Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
02fe93a3
Commit
02fe93a3
authored
May 11, 2016
by
StevenPuttemans
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add a cascade classifier model visualisation tool for master branch
parent
af64ecdf
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
390 additions
and
1 deletion
+390
-1
CMakeLists.txt
apps/CMakeLists.txt
+1
-1
CMakeLists.txt
apps/visualisation/CMakeLists.txt
+37
-0
opencv_visualisation.cpp
apps/visualisation/opencv_visualisation.cpp
+352
-0
No files found.
apps/CMakeLists.txt
View file @
02fe93a3
...
...
@@ -4,4 +4,4 @@ link_libraries(${OPENCV_LINKER_LIBS})
add_subdirectory
(
traincascade
)
add_subdirectory
(
createsamples
)
add_subdirectory
(
annotation
)
add_subdirectory
(
interactive-calibr
ation
)
add_subdirectory
(
visualis
ation
)
apps/visualisation/CMakeLists.txt
0 → 100644
View file @
02fe93a3
SET
(
OPENCV_VISUALISATION_DEPS opencv_core opencv_highgui opencv_imgproc opencv_videoio opencv_imgcodecs
)
ocv_check_dependencies
(
${
OPENCV_VISUALISATION_DEPS
}
)
if
(
NOT OCV_DEPENDENCIES_FOUND
)
return
()
endif
()
project
(
visualisation
)
set
(
the_target opencv_visualisation
)
ocv_target_include_directories
(
${
the_target
}
PRIVATE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"
${
OpenCV_SOURCE_DIR
}
/include/opencv"
)
ocv_target_include_modules_recurse
(
${
the_target
}
${
OPENCV_VISUALISATION_DEPS
}
)
file
(
GLOB SRCS *.cpp
)
set
(
visualisation_files
${
SRCS
}
)
ocv_add_executable
(
${
the_target
}
${
visualisation_files
}
)
ocv_target_link_libraries
(
${
the_target
}
${
OPENCV_VISUALISATION_DEPS
}
)
set_target_properties
(
${
the_target
}
PROPERTIES
DEBUG_POSTFIX
"
${
OPENCV_DEBUG_POSTFIX
}
"
ARCHIVE_OUTPUT_DIRECTORY
${
LIBRARY_OUTPUT_PATH
}
RUNTIME_OUTPUT_DIRECTORY
${
EXECUTABLE_OUTPUT_PATH
}
INSTALL_NAME_DIR lib
OUTPUT_NAME
"opencv_visualisation"
)
if
(
ENABLE_SOLUTION_FOLDERS
)
set_target_properties
(
${
the_target
}
PROPERTIES FOLDER
"applications"
)
endif
()
if
(
INSTALL_CREATE_DISTRIB
)
if
(
BUILD_SHARED_LIBS
)
install
(
TARGETS
${
the_target
}
RUNTIME DESTINATION
${
OPENCV_BIN_INSTALL_PATH
}
CONFIGURATIONS Release COMPONENT dev
)
endif
()
else
()
install
(
TARGETS
${
the_target
}
RUNTIME DESTINATION
${
OPENCV_BIN_INSTALL_PATH
}
COMPONENT dev
)
endif
()
apps/visualisation/opencv_visualisation.cpp
0 → 100644
View file @
02fe93a3
////////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
////////////////////////////////////////////////////////////////////////////////////////
/*****************************************************************************************************
Software for visualising cascade classifier models trained by OpenCV and to get a better
understanding of the used features.
USAGE:
./visualise_models -model <model.xml> -image <ref.png> -data <output folder>
LIMITS
- Use an absolute path for the output folder to ensure the tool works
- Only handles cascade classifier models
- Handles stumps only for the moment
- Needs a valid training/test sample window with the original model dimensions, passed as `ref.png`
- Can handle HAAR and LBP features
Created by: Puttemans Steven - April 2016
*****************************************************************************************************/
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/videoio.hpp>
#include <fstream>
#include <iostream>
using
namespace
std
;
using
namespace
cv
;
struct
rect_data
{
int
x
;
int
y
;
int
w
;
int
h
;
float
weight
;
};
int
main
(
int
argc
,
const
char
**
argv
)
{
// Read in the input arguments
string
model
=
""
;
string
output_folder
=
""
;
string
image_ref
=
""
;
for
(
int
i
=
1
;
i
<
argc
;
++
i
)
{
if
(
!
strcmp
(
argv
[
i
],
"-model"
)
)
{
model
=
argv
[
++
i
];
}
else
if
(
!
strcmp
(
argv
[
i
],
"-image"
)
){
image_ref
=
argv
[
++
i
];
}
else
if
(
!
strcmp
(
argv
[
i
],
"-data"
)
){
output_folder
=
argv
[
++
i
];
}
}
// Value for timing
// You can increase this to have a better visualisation during the generation
int
timing
=
1
;
// Value for cols of storing elements
int
cols_prefered
=
5
;
// Open the XML model
FileStorage
fs
;
fs
.
open
(
model
,
FileStorage
::
READ
);
// Get a the required information
// First decide which feature type we are using
FileNode
cascade
=
fs
[
"cascade"
];
string
feature_type
=
cascade
[
"featureType"
];
bool
haar
=
false
,
lbp
=
false
;
if
(
feature_type
.
compare
(
"HAAR"
)
==
0
){
haar
=
true
;
}
if
(
feature_type
.
compare
(
"LBP"
)
==
0
){
lbp
=
true
;
}
if
(
feature_type
.
compare
(
"HAAR"
)
!=
0
&&
feature_type
.
compare
(
"LBP"
)){
cerr
<<
"The model is not an HAAR or LBP feature based model!"
<<
endl
;
cerr
<<
"Please select a model that can be visualized by the software."
<<
endl
;
return
-
1
;
}
// We make a visualisation mask - which increases the window to make it at least a bit more visible
int
resize_factor
=
10
;
int
resize_storage_factor
=
10
;
Mat
reference_image
=
imread
(
image_ref
,
IMREAD_GRAYSCALE
);
Mat
visualization
;
resize
(
reference_image
,
visualization
,
Size
(
reference_image
.
cols
*
resize_factor
,
reference_image
.
rows
*
resize_factor
));
// First recover for each stage the number of weak features and their index
// Important since it is NOT sequential when using LBP features
vector
<
vector
<
int
>
>
stage_features
;
FileNode
stages
=
cascade
[
"stages"
];
FileNodeIterator
it_stages
=
stages
.
begin
(),
it_stages_end
=
stages
.
end
();
int
idx
=
0
;
for
(
;
it_stages
!=
it_stages_end
;
it_stages
++
,
idx
++
){
vector
<
int
>
current_feature_indexes
;
FileNode
weak_classifiers
=
(
*
it_stages
)[
"weakClassifiers"
];
FileNodeIterator
it_weak
=
weak_classifiers
.
begin
(),
it_weak_end
=
weak_classifiers
.
end
();
vector
<
int
>
values
;
for
(
int
idy
=
0
;
it_weak
!=
it_weak_end
;
it_weak
++
,
idy
++
){
(
*
it_weak
)[
"internalNodes"
]
>>
values
;
current_feature_indexes
.
push_back
(
(
int
)
values
[
2
]
);
}
stage_features
.
push_back
(
current_feature_indexes
);
}
// If the output option has been chosen than we will store a combined image plane for
// each stage, containing all weak classifiers for that stage.
bool
draw_planes
=
false
;
stringstream
output_video
;
output_video
<<
output_folder
<<
"model_visualization.avi"
;
VideoWriter
result_video
;
if
(
output_folder
.
compare
(
""
)
!=
0
){
draw_planes
=
true
;
result_video
.
open
(
output_video
.
str
(),
VideoWriter
::
fourcc
(
'X'
,
'V'
,
'I'
,
'D'
),
15
,
Size
(
reference_image
.
cols
*
resize_factor
,
reference_image
.
rows
*
resize_factor
),
false
);
}
if
(
haar
){
// Grab the corresponding features dimensions and weights
FileNode
features
=
cascade
[
"features"
];
vector
<
vector
<
rect_data
>
>
feature_data
;
FileNodeIterator
it_features
=
features
.
begin
(),
it_features_end
=
features
.
end
();
for
(
int
idf
=
0
;
it_features
!=
it_features_end
;
it_features
++
,
idf
++
){
vector
<
rect_data
>
current_feature_rectangles
;
FileNode
rectangles
=
(
*
it_features
)[
"rects"
];
int
nrects
=
(
int
)
rectangles
.
size
();
for
(
int
k
=
0
;
k
<
nrects
;
k
++
){
rect_data
current_data
;
FileNode
single_rect
=
rectangles
[
k
];
current_data
.
x
=
(
int
)
single_rect
[
0
];
current_data
.
y
=
(
int
)
single_rect
[
1
];
current_data
.
w
=
(
int
)
single_rect
[
2
];
current_data
.
h
=
(
int
)
single_rect
[
3
];
current_data
.
weight
=
(
float
)
single_rect
[
4
];
current_feature_rectangles
.
push_back
(
current_data
);
}
feature_data
.
push_back
(
current_feature_rectangles
);
}
// Loop over each possible feature on its index, visualise on the mask and wait a bit,
// then continue to the next feature.
// If visualisations should be stored then do the in between calculations
Mat
image_plane
;
Mat
metadata
=
Mat
::
zeros
(
150
,
1000
,
CV_8UC1
);
vector
<
rect_data
>
current_rects
;
for
(
int
sid
=
0
;
sid
<
(
int
)
stage_features
.
size
();
sid
++
){
if
(
draw_planes
){
int
features_nmbr
=
(
int
)
stage_features
[
sid
].
size
();
int
cols
=
cols_prefered
;
int
rows
=
features_nmbr
/
cols
;
if
(
(
features_nmbr
%
cols
)
>
0
){
rows
++
;
}
image_plane
=
Mat
::
zeros
(
reference_image
.
rows
*
resize_storage_factor
*
rows
,
reference_image
.
cols
*
resize_storage_factor
*
cols
,
CV_8UC1
);
}
for
(
int
fid
=
0
;
fid
<
(
int
)
stage_features
[
sid
].
size
();
fid
++
){
stringstream
meta1
,
meta2
;
meta1
<<
"Stage "
<<
sid
<<
" / Feature "
<<
fid
;
meta2
<<
"Rectangles: "
;
Mat
temp_window
=
visualization
.
clone
();
Mat
temp_metadata
=
metadata
.
clone
();
int
current_feature_index
=
stage_features
[
sid
][
fid
];
current_rects
=
feature_data
[
current_feature_index
];
Mat
single_feature
=
reference_image
.
clone
();
resize
(
single_feature
,
single_feature
,
Size
(),
resize_storage_factor
,
resize_storage_factor
);
for
(
int
i
=
0
;
i
<
(
int
)
current_rects
.
size
();
i
++
){
rect_data
local
=
current_rects
[
i
];
if
(
draw_planes
){
if
(
local
.
weight
>=
0
){
rectangle
(
single_feature
,
Rect
(
local
.
x
*
resize_storage_factor
,
local
.
y
*
resize_storage_factor
,
local
.
w
*
resize_storage_factor
,
local
.
h
*
resize_storage_factor
),
Scalar
(
0
),
FILLED
);
}
else
{
rectangle
(
single_feature
,
Rect
(
local
.
x
*
resize_storage_factor
,
local
.
y
*
resize_storage_factor
,
local
.
w
*
resize_storage_factor
,
local
.
h
*
resize_storage_factor
),
Scalar
(
255
),
FILLED
);
}
}
Rect
part
(
local
.
x
*
resize_factor
,
local
.
y
*
resize_factor
,
local
.
w
*
resize_factor
,
local
.
h
*
resize_factor
);
meta2
<<
part
<<
" (w "
<<
local
.
weight
<<
") "
;
if
(
local
.
weight
>=
0
){
rectangle
(
temp_window
,
part
,
Scalar
(
0
),
FILLED
);
}
else
{
rectangle
(
temp_window
,
part
,
Scalar
(
255
),
FILLED
);
}
}
imshow
(
"features"
,
temp_window
);
putText
(
temp_window
,
meta1
.
str
(),
Point
(
15
,
15
),
FONT_HERSHEY_SIMPLEX
,
0.5
,
Scalar
(
255
));
result_video
.
write
(
temp_window
);
// Copy the feature image if needed
if
(
draw_planes
){
single_feature
.
copyTo
(
image_plane
(
Rect
(
0
+
(
fid
%
cols_prefered
)
*
single_feature
.
cols
,
0
+
(
fid
/
cols_prefered
)
*
single_feature
.
rows
,
single_feature
.
cols
,
single_feature
.
rows
)));
}
putText
(
temp_metadata
,
meta1
.
str
(),
Point
(
15
,
15
),
FONT_HERSHEY_SIMPLEX
,
0.5
,
Scalar
(
255
));
putText
(
temp_metadata
,
meta2
.
str
(),
Point
(
15
,
40
),
FONT_HERSHEY_SIMPLEX
,
0.5
,
Scalar
(
255
));
imshow
(
"metadata"
,
temp_metadata
);
waitKey
(
timing
);
}
//Store the stage image if needed
if
(
draw_planes
){
stringstream
save_location
;
save_location
<<
output_folder
<<
"stage_"
<<
sid
<<
".png"
;
imwrite
(
save_location
.
str
(),
image_plane
);
}
}
}
if
(
lbp
){
// Grab the corresponding features dimensions and weights
FileNode
features
=
cascade
[
"features"
];
vector
<
Rect
>
feature_data
;
FileNodeIterator
it_features
=
features
.
begin
(),
it_features_end
=
features
.
end
();
for
(
int
idf
=
0
;
it_features
!=
it_features_end
;
it_features
++
,
idf
++
){
FileNode
rectangle
=
(
*
it_features
)[
"rect"
];
Rect
current_feature
((
int
)
rectangle
[
0
],
(
int
)
rectangle
[
1
],
(
int
)
rectangle
[
2
],
(
int
)
rectangle
[
3
]);
feature_data
.
push_back
(
current_feature
);
}
// Loop over each possible feature on its index, visualise on the mask and wait a bit,
// then continue to the next feature.
Mat
image_plane
;
Mat
metadata
=
Mat
::
zeros
(
150
,
1000
,
CV_8UC1
);
for
(
int
sid
=
0
;
sid
<
(
int
)
stage_features
.
size
();
sid
++
){
if
(
draw_planes
){
int
features_nmbr
=
(
int
)
stage_features
[
sid
].
size
();
int
cols
=
cols_prefered
;
int
rows
=
features_nmbr
/
cols
;
if
(
(
features_nmbr
%
cols
)
>
0
){
rows
++
;
}
image_plane
=
Mat
::
zeros
(
reference_image
.
rows
*
resize_storage_factor
*
rows
,
reference_image
.
cols
*
resize_storage_factor
*
cols
,
CV_8UC1
);
}
for
(
int
fid
=
0
;
fid
<
(
int
)
stage_features
[
sid
].
size
();
fid
++
){
stringstream
meta1
,
meta2
;
meta1
<<
"Stage "
<<
sid
<<
" / Feature "
<<
fid
;
meta2
<<
"Rectangle: "
;
Mat
temp_window
=
visualization
.
clone
();
Mat
temp_metadata
=
metadata
.
clone
();
int
current_feature_index
=
stage_features
[
sid
][
fid
];
Rect
current_rect
=
feature_data
[
current_feature_index
];
Mat
single_feature
=
reference_image
.
clone
();
resize
(
single_feature
,
single_feature
,
Size
(),
resize_storage_factor
,
resize_storage_factor
);
// VISUALISATION
// The rectangle is the top left one of a 3x3 block LBP constructor
Rect
resized
(
current_rect
.
x
*
resize_factor
,
current_rect
.
y
*
resize_factor
,
current_rect
.
width
*
resize_factor
,
current_rect
.
height
*
resize_factor
);
meta2
<<
resized
;
// Top left
rectangle
(
temp_window
,
resized
,
Scalar
(
255
),
1
);
// Top middle
rectangle
(
temp_window
,
Rect
(
resized
.
x
+
resized
.
width
,
resized
.
y
,
resized
.
width
,
resized
.
height
),
Scalar
(
255
),
1
);
// Top right
rectangle
(
temp_window
,
Rect
(
resized
.
x
+
2
*
resized
.
width
,
resized
.
y
,
resized
.
width
,
resized
.
height
),
Scalar
(
255
),
1
);
// Middle left
rectangle
(
temp_window
,
Rect
(
resized
.
x
,
resized
.
y
+
resized
.
height
,
resized
.
width
,
resized
.
height
),
Scalar
(
255
),
1
);
// Middle middle
rectangle
(
temp_window
,
Rect
(
resized
.
x
+
resized
.
width
,
resized
.
y
+
resized
.
height
,
resized
.
width
,
resized
.
height
),
Scalar
(
255
),
FILLED
);
// Middle right
rectangle
(
temp_window
,
Rect
(
resized
.
x
+
2
*
resized
.
width
,
resized
.
y
+
resized
.
height
,
resized
.
width
,
resized
.
height
),
Scalar
(
255
),
1
);
// Bottom left
rectangle
(
temp_window
,
Rect
(
resized
.
x
,
resized
.
y
+
2
*
resized
.
height
,
resized
.
width
,
resized
.
height
),
Scalar
(
255
),
1
);
// Bottom middle
rectangle
(
temp_window
,
Rect
(
resized
.
x
+
resized
.
width
,
resized
.
y
+
2
*
resized
.
height
,
resized
.
width
,
resized
.
height
),
Scalar
(
255
),
1
);
// Bottom right
rectangle
(
temp_window
,
Rect
(
resized
.
x
+
2
*
resized
.
width
,
resized
.
y
+
2
*
resized
.
height
,
resized
.
width
,
resized
.
height
),
Scalar
(
255
),
1
);
if
(
draw_planes
){
Rect
resized_inner
(
current_rect
.
x
*
resize_storage_factor
,
current_rect
.
y
*
resize_storage_factor
,
current_rect
.
width
*
resize_storage_factor
,
current_rect
.
height
*
resize_storage_factor
);
// Top left
rectangle
(
single_feature
,
resized_inner
,
Scalar
(
255
),
1
);
// Top middle
rectangle
(
single_feature
,
Rect
(
resized_inner
.
x
+
resized_inner
.
width
,
resized_inner
.
y
,
resized_inner
.
width
,
resized_inner
.
height
),
Scalar
(
255
),
1
);
// Top right
rectangle
(
single_feature
,
Rect
(
resized_inner
.
x
+
2
*
resized_inner
.
width
,
resized_inner
.
y
,
resized_inner
.
width
,
resized_inner
.
height
),
Scalar
(
255
),
1
);
// Middle left
rectangle
(
single_feature
,
Rect
(
resized_inner
.
x
,
resized_inner
.
y
+
resized_inner
.
height
,
resized_inner
.
width
,
resized_inner
.
height
),
Scalar
(
255
),
1
);
// Middle middle
rectangle
(
single_feature
,
Rect
(
resized_inner
.
x
+
resized_inner
.
width
,
resized_inner
.
y
+
resized_inner
.
height
,
resized_inner
.
width
,
resized_inner
.
height
),
Scalar
(
255
),
FILLED
);
// Middle right
rectangle
(
single_feature
,
Rect
(
resized_inner
.
x
+
2
*
resized_inner
.
width
,
resized_inner
.
y
+
resized_inner
.
height
,
resized_inner
.
width
,
resized_inner
.
height
),
Scalar
(
255
),
1
);
// Bottom left
rectangle
(
single_feature
,
Rect
(
resized_inner
.
x
,
resized_inner
.
y
+
2
*
resized_inner
.
height
,
resized_inner
.
width
,
resized_inner
.
height
),
Scalar
(
255
),
1
);
// Bottom middle
rectangle
(
single_feature
,
Rect
(
resized_inner
.
x
+
resized_inner
.
width
,
resized_inner
.
y
+
2
*
resized_inner
.
height
,
resized_inner
.
width
,
resized_inner
.
height
),
Scalar
(
255
),
1
);
// Bottom right
rectangle
(
single_feature
,
Rect
(
resized_inner
.
x
+
2
*
resized_inner
.
width
,
resized_inner
.
y
+
2
*
resized_inner
.
height
,
resized_inner
.
width
,
resized_inner
.
height
),
Scalar
(
255
),
1
);
single_feature
.
copyTo
(
image_plane
(
Rect
(
0
+
(
fid
%
cols_prefered
)
*
single_feature
.
cols
,
0
+
(
fid
/
cols_prefered
)
*
single_feature
.
rows
,
single_feature
.
cols
,
single_feature
.
rows
)));
}
putText
(
temp_metadata
,
meta1
.
str
(),
Point
(
15
,
15
),
FONT_HERSHEY_SIMPLEX
,
0.5
,
Scalar
(
255
));
putText
(
temp_metadata
,
meta2
.
str
(),
Point
(
15
,
40
),
FONT_HERSHEY_SIMPLEX
,
0.5
,
Scalar
(
255
));
imshow
(
"metadata"
,
temp_metadata
);
imshow
(
"features"
,
temp_window
);
putText
(
temp_window
,
meta1
.
str
(),
Point
(
15
,
15
),
FONT_HERSHEY_SIMPLEX
,
0.5
,
Scalar
(
255
));
result_video
.
write
(
temp_window
);
waitKey
(
timing
);
}
//Store the stage image if needed
if
(
draw_planes
){
stringstream
save_location
;
save_location
<<
output_folder
<<
"stage_"
<<
sid
<<
".png"
;
imwrite
(
save_location
.
str
(),
image_plane
);
}
}
}
return
0
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment