Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
0468bdea
Commit
0468bdea
authored
Dec 28, 2010
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added background/foreground segmentation algorithm with shadow detection (by Zoran Zivkovic)
parent
97d9a672
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
640 additions
and
0 deletions
+640
-0
bgfg_gaussmix2.cpp
modules/video/src/bgfg_gaussmix2.cpp
+640
-0
No files found.
modules/video/src/bgfg_gaussmix2.cpp
0 → 100644
View file @
0468bdea
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/*//Implementation of the Gaussian mixture model background subtraction from:
//
//"Improved adaptive Gausian mixture model for background subtraction"
//Z.Zivkovic
//International Conference Pattern Recognition, UK, August, 2004
//http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
//The code is very fast and performs also shadow detection.
//Number of Gausssian components is adapted per pixel.
//
// and
//
//"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction"
//Z.Zivkovic, F. van der Heijden
//Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006.
//
//The algorithm similar to the standard Stauffer&Grimson algorithm with
//additional selection of the number of the Gaussian components based on:
//
//"Recursive unsupervised learning of finite mixture models "
//Z.Zivkovic, F.van der Heijden
//IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
//http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf
//
//
//
//Example usage as part of the CvBGStatModel:
// CvBGStatModel* bg_model = cvCreateGaussianBGModel2( first_frame );
//
// //update for each frame
// cvUpdateBGStatModel( tmp_frame, bg_model );//segmentation result is in bg_model->foreground
//
// //release at the program termination
// cvReleaseBGStatModel( &bg_model );
//
//Author: Z.Zivkovic, www.zoranz.net
//Date: 27-April-2005, Version:0.9
///////////*/
#include "cvaux.h"
#include "cvaux_mog2.h"
int
_icvRemoveShadowGMM
(
long
posPixel
,
float
red
,
float
green
,
float
blue
,
unsigned
char
nModes
,
CvPBGMMGaussian
*
m_aGaussians
,
float
m_fTb
,
float
m_fTB
,
float
m_fTau
)
{
//calculate distances to the modes (+ sort???)
//here we need to go in descending order!!!
long
pos
;
float
tWeight
=
0
;
float
numerator
,
denominator
;
// check all the distributions, marked as background:
for
(
int
iModes
=
0
;
iModes
<
nModes
;
iModes
++
)
{
pos
=
posPixel
+
iModes
;
float
var
=
m_aGaussians
[
pos
].
sigma
;
float
muR
=
m_aGaussians
[
pos
].
muR
;
float
muG
=
m_aGaussians
[
pos
].
muG
;
float
muB
=
m_aGaussians
[
pos
].
muB
;
float
weight
=
m_aGaussians
[
pos
].
weight
;
tWeight
+=
weight
;
numerator
=
red
*
muR
+
green
*
muG
+
blue
*
muB
;
denominator
=
muR
*
muR
+
muG
*
muG
+
muB
*
muB
;
// no division by zero allowed
if
(
denominator
==
0
)
{
break
;
};
float
a
=
numerator
/
denominator
;
// if tau < a < 1 then also check the color distortion
if
((
a
<=
1
)
&&
(
a
>=
m_fTau
))
//m_nBeta=1
{
float
dR
=
a
*
muR
-
red
;
float
dG
=
a
*
muG
-
green
;
float
dB
=
a
*
muB
-
blue
;
//square distance -slower and less accurate
//float maxDistance = cvSqrt(m_fTb*var);
//if ((fabs(dR) <= maxDistance) && (fabs(dG) <= maxDistance) && (fabs(dB) <= maxDistance))
//circle
float
dist
=
(
dR
*
dR
+
dG
*
dG
+
dB
*
dB
);
if
(
dist
<
m_fTb
*
var
*
a
*
a
)
{
return
2
;
}
};
if
(
tWeight
>
m_fTB
)
{
break
;
};
};
return
0
;
}
int
_icvUpdatePixelBackgroundGMM
(
long
posPixel
,
float
red
,
float
green
,
float
blue
,
unsigned
char
*
pModesUsed
,
CvPBGMMGaussian
*
m_aGaussians
,
int
m_nM
,
float
m_fAlphaT
,
float
m_fTb
,
float
m_fTB
,
float
m_fTg
,
float
m_fSigma
,
float
m_fPrune
)
{
//calculate distances to the modes (+ sort???)
//here we need to go in descending order!!!
long
pos
;
bool
bFitsPDF
=
0
;
bool
bBackground
=
0
;
float
m_fOneMinAlpha
=
1
-
m_fAlphaT
;
unsigned
char
nModes
=*
pModesUsed
;
float
totalWeight
=
0.0
f
;
//////
//go through all modes
for
(
int
iModes
=
0
;
iModes
<
nModes
;
iModes
++
)
{
pos
=
posPixel
+
iModes
;
float
weight
=
m_aGaussians
[
pos
].
weight
;
////
//fit not found yet
if
(
!
bFitsPDF
)
{
//check if it belongs to some of the modes
//calculate distance
float
var
=
m_aGaussians
[
pos
].
sigma
;
float
muR
=
m_aGaussians
[
pos
].
muR
;
float
muG
=
m_aGaussians
[
pos
].
muG
;
float
muB
=
m_aGaussians
[
pos
].
muB
;
float
dR
=
muR
-
red
;
float
dG
=
muG
-
green
;
float
dB
=
muB
-
blue
;
///////
//check if it fits the current mode (Factor * sigma)
//square distance -slower and less accurate
//float maxDistance = cvSqrt(m_fTg*var);
//if ((fabs(dR) <= maxDistance) && (fabs(dG) <= maxDistance) && (fabs(dB) <= maxDistance))
//circle
float
dist
=
(
dR
*
dR
+
dG
*
dG
+
dB
*
dB
);
//background? - m_fTb
if
((
totalWeight
<
m_fTB
)
&&
(
dist
<
m_fTb
*
var
))
bBackground
=
1
;
//check fit
if
(
dist
<
m_fTg
*
var
)
{
/////
//belongs to the mode
bFitsPDF
=
1
;
//update distribution
float
k
=
m_fAlphaT
/
weight
;
weight
=
m_fOneMinAlpha
*
weight
+
m_fPrune
;
weight
+=
m_fAlphaT
;
m_aGaussians
[
pos
].
muR
=
muR
-
k
*
(
dR
);
m_aGaussians
[
pos
].
muG
=
muG
-
k
*
(
dG
);
m_aGaussians
[
pos
].
muB
=
muB
-
k
*
(
dB
);
//limit update speed for cov matrice
//not needed
//k=k>20*m_fAlphaT?20*m_fAlphaT:k;
//float sigmanew = var + k*((0.33*(dR*dR+dG*dG+dB*dB))-var);
//float sigmanew = var + k*((dR*dR+dG*dG+dB*dB)-var);
//float sigmanew = var + k*((0.33*dist)-var);
float
sigmanew
=
var
+
k
*
(
dist
-
var
);
//limit the variance
//m_aGaussians[pos].sigma = sigmanew>70?70:sigmanew;
//m_aGaussians[pos].sigma = sigmanew>5*m_fSigma?5*m_fSigma:sigmanew;
m_aGaussians
[
pos
].
sigma
=
sigmanew
<
4
?
4
:
sigmanew
>
5
*
m_fSigma
?
5
*
m_fSigma
:
sigmanew
;
//m_aGaussians[pos].sigma =sigmanew< 4 ? 4 : sigmanew>3*m_fSigma?3*m_fSigma:sigmanew;
//m_aGaussians[pos].sigma = m_fSigma;
//sort
//all other weights are at the same place and
//only the matched (iModes) is higher -> just find the new place for it
for
(
int
iLocal
=
iModes
;
iLocal
>
0
;
iLocal
--
)
{
long
posLocal
=
posPixel
+
iLocal
;
if
(
weight
<
(
m_aGaussians
[
posLocal
-
1
].
weight
))
{
break
;
}
else
{
//swap
CvPBGMMGaussian
temp
=
m_aGaussians
[
posLocal
];
m_aGaussians
[
posLocal
]
=
m_aGaussians
[
posLocal
-
1
];
m_aGaussians
[
posLocal
-
1
]
=
temp
;
}
}
//belongs to the mode
/////
}
else
{
weight
=
m_fOneMinAlpha
*
weight
+
m_fPrune
;
//check prune
if
(
weight
<-
m_fPrune
)
{
weight
=
0.0
;
nModes
--
;
// bPrune=1;
//break;//the components are sorted so we can skip the rest
}
}
//check if it fits the current mode (2.5 sigma)
///////
}
//fit not found yet
/////
else
{
weight
=
m_fOneMinAlpha
*
weight
+
m_fPrune
;
//check prune
if
(
weight
<-
m_fPrune
)
{
weight
=
0.0
;
nModes
--
;
}
}
totalWeight
+=
weight
;
m_aGaussians
[
pos
].
weight
=
weight
;
}
//go through all modes
//////
//renormalize weights
for
(
int
iLocal
=
0
;
iLocal
<
nModes
;
iLocal
++
)
{
m_aGaussians
[
posPixel
+
iLocal
].
weight
=
m_aGaussians
[
posPixel
+
iLocal
].
weight
/
totalWeight
;
}
//make new mode if needed and exit
if
(
!
bFitsPDF
)
{
if
(
nModes
==
m_nM
)
{
//replace the weakest
}
else
{
//add a new one
nModes
++
;
}
pos
=
posPixel
+
nModes
-
1
;
if
(
nModes
==
1
)
m_aGaussians
[
pos
].
weight
=
1
;
else
m_aGaussians
[
pos
].
weight
=
m_fAlphaT
;
//renormalize weights
int
iLocal
;
for
(
iLocal
=
0
;
iLocal
<
nModes
-
1
;
iLocal
++
)
{
m_aGaussians
[
posPixel
+
iLocal
].
weight
*=
m_fOneMinAlpha
;
}
m_aGaussians
[
pos
].
muR
=
red
;
m_aGaussians
[
pos
].
muG
=
green
;
m_aGaussians
[
pos
].
muB
=
blue
;
m_aGaussians
[
pos
].
sigma
=
m_fSigma
;
//sort
//find the new place for it
for
(
iLocal
=
nModes
-
1
;
iLocal
>
0
;
iLocal
--
)
{
long
posLocal
=
posPixel
+
iLocal
;
if
(
m_fAlphaT
<
(
m_aGaussians
[
posLocal
-
1
].
weight
))
{
break
;
}
else
{
//swap
CvPBGMMGaussian
temp
=
m_aGaussians
[
posLocal
];
m_aGaussians
[
posLocal
]
=
m_aGaussians
[
posLocal
-
1
];
m_aGaussians
[
posLocal
-
1
]
=
temp
;
}
}
}
//set the number of modes
*
pModesUsed
=
nModes
;
return
bBackground
;
}
void
_icvReplacePixelBackgroundGMM
(
long
pos
,
unsigned
char
*
pData
,
CvPBGMMGaussian
*
m_aGaussians
)
{
pData
[
0
]
=
(
unsigned
char
)
m_aGaussians
[
pos
].
muR
;
pData
[
1
]
=
(
unsigned
char
)
m_aGaussians
[
pos
].
muG
;
pData
[
2
]
=
(
unsigned
char
)
m_aGaussians
[
pos
].
muB
;
}
void
icvUpdatePixelBackgroundGMM
(
CvGaussBGStatModel2Data
*
pGMMData
,
CvGaussBGStatModel2Params
*
pGMM
,
float
m_fAlphaT
,
unsigned
char
*
data
,
unsigned
char
*
output
)
{
int
size
=
pGMMData
->
nSize
;
unsigned
char
*
pDataCurrent
=
data
;
unsigned
char
*
pUsedModes
=
pGMMData
->
rnUsedModes
;
unsigned
char
*
pDataOutput
=
output
;
//some constants
int
m_nM
=
pGMM
->
nM
;
//float m_fAlphaT=pGMM->fAlphaT;
float
m_fTb
=
pGMM
->
fTb
;
//Tb - threshold on the Mahalan. dist.
float
m_fTB
=
pGMM
->
fTB
;
//1-TF from the paper
float
m_fTg
=
pGMM
->
fTg
;
//Tg - when to generate a new component
float
m_fSigma
=
pGMM
->
fSigma
;
//initial sigma
float
m_fCT
=
pGMM
->
fCT
;
//CT - complexity reduction prior
float
m_fPrune
=-
m_fAlphaT
*
m_fCT
;
float
m_fTau
=
pGMM
->
fTau
;
CvPBGMMGaussian
*
m_aGaussians
=
pGMMData
->
rGMM
;
long
posPixel
=
0
;
bool
m_bShadowDetection
=
pGMM
->
bShadowDetection
;
unsigned
char
m_nShadowDetection
=
pGMM
->
nShadowDetection
;
//go through the image
for
(
int
i
=
0
;
i
<
size
;
i
++
)
{
// retrieve the colors
float
red
=
pDataCurrent
[
0
];
float
green
=
pDataCurrent
[
1
];
float
blue
=
pDataCurrent
[
2
];
//update model+ background subtract
int
result
=
_icvUpdatePixelBackgroundGMM
(
posPixel
,
red
,
green
,
blue
,
pUsedModes
,
m_aGaussians
,
m_nM
,
m_fAlphaT
,
m_fTb
,
m_fTB
,
m_fTg
,
m_fSigma
,
m_fPrune
);
unsigned
char
nMLocal
=*
pUsedModes
;
if
(
m_bShadowDetection
)
if
(
!
result
)
{
result
=
_icvRemoveShadowGMM
(
posPixel
,
red
,
green
,
blue
,
nMLocal
,
m_aGaussians
,
m_fTb
,
m_fTB
,
m_fTau
);
}
switch
(
result
)
{
case
0
:
//foreground
(
*
pDataOutput
)
=
255
;
if
(
pGMM
->
bRemoveForeground
)
{
_icvReplacePixelBackgroundGMM
(
posPixel
,
pDataCurrent
,
m_aGaussians
);
}
break
;
case
1
:
//background
(
*
pDataOutput
)
=
0
;
break
;
case
2
:
//shadow
(
*
pDataOutput
)
=
m_nShadowDetection
;
if
(
pGMM
->
bRemoveForeground
)
{
_icvReplacePixelBackgroundGMM
(
posPixel
,
pDataCurrent
,
m_aGaussians
);
}
break
;
}
posPixel
+=
m_nM
;
pDataCurrent
+=
3
;
pDataOutput
++
;
pUsedModes
++
;
}
}
//////////////////////////////////////////////
//implementation as part of the CvBGStatModel
static
void
CV_CDECL
icvReleaseGaussianBGModel2
(
CvGaussBGModel2
**
bg_model
);
static
int
CV_CDECL
icvUpdateGaussianBGModel2
(
IplImage
*
curr_frame
,
CvGaussBGModel2
*
bg_model
);
CV_IMPL
CvBGStatModel
*
cvCreateGaussianBGModel2
(
IplImage
*
first_frame
,
CvGaussBGStatModel2Params
*
parameters
)
{
CvGaussBGModel2
*
bg_model
=
0
;
int
w
,
h
,
size
;
CV_FUNCNAME
(
"cvCreateGaussianBGModel2"
);
__BEGIN__
;
CvGaussBGStatModel2Params
params
;
if
(
!
CV_IS_IMAGE
(
first_frame
)
)
CV_ERROR
(
CV_StsBadArg
,
"Invalid or NULL first_frame parameter"
);
if
(
!
(
first_frame
->
nChannels
==
3
)
)
CV_ERROR
(
CV_StsBadArg
,
"Need three channel image (RGB)"
);
CV_CALL
(
bg_model
=
(
CvGaussBGModel2
*
)
cvAlloc
(
sizeof
(
*
bg_model
)
));
memset
(
bg_model
,
0
,
sizeof
(
*
bg_model
)
);
bg_model
->
type
=
CV_BG_MODEL_MOG2
;
bg_model
->
release
=
(
CvReleaseBGStatModel
)
icvReleaseGaussianBGModel2
;
bg_model
->
update
=
(
CvUpdateBGStatModel
)
icvUpdateGaussianBGModel2
;
//init parameters
if
(
parameters
==
NULL
)
{
/* These constants are defined in cvaux/include/cvaux.h: */
params
.
bRemoveForeground
=
0
;
params
.
bShadowDetection
=
1
;
params
.
bPostFiltering
=
0
;
params
.
minArea
=
CV_BGFG_MOG2_MINAREA
;
//set parameters
// K - max number of Gaussians per pixel
params
.
nM
=
CV_BGFG_MOG2_NGAUSSIANS
;
//4;
// Tb - the threshold - n var
//pGMM->fTb = 4*4;
params
.
fTb
=
CV_BGFG_MOG2_STD_THRESHOLD
*
CV_BGFG_MOG2_STD_THRESHOLD
;
// Tbf - the threshold
//pGMM->fTB = 0.9f;//1-cf from the paper
params
.
fTB
=
CV_BGFG_MOG2_BACKGROUND_THRESHOLD
;
// Tgenerate - the threshold
params
.
fTg
=
CV_BGFG_MOG2_STD_THRESHOLD_GENERATE
*
CV_BGFG_MOG2_STD_THRESHOLD_GENERATE
;
//update the mode or generate new
//pGMM->fSigma= 11.0f;//sigma for the new mode
params
.
fSigma
=
CV_BGFG_MOG2_SIGMA_INIT
;
// alpha - the learning factor
params
.
fAlphaT
=
1.0
f
/
CV_BGFG_MOG2_WINDOW_SIZE
;
//0.003f;
// complexity reduction prior constant
params
.
fCT
=
CV_BGFG_MOG2_CT
;
//0.05f;
//shadow
// Shadow detection
params
.
nShadowDetection
=
CV_BGFG_MOG2_SHADOW_VALUE
;
//value 0 to turn off
params
.
fTau
=
CV_BGFG_MOG2_SHADOW_TAU
;
//0.5f;// Tau - shadow threshold
}
else
{
params
=
*
parameters
;
}
bg_model
->
params
=
params
;
//allocate GMM data
w
=
first_frame
->
width
;
h
=
first_frame
->
height
;
size
=
w
*
h
;
bg_model
->
data
.
nWidth
=
w
;
bg_model
->
data
.
nHeight
=
h
;
bg_model
->
data
.
nNBands
=
3
;
bg_model
->
data
.
nSize
=
size
;
//GMM for each pixel
bg_model
->
data
.
rGMM
=
(
CvPBGMMGaussian
*
)
malloc
(
size
*
params
.
nM
*
sizeof
(
CvPBGMMGaussian
));
//used modes per pixel
bg_model
->
data
.
rnUsedModes
=
(
unsigned
char
*
)
malloc
(
size
);
memset
(
bg_model
->
data
.
rnUsedModes
,
0
,
size
);
//no modes used
//prepare storages
CV_CALL
(
bg_model
->
background
=
cvCreateImage
(
cvSize
(
w
,
h
),
IPL_DEPTH_8U
,
first_frame
->
nChannels
));
CV_CALL
(
bg_model
->
foreground
=
cvCreateImage
(
cvSize
(
w
,
h
),
IPL_DEPTH_8U
,
1
));
//for eventual filtering
CV_CALL
(
bg_model
->
storage
=
cvCreateMemStorage
());
bg_model
->
countFrames
=
0
;
__END__
;
if
(
cvGetErrStatus
()
<
0
)
{
CvBGStatModel
*
base_ptr
=
(
CvBGStatModel
*
)
bg_model
;
if
(
bg_model
&&
bg_model
->
release
)
bg_model
->
release
(
&
base_ptr
);
else
cvFree
(
&
bg_model
);
bg_model
=
0
;
}
return
(
CvBGStatModel
*
)
bg_model
;
}
static
void
CV_CDECL
icvReleaseGaussianBGModel2
(
CvGaussBGModel2
**
_bg_model
)
{
CV_FUNCNAME
(
"icvReleaseGaussianBGModel2"
);
__BEGIN__
;
if
(
!
_bg_model
)
CV_ERROR
(
CV_StsNullPtr
,
""
);
if
(
*
_bg_model
)
{
CvGaussBGModel2
*
bg_model
=
*
_bg_model
;
free
(
bg_model
->
data
.
rGMM
);
free
(
bg_model
->
data
.
rnUsedModes
);
cvReleaseImage
(
&
bg_model
->
background
);
cvReleaseImage
(
&
bg_model
->
foreground
);
cvReleaseMemStorage
(
&
bg_model
->
storage
);
memset
(
bg_model
,
0
,
sizeof
(
*
bg_model
)
);
cvFree
(
_bg_model
);
}
__END__
;
}
static
int
CV_CDECL
icvUpdateGaussianBGModel2
(
IplImage
*
curr_frame
,
CvGaussBGModel2
*
bg_model
)
{
//int i, j, k, n;
int
region_count
=
0
;
CvSeq
*
first_seq
=
NULL
,
*
prev_seq
=
NULL
,
*
seq
=
NULL
;
float
alpha
,
alphaInit
;
bg_model
->
countFrames
++
;
alpha
=
bg_model
->
params
.
fAlphaT
;
if
(
bg_model
->
params
.
bInit
){
//faster initial updates
alphaInit
=
(
1.0
f
/
(
2
*
bg_model
->
countFrames
+
1
));
if
(
alphaInit
>
alpha
)
{
alpha
=
alphaInit
;
}
else
{
bg_model
->
params
.
bInit
=
0
;
}
}
icvUpdatePixelBackgroundGMM
(
&
bg_model
->
data
,
&
bg_model
->
params
,
alpha
,(
unsigned
char
*
)
curr_frame
->
imageData
,(
unsigned
char
*
)
bg_model
->
foreground
->
imageData
);
if
(
bg_model
->
params
.
bPostFiltering
==
1
)
{
//foreground filtering
//filter small regions
cvClearMemStorage
(
bg_model
->
storage
);
cvMorphologyEx
(
bg_model
->
foreground
,
bg_model
->
foreground
,
0
,
0
,
CV_MOP_OPEN
,
1
);
cvMorphologyEx
(
bg_model
->
foreground
,
bg_model
->
foreground
,
0
,
0
,
CV_MOP_CLOSE
,
1
);
cvFindContours
(
bg_model
->
foreground
,
bg_model
->
storage
,
&
first_seq
,
sizeof
(
CvContour
),
CV_RETR_LIST
);
for
(
seq
=
first_seq
;
seq
;
seq
=
seq
->
h_next
)
{
CvContour
*
cnt
=
(
CvContour
*
)
seq
;
if
(
cnt
->
rect
.
width
*
cnt
->
rect
.
height
<
bg_model
->
params
.
minArea
)
{
//delete small contour
prev_seq
=
seq
->
h_prev
;
if
(
prev_seq
)
{
prev_seq
->
h_next
=
seq
->
h_next
;
if
(
seq
->
h_next
)
seq
->
h_next
->
h_prev
=
prev_seq
;
}
else
{
first_seq
=
seq
->
h_next
;
if
(
seq
->
h_next
)
seq
->
h_next
->
h_prev
=
NULL
;
}
}
else
{
region_count
++
;
}
}
bg_model
->
foreground_regions
=
first_seq
;
cvZero
(
bg_model
->
foreground
);
cvDrawContours
(
bg_model
->
foreground
,
first_seq
,
CV_RGB
(
0
,
0
,
255
),
CV_RGB
(
0
,
0
,
255
),
10
,
-
1
);
return
region_count
;
}
else
{
return
1
;
}
}
/* End of file. */
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment