Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
0279ba95
Commit
0279ba95
authored
Feb 27, 2012
by
Alexander Shishkov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fixed warnings in linemod on Windows
parent
e7e37330
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
37 additions
and
37 deletions
+37
-37
objdetect.hpp
modules/objdetect/include/opencv2/objdetect/objdetect.hpp
+5
-5
linemod.cpp
modules/objdetect/src/linemod.cpp
+32
-32
No files found.
modules/objdetect/include/opencv2/objdetect/objdetect.hpp
View file @
0279ba95
...
...
@@ -774,7 +774,7 @@ protected:
*
* \todo Max response, to allow optimization of summing (255/MAX) features as uint8
*/
class
Modality
class
CV_EXPORTS
Modality
{
public
:
// Virtual destructor
...
...
@@ -821,7 +821,7 @@ protected:
/**
* \brief Modality that computes quantized gradient orientations from a color image.
*/
class
ColorGradient
:
public
Modality
class
C
V_EXPORTS
C
olorGradient
:
public
Modality
{
public
:
/**
...
...
@@ -856,7 +856,7 @@ protected:
/**
* \brief Modality that computes quantized surface normals from a dense depth map.
*/
class
DepthNormal
:
public
Modality
class
CV_EXPORTS
DepthNormal
:
public
Modality
{
public
:
/**
...
...
@@ -900,7 +900,7 @@ void colormap(const Mat& quantized, Mat& dst);
/**
* \brief Represents a successful template match.
*/
struct
Match
struct
CV_EXPORTS
Match
{
Match
()
{
...
...
@@ -1020,7 +1020,7 @@ public:
int
numTemplates
()
const
;
int
numTemplates
(
const
std
::
string
&
class_id
)
const
;
int
numClasses
()
const
{
return
class_templates
.
size
(
);
}
int
numClasses
()
const
{
return
static_cast
<
int
>
(
class_templates
.
size
()
);
}
std
::
vector
<
std
::
string
>
classIds
()
const
;
...
...
modules/objdetect/src/linemod.cpp
View file @
0279ba95
...
...
@@ -292,11 +292,11 @@ void quantizedOrientations(const Mat& src, Mat& magnitude,
float
*
ptr0y
=
(
float
*
)
sobel_dy
.
data
;
float
*
ptrmg
=
(
float
*
)
magnitude
.
data
;
const
int
length1
=
s
obel_3dx
.
step1
(
);
const
int
length2
=
s
obel_3dy
.
step1
(
);
const
int
length3
=
s
obel_dx
.
step1
(
);
const
int
length4
=
s
obel_dy
.
step1
(
);
const
int
length5
=
magnitude
.
step1
(
);
const
int
length1
=
s
tatic_cast
<
const
int
>
(
sobel_3dx
.
step1
()
);
const
int
length2
=
s
tatic_cast
<
const
int
>
(
sobel_3dy
.
step1
()
);
const
int
length3
=
s
tatic_cast
<
const
int
>
(
sobel_dx
.
step1
()
);
const
int
length4
=
s
tatic_cast
<
const
int
>
(
sobel_dy
.
step1
()
);
const
int
length5
=
static_cast
<
const
int
>
(
magnitude
.
step1
()
);
const
int
length0
=
sobel_3dy
.
cols
*
3
;
for
(
int
r
=
0
;
r
<
sobel_3dy
.
rows
;
++
r
)
...
...
@@ -539,7 +539,7 @@ bool ColorGradientPyramid::extractTemplate(Template& templ) const
std
::
stable_sort
(
candidates
.
begin
(),
candidates
.
end
());
// Use heuristic based on surplus of candidates in narrow outline for initial distance threshold
float
distance
=
candidates
.
size
()
/
num_features
+
1
;
float
distance
=
static_cast
<
float
>
(
candidates
.
size
()
/
num_features
+
1
)
;
selectScatteredFeatures
(
candidates
,
templ
.
features
,
num_features
,
distance
);
// Size determined externally, needs to match templates for other modalities
...
...
@@ -690,9 +690,9 @@ void quantizedNormals(const Mat& src, Mat& dst, int distance_threshold,
/// @todo Magic number 1150 is focal length? This is something like
/// f in SXGA mode, but in VGA is more like 530.
float
l_nx
=
1150
*
l_ddx
;
float
l_ny
=
1150
*
l_ddy
;
float
l_nz
=
-
l_det
*
l_d
;
float
l_nx
=
static_cast
<
float
>
(
1150
*
l_ddx
)
;
float
l_ny
=
static_cast
<
float
>
(
1150
*
l_ddy
)
;
float
l_nz
=
static_cast
<
float
>
(
-
l_det
*
l_d
)
;
float
l_sqrt
=
sqrtf
(
l_nx
*
l_nx
+
l_ny
*
l_ny
+
l_nz
*
l_nz
);
...
...
@@ -706,9 +706,9 @@ void quantizedNormals(const Mat& src, Mat& dst, int distance_threshold,
//*lp_norm = fabs(l_nz)*255;
int
l_val1
=
l_nx
*
l_offsetx
+
l_offsetx
;
int
l_val2
=
l_ny
*
l_offsety
+
l_offsety
;
int
l_val3
=
l_nz
*
GRANULARITY
+
GRANULARITY
;
int
l_val1
=
static_cast
<
int
>
(
l_nx
*
l_offsetx
+
l_offsetx
)
;
int
l_val2
=
static_cast
<
int
>
(
l_ny
*
l_offsety
+
l_offsety
)
;
int
l_val3
=
static_cast
<
int
>
(
l_nz
*
GRANULARITY
+
GRANULARITY
)
;
*
lp_norm
=
NORMAL_LUT
[
l_val3
][
l_val2
][
l_val1
];
}
...
...
@@ -856,8 +856,8 @@ bool DepthNormalPyramid::extractTemplate(Template& templ) const
std
::
stable_sort
(
candidates
.
begin
(),
candidates
.
end
());
// Use heuristic based on object area for initial distance threshold
int
area
=
no_mask
?
normal
.
total
()
:
countNonZero
(
local_mask
);
float
distance
=
sqrtf
(
area
)
/
sqrtf
(
num_features
)
+
1.5
f
;
int
area
=
static_cast
<
int
>
(
no_mask
?
normal
.
total
()
:
countNonZero
(
local_mask
)
);
float
distance
=
sqrtf
(
static_cast
<
float
>
(
area
))
/
sqrtf
(
static_cast
<
float
>
(
num_features
)
)
+
1.5
f
;
selectScatteredFeatures
(
candidates
,
templ
.
features
,
num_features
,
distance
);
// Size determined externally, needs to match templates for other modalities
...
...
@@ -1000,8 +1000,8 @@ void spread(const Mat& src, Mat& dst, int T)
int
height
=
src
.
rows
-
r
;
for
(
int
c
=
0
;
c
<
T
;
++
c
)
{
orUnaligned8u
(
&
src
.
at
<
unsigned
char
>
(
r
,
c
),
s
rc
.
step1
(
),
dst
.
ptr
(),
dst
.
step1
(
),
src
.
cols
-
c
,
height
);
orUnaligned8u
(
&
src
.
at
<
unsigned
char
>
(
r
,
c
),
s
tatic_cast
<
const
int
>
(
src
.
step1
()
),
dst
.
ptr
(),
static_cast
<
const
int
>
(
dst
.
step1
()
),
src
.
cols
-
c
,
height
);
}
}
}
...
...
@@ -1366,7 +1366,7 @@ void addSimilarities(const std::vector<Mat>& similarities, Mat& dst)
{
// NOTE: add() seems to be rather slow in the 8U + 8U -> 16U case
dst
.
create
(
similarities
[
0
].
size
(),
CV_16U
);
addUnaligned8u16u
(
similarities
[
0
].
ptr
(),
similarities
[
1
].
ptr
(),
dst
.
ptr
<
ushort
>
(),
dst
.
total
(
));
addUnaligned8u16u
(
similarities
[
0
].
ptr
(),
similarities
[
1
].
ptr
(),
dst
.
ptr
<
ushort
>
(),
static_cast
<
int
>
(
dst
.
total
()
));
/// @todo Optimize 16u + 8u -> 16u when more than 2 modalities
for
(
size_t
i
=
2
;
i
<
similarities
.
size
();
++
i
)
...
...
@@ -1385,7 +1385,7 @@ Detector::Detector()
Detector
::
Detector
(
const
std
::
vector
<
Ptr
<
Modality
>
>&
modalities
,
const
std
::
vector
<
int
>&
T_pyramid
)
:
modalities
(
modalities
),
pyramid_levels
(
T_pyramid
.
size
(
)),
pyramid_levels
(
static_cast
<
int
>
(
T_pyramid
.
size
()
)),
T_at_level
(
T_pyramid
)
{
}
...
...
@@ -1396,7 +1396,7 @@ void Detector::match(const std::vector<Mat>& sources, float threshold, std::vect
{
matches
.
clear
();
if
(
quantized_images
.
needed
())
quantized_images
.
create
(
1
,
pyramid_levels
*
modalities
.
size
(
),
CV_8U
);
quantized_images
.
create
(
1
,
static_cast
<
int
>
(
pyramid_levels
*
modalities
.
size
()
),
CV_8U
);
assert
(
sources
.
size
()
==
modalities
.
size
());
// Initialize each modality with our sources
...
...
@@ -1441,7 +1441,7 @@ void Detector::match(const std::vector<Mat>& sources, float threshold, std::vect
linearize
(
response_maps
[
j
],
memories
[
j
],
T
);
if
(
quantized_images
.
needed
())
//use copyTo here to side step reference semantics.
quantized
.
copyTo
(
quantized_images
.
getMatRef
(
l
*
quantizers
.
size
()
+
i
));
quantized
.
copyTo
(
quantized_images
.
getMatRef
(
static_cast
<
int
>
(
l
*
quantizers
.
size
()
+
i
)
));
}
sizes
.
push_back
(
quantized
.
size
());
...
...
@@ -1496,13 +1496,13 @@ void Detector::matchClass(const LinearMemoryPyramid& lm_pyramid,
// Compute similarity maps for each modality at lowest pyramid level
std
::
vector
<
Mat
>
similarities
(
modalities
.
size
());
int
lowest_start
=
tp
.
size
()
-
modalities
.
size
(
);
int
lowest_start
=
static_cast
<
int
>
(
tp
.
size
()
-
modalities
.
size
()
);
int
lowest_T
=
T_at_level
.
back
();
int
num_features
=
0
;
for
(
int
i
=
0
;
i
<
(
int
)
modalities
.
size
();
++
i
)
{
const
Template
&
templ
=
tp
[
lowest_start
+
i
];
num_features
+=
templ
.
features
.
size
(
);
num_features
+=
static_cast
<
int
>
(
templ
.
features
.
size
()
);
similarity
(
lowest_lm
[
i
],
templ
,
similarities
[
i
],
sizes
.
back
(),
lowest_T
);
}
...
...
@@ -1515,7 +1515,7 @@ void Detector::matchClass(const LinearMemoryPyramid& lm_pyramid,
// threshold scales from half the max response (what you would expect from applying
// the template to a completely random image) to the max response.
// NOTE: This assumes max per-feature response is 4, so we scale between [2*nf, 4*nf].
int
raw_threshold
=
2
*
num_features
+
(
threshold
/
100.
f
)
*
(
2
*
num_features
)
+
0.5
f
;
int
raw_threshold
=
static_cast
<
int
>
(
2
*
num_features
+
(
threshold
/
100.
f
)
*
(
2
*
num_features
)
+
0.5
f
)
;
// Find initial matches
std
::
vector
<
Match
>
candidates
;
...
...
@@ -1530,8 +1530,8 @@ void Detector::matchClass(const LinearMemoryPyramid& lm_pyramid,
int
offset
=
lowest_T
/
2
+
(
lowest_T
%
2
-
1
);
int
x
=
c
*
lowest_T
+
offset
;
int
y
=
r
*
lowest_T
+
offset
;
int
score
=
(
raw_score
*
100.
f
)
/
(
4
*
num_features
)
+
0.5
f
;
candidates
.
push_back
(
Match
(
x
,
y
,
score
,
class_id
,
template_id
));
float
score
=
(
raw_score
*
100.
f
)
/
(
4
*
num_features
)
+
0.5
f
;
candidates
.
push_back
(
Match
(
x
,
y
,
score
,
class_id
,
static_cast
<
int
>
(
template_id
)
));
}
}
}
...
...
@@ -1541,7 +1541,7 @@ void Detector::matchClass(const LinearMemoryPyramid& lm_pyramid,
{
const
std
::
vector
<
LinearMemories
>&
lms
=
lm_pyramid
[
l
];
int
T
=
T_at_level
[
l
];
int
start
=
l
*
modalities
.
size
(
);
int
start
=
static_cast
<
int
>
(
l
*
modalities
.
size
()
);
Size
size
=
sizes
[
l
];
int
border
=
8
*
T
;
int
offset
=
T
/
2
+
(
T
%
2
-
1
);
...
...
@@ -1569,7 +1569,7 @@ void Detector::matchClass(const LinearMemoryPyramid& lm_pyramid,
for
(
int
i
=
0
;
i
<
(
int
)
modalities
.
size
();
++
i
)
{
const
Template
&
templ
=
tp
[
start
+
i
];
num_features
+=
templ
.
features
.
size
(
);
num_features
+=
static_cast
<
int
>
(
templ
.
features
.
size
()
);
similarityLocal
(
lms
[
i
],
templ
,
similarities
[
i
],
size
,
T
,
Point
(
x
,
y
));
}
addSimilarities
(
similarities
,
total_similarity
);
...
...
@@ -1610,9 +1610,9 @@ void Detector::matchClass(const LinearMemoryPyramid& lm_pyramid,
int
Detector
::
addTemplate
(
const
std
::
vector
<
Mat
>&
sources
,
const
std
::
string
&
class_id
,
const
Mat
&
object_mask
,
Rect
*
bounding_box
)
{
int
num_modalities
=
modalities
.
size
(
);
int
num_modalities
=
static_cast
<
int
>
(
modalities
.
size
()
);
std
::
vector
<
TemplatePyramid
>&
template_pyramids
=
class_templates
[
class_id
];
int
template_id
=
template_pyramids
.
size
(
);
int
template_id
=
static_cast
<
int
>
(
template_pyramids
.
size
()
);
TemplatePyramid
tp
;
tp
.
resize
(
num_modalities
*
pyramid_levels
);
...
...
@@ -1646,7 +1646,7 @@ int Detector::addTemplate(const std::vector<Mat>& sources, const std::string& cl
int
Detector
::
addSyntheticTemplate
(
const
std
::
vector
<
Template
>&
templates
,
const
std
::
string
&
class_id
)
{
std
::
vector
<
TemplatePyramid
>&
template_pyramids
=
class_templates
[
class_id
];
int
template_id
=
template_pyramids
.
size
(
);
int
template_id
=
static_cast
<
int
>
(
template_pyramids
.
size
()
);
template_pyramids
.
push_back
(
templates
);
return
template_id
;
}
...
...
@@ -1664,7 +1664,7 @@ int Detector::numTemplates() const
int
ret
=
0
;
TemplatesMap
::
const_iterator
i
=
class_templates
.
begin
(),
iend
=
class_templates
.
end
();
for
(
;
i
!=
iend
;
++
i
)
ret
+=
i
->
second
.
size
(
);
ret
+=
static_cast
<
int
>
(
i
->
second
.
size
()
);
return
ret
;
}
...
...
@@ -1673,7 +1673,7 @@ int Detector::numTemplates(const std::string& class_id) const
TemplatesMap
::
const_iterator
i
=
class_templates
.
find
(
class_id
);
if
(
i
==
class_templates
.
end
())
return
0
;
return
i
->
second
.
size
(
);
return
static_cast
<
int
>
(
i
->
second
.
size
()
);
}
std
::
vector
<
std
::
string
>
Detector
::
classIds
()
const
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment