MAT(dst))
dst = cvGetMat( dst, &dststub );
center.x -= (win_size.width-1)*0.5f;
center.y -= (win_size.height-1)*0.5f;
cn = CV_MAT_CN( src->type );
ip.x = cvFloor( center.x );
ip.y = cvFloor( center.y );
if( (cn != 1 && cn != 3) || !CV_ARE_CNS_EQ( src, dst ))
CV_Error( CV_StsUnsupportedFormat, "" );
if( cn == 1 &&
0 <= ip.x && ip.x + win_size.width < src_size.width &&
0 <= ip.y && ip.y + win_size.height < src_size.height &&
win_size.width > 0 && win_size.height > 0 )
{
float a = center.x - ip.x;
float b = center.y - ip.y;
a = MAX(a,0.0001f);
float a12 = a*(1.f-b);
float a22 = a*b;
float b1 = 1.f - b;
float b2 = b;
double s = (1. - a)/a;
src_size = cvGetMatSize( src );
dst_size = cvGetMatSize( dst );
src_step = src->step ? src->step : CV_STUB_STEP;
dst_step = dst->step ? dst->step : CV_STUB_STEP;
src_step /= sizeof(src[0]);
dst_step /= sizeof(dst[0]);
//if( dst_size.width > src_size.width || dst_size.height > src_size.height )
// CV_ERROR( CV_StsBadSize, "destination ROI must be smaller than source ROI" );
// extracted rectangle is totally inside the image
src += ip.y * src_step + ip.x;
if( CV_ARE_DEPTHS_EQ( src, dst ))
for( ; win_size.height--; src += src_step, dst += dst_step )
{
float prev = (1 - a)*(b1*src[0] + b2*src[src_step]);
for( int j = 0; j < win_size.width; j++ )
{
func = (CvGetRectSubPixFunc)(gr_tab[cn != 1].fn_2d[CV_MAT_DEPTH(src->type)]);
float t = a12*src[j+1] + a22*src[j+1+src_step];
dst[j] = prev + t;
prev = (float)(t*s);
}
}
}
else
{
if( CV_MAT_DEPTH( src->type ) != CV_8U || CV_MAT_DEPTH( dst->type ) != CV_32F )
CV_Error( CV_StsUnsupportedFormat, "" );
func = (CvGetRectSubPixFunc)(gr_tab[cn != 1].fn_2d[1]);
getRectSubPix_Cn_<uchar, float, float, nop<float>, nop<float> >
(src, src_step, src_size, dst, dst_step, win_size, center0, cn );
}
if( !func )
CV_Error( CV_StsUnsupportedFormat, "" );
IPPI_CALL( func( src->data.ptr, src_step, src_size,
dst->data.ptr, dst_step, dst_size, center ));
}
#define ICV_32F8U(x) ((uchar)cvRound(x))
#define ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( flavor, srctype, dsttype, \
worktype, cast_macro, cvt ) \
CvStatus CV_STDCALL \
icvGetQuadrangleSubPix_##flavor##_C1R \
( const srctype * src, int src_step, CvSize src_size, \
dsttype *dst, int dst_step, CvSize win_size, const float *matrix ) \
{ \
int x, y; \
double dx = (win_size.width - 1)*0.5; \
double dy = (win_size.height - 1)*0.5; \
double A11 = matrix[0], A12 = matrix[1], A13 = matrix[2]-A11*dx-A12*dy; \
double A21 = matrix[3], A22 = matrix[4], A23 = matrix[5]-A21*dx-A22*dy; \
\
src_step /= sizeof(srctype); \
dst_step /= sizeof(dsttype); \
\
for( y = 0; y < win_size.height; y++, dst += dst_step ) \
{ \
double xs = A12*y + A13; \
double ys = A22*y + A23; \
double xe = A11*(win_size.width-1) + A12*y + A13; \
double ye = A21*(win_size.width-1) + A22*y + A23; \
\
if( (unsigned)(cvFloor(xs)-1) < (unsigned)(src_size.width - 3) && \
(unsigned)(cvFloor(ys)-1) < (unsigned)(src_size.height - 3) && \
(unsigned)(cvFloor(xe)-1) < (unsigned)(src_size.width - 3) && \
(unsigned)(cvFloor(ye)-1) < (unsigned)(src_size.height - 3)) \
{ \
for( x = 0; x < win_size.width; x++ ) \
{ \
int ixs = cvFloor( xs ); \
int iys = cvFloor( ys ); \
const srctype *ptr = src + src_step*iys + ixs; \
double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \
worktype p0 = cvt(ptr[0])*a1 + cvt(ptr[1])*a; \
worktype p1 = cvt(ptr[src_step])*a1 + cvt(ptr[src_step+1])*a;\
xs += A11; \
ys += A21; \
\
dst[x] = cast_macro(p0 + b * (p1 - p0)); \
} \
} \
else \
{ \
for( x = 0; x < win_size.width; x++ ) \
{ \
int ixs = cvFloor( xs ), iys = cvFloor( ys ); \
double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \
const srctype *ptr0, *ptr1; \
worktype p0, p1; \
xs += A11; ys += A21; \
\
if( (unsigned)iys < (unsigned)(src_size.height-1) ) \
ptr0 = src + src_step*iys, ptr1 = ptr0 + src_step; \
else \
ptr0 = ptr1 = src + (iys < 0 ? 0 : src_size.height-1)*src_step; \
\
if( (unsigned)ixs < (unsigned)(src_size.width-1) ) \
{ \
p0 = cvt(ptr0[ixs])*a1 + cvt(ptr0[ixs+1])*a; \
p1 = cvt(ptr1[ixs])*a1 + cvt(ptr1[ixs+1])*a; \
} \
else \
{ \
ixs = ixs < 0 ? 0 : src_size.width - 1; \
p0 = cvt(ptr0[ixs]); p1 = cvt(ptr1[ixs]); \
} \
dst[x] = cast_macro(p0 + b * (p1 - p0)); \
} \
} \
} \
\
return CV_OK; \
}
void cv::getRectSubPix( InputArray _image, Size patchSize, Point2f center,
OutputArray _patch, int patchType )
{
Mat image = _image.getMat();
int depth = image.depth(), cn = image.channels();
int ddepth = patchType < 0 ? depth : CV_MAT_DEPTH(patchType);
#define ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC_C3( flavor, srctype, dsttype, \
worktype, cast_macro, cvt ) \
static CvStatus CV_STDCALL \
icvGetQuadrangleSubPix_##flavor##_C3R \
( const srctype * src, int src_step, CvSize src_size, \
dsttype *dst, int dst_step, CvSize win_size, const float *matrix ) \
{ \
int x, y; \
double dx = (win_size.width - 1)*0.5; \
double dy = (win_size.height - 1)*0.5; \
double A11 = matrix[0], A12 = matrix[1], A13 = matrix[2]-A11*dx-A12*dy; \
double A21 = matrix[3], A22 = matrix[4], A23 = matrix[5]-A21*dx-A22*dy; \
\
src_step /= sizeof(srctype); \
dst_step /= sizeof(dsttype); \
\
for( y = 0; y < win_size.height; y++, dst += dst_step ) \
{ \
double xs = A12*y + A13; \
double ys = A22*y + A23; \
double xe = A11*(win_size.width-1) + A12*y + A13; \
double ye = A21*(win_size.width-1) + A22*y + A23; \
\
if( (unsigned)(cvFloor(xs)-1) < (unsigned)(src_size.width - 3) && \
(unsigned)(cvFloor(ys)-1) < (unsigned)(src_size.height - 3) && \
(unsigned)(cvFloor(xe)-1) < (unsigned)(src_size.width - 3) && \
(unsigned)(cvFloor(ye)-1) < (unsigned)(src_size.height - 3)) \
{ \
for( x = 0; x < win_size.width; x++ ) \
{ \
int ixs = cvFloor( xs ); \
int iys = cvFloor( ys ); \
const srctype *ptr = src + src_step*iys + ixs*3; \
double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \
worktype p0, p1; \
xs += A11; \
ys += A21; \
\
p0 = cvt(ptr[0])*a1 + cvt(ptr[3])*a; \
p1 = cvt(ptr[src_step])*a1 + cvt(ptr[src_step+3])*a; \
dst[x*3] = cast_macro(p0 + b * (p1 - p0)); \
\
p0 = cvt(ptr[1])*a1 + cvt(ptr[4])*a; \
p1 = cvt(ptr[src_step+1])*a1 + cvt(ptr[src_step+4])*a; \
dst[x*3+1] = cast_macro(p0 + b * (p1 - p0)); \
\
p0 = cvt(ptr[2])*a1 + cvt(ptr[5])*a; \
p1 = cvt(ptr[src_step+2])*a1 + cvt(ptr[src_step+5])*a; \
dst[x*3+2] = cast_macro(p0 + b * (p1 - p0)); \
} \
} \
else \
{ \
for( x = 0; x < win_size.width; x++ ) \
{ \
int ixs = cvFloor(xs), iys = cvFloor(ys); \
double a = xs - ixs, b = ys - iys; \
const srctype *ptr0, *ptr1; \
xs += A11; ys += A21; \
\
if( (unsigned)iys < (unsigned)(src_size.height-1) ) \
ptr0 = src + src_step*iys, ptr1 = ptr0 + src_step; \
else \
ptr0 = ptr1 = src + (iys < 0 ? 0 : src_size.height-1)*src_step; \
\
if( (unsigned)ixs < (unsigned)(src_size.width - 1) ) \
{ \
double a1 = 1.f - a; \
worktype p0, p1; \
ptr0 += ixs*3; ptr1 += ixs*3; \
p0 = cvt(ptr0[0])*a1 + cvt(ptr0[3])*a; \
p1 = cvt(ptr1[0])*a1 + cvt(ptr1[3])*a; \
dst[x*3] = cast_macro(p0 + b * (p1 - p0)); \
\
p0 = cvt(ptr0[1])*a1 + cvt(ptr0[4])*a; \
p1 = cvt(ptr1[1])*a1 + cvt(ptr1[4])*a; \
dst[x*3+1] = cast_macro(p0 + b * (p1 - p0)); \
\
p0 = cvt(ptr0[2])*a1 + cvt(ptr0[5])*a; \
p1 = cvt(ptr1[2])*a1 + cvt(ptr1[5])*a; \
dst[x*3+2] = cast_macro(p0 + b * (p1 - p0)); \
} \
else \
{ \
double b1 = 1.f - b; \
ixs = ixs < 0 ? 0 : src_size.width - 1; \
ptr0 += ixs*3; ptr1 += ixs*3; \
\
dst[x*3] = cast_macro(cvt(ptr0[0])*b1 + cvt(ptr1[0])*b);\
dst[x*3+1]=cast_macro(cvt(ptr0[1])*b1 + cvt(ptr1[1])*b);\
dst[x*3+2]=cast_macro(cvt(ptr0[2])*b1 + cvt(ptr1[2])*b);\
} \
} \
} \
} \
\
return CV_OK; \
}
CV_Assert( cn == 1 || cn == 3 );
/*#define srctype uchar
#define dsttype uchar
#define worktype float
#define cvt CV_8TO32F
#define cast_macro ICV_32F8U
_patch.create(patchSize, CV_MAKETYPE(ddepth, cn));
Mat patch = _patch.getMat();
#undef srctype
#undef dsttype
#undef worktype
#undef cvt
#undef cast_macro*/
if( depth == CV_8U && ddepth == CV_8U )
getRectSubPix_Cn_<uchar, uchar, int, scale_fixpt, cast_8u>
(image.data, image.step, image.size(), patch.data, patch.step, patch.size(), center, cn);
else if( depth == CV_8U && ddepth == CV_32F )
getRectSubPix_8u32f
(image.data, image.step, image.size(), (float*)patch.data, patch.step, patch.size(), center, cn);
else if( depth == CV_32F && ddepth == CV_32F )
getRectSubPix_Cn_<float, float, float, nop<float>, nop<float> >
((const float*)image.data, image.step, image.size(), (float*)patch.data, patch.step, patch.size(), center, cn);
else
CV_Error( CV_StsUnsupportedFormat, "Unsupported combination of input and output formats");
}
ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( 8u, uchar, uchar, double, ICV_32F8U, CV_8TO32F )
ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( 32f, float, float, double, CV_CAST_32F, CV_NOP )
ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( 8u32f, uchar, float, double, CV_CAST_32F, CV_8TO32F )
ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC_C3( 8u, uchar, uchar, double, ICV_32F8U, CV_8TO32F )
ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC_C3( 32f, float, float, double, CV_CAST_32F, CV_NOP )
ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC_C3( 8u32f, uchar, float, double, CV_CAST_32F, CV_8TO32F )
CV_IMPL void
cvGetRectSubPix( const void* srcarr, void* dstarr, CvPoint2D32f center )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.channels() == dst.channels() );
ICV_DEF_INIT_SUBPIX_TAB( GetQuadrangleSubPix, C1R )
ICV_DEF_INIT_SUBPIX_TAB( GetQuadrangleSubPix, C3R )
cv::getRectSubPix(src, dst.size(), center, dst, dst.type());
}
typedef CvStatus (CV_STDCALL *CvGetQuadrangleSubPixFunc)(
const void* src, int src_step,
CvSize src_size, void* dst,
int dst_step, CvSize win_size,
const float* matrix );
CV_IMPL void
cvGetQuadrangleSubPix( const void* srcarr, void* dstarr, const CvMat* mat )
{
static CvFuncTable gq_tab[2];
static int inittab = 0;
CvMat srcstub, *src = (CvMat*)srcarr;
CvMat dststub, *dst = (CvMat*)dstarr;
CvSize src_size, dst_size;
CvGetQuadrangleSubPixFunc func;
float m[6];
int k, cn;
if( !inittab )
{
icvInitGetQuadrangleSubPixC1RTable( gq_tab + 0 );
icvInitGetQuadrangleSubPixC3RTable( gq_tab + 1 );
inittab = 1;
}
if( !CV_IS_MAT(src))
src = cvGetMat( src, &srcstub );
if( !CV_IS_MAT(dst))
dst = cvGetMat( dst, &dststub );
if( !CV_IS_MAT(mat))
CV_Error( CV_StsBadArg, "map matrix is not valid" );
cn = CV_MAT_CN( src->type );
if( (cn != 1 && cn != 3) || !CV_ARE_CNS_EQ( src, dst ))
CV_Error( CV_StsUnsupportedFormat, "" );
src_size = cvGetMatSize( src );
dst_size = cvGetMatSize( dst );
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), m = cv::cvarrToMat(mat);
cv::Size win_size = dst.size();
double matrix[6];
cv::Mat M(2, 3, CV_64F, matrix);
m.convertTo(M, CV_64F);
double dx = (win_size.width - 1)*0.5;
double dy = (win_size.height - 1)*0.5;
matrix[2] -= matrix[0]*dx + matrix[1]*dy;
matrix[5] -= matrix[3]*dx + matrix[4]*dy;
cv::warpAffine(src, dst, M, dst.size(),
cv::INTER_LINEAR + cv::WARP_INVERSE_MAP,
cv::BORDER_REPLICATE);
}
/*if( dst_size.width > src_size.width || dst_size.height > src_size.height )
CV_ERROR( CV_StsBadSize, "destination ROI must not be larger than source ROI" );*/
if( mat->rows != 2 || mat->cols != 3 )
CV_Error( CV_StsBadArg,
"Transformation matrix must be 2x3" );
CV_IMPL int
cvSampleLine( const void* _img, CvPoint pt1, CvPoint pt2,
void* _buffer, int connectivity )
{
cv::Mat img = cv::cvarrToMat(_img);
cv::LineIterator li(img, pt1, pt2, connectivity, false);
uchar* buffer = (uchar*)_buffer;
size_t pixsize = img.elemSize();
if( CV_MAT_TYPE( mat->type ) == CV_32FC1 )
{
for( k = 0; k < 3; k++ )
{
m[k] = mat->data.fl[k];
m[3 + k] = ((float*)(mat->data.ptr + mat->step))[k];
}
}
else if( CV_MAT_TYPE( mat->type ) == CV_64FC1 )
{
for( k = 0; k < 3; k++ )
{
m[k] = (float)mat->data.db[k];
m[3 + k] = (float)((double*)(mat->data.ptr + mat->step))[k];
}
}
else
CV_Error( CV_StsUnsupportedFormat,
"The transformation matrix should have 32fC1 or 64fC1 type" );
if( !buffer )
CV_Error( CV_StsNullPtr, "" );
if( CV_ARE_DEPTHS_EQ( src, dst ))
for( int i = 0; i < li.count; i++, ++li )
{
func = (CvGetQuadrangleSubPixFunc)(gq_tab[cn != 1].fn_2d[CV_MAT_DEPTH(src->type)]);
}
else
{
if( CV_MAT_DEPTH( src->type ) != CV_8U || CV_MAT_DEPTH( dst->type ) != CV_32F )
CV_Error( CV_StsUnsupportedFormat, "" );
func = (CvGetQuadrangleSubPixFunc)(gq_tab[cn != 1].fn_2d[1]);
for( size_t k = 0; k < pixsize; k++ )
*buffer++ = li.ptr[k];
}
if( !func )
CV_Error( CV_StsUnsupportedFormat, "" );
IPPI_CALL( func( src->data.ptr, src->step, src_size,
dst->data.ptr, dst->step, dst_size, m ));
return li.count;
}
void cv::getRectSubPix( InputArray _image, Size patchSize, Point2f center,
OutputArray _patch, int patchType )
{
Mat image = _image.getMat();
_patch.create(patchSize, patchType < 0 ? image.type() :
CV_MAKETYPE(CV_MAT_DEPTH(patchType),image.channels()));
Mat patch = _patch.getMat();
CvMat _cimage = image, _cpatch = patch;
cvGetRectSubPix(&_cimage, &_cpatch, center);
}
/* End of file. */
......@@ -699,7 +699,6 @@ public:
private:
Mat src;
Mat dst;
int nStripes;
double thresh;
double maxval;
......
......@@ -490,6 +490,7 @@ _exit_:
comp[2] = r.y;
comp[3] = r.width - r.x + 1;
comp[4] = r.height - r.y + 1;
#if 0
if( mask_only )
{
double t = area ? 1./area : 0;
......@@ -500,6 +501,11 @@ _exit_:
comp[5] = s0;
comp[6] = s1;
comp[7] = s2;
#else
comp[5] = new_val.val[0];
comp[6] = new_val.val[1];
comp[7] = new_val.val[2];
#endif
comp[8] = 0;
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment