Commit 02118430 authored by marina.kolpakova's avatar marina.kolpakova

merge Detection structure for CPU and GPU soft cascade detectors

parent 77728115
...@@ -49,18 +49,21 @@ ...@@ -49,18 +49,21 @@
namespace cv { namespace softcascade { namespace cv { namespace softcascade {
// Representation of detectors result. // Representation of detectors result.
// We assume that image is less then 2^16x2^16.
struct CV_EXPORTS Detection struct CV_EXPORTS Detection
{ {
// Default object type.
enum {PEDESTRIAN = 1};
// Creates Detection from an object bounding box and confidence. // Creates Detection from an object bounding box and confidence.
// Param b is a bounding box // Param b is a bounding box
// Param c is a confidence that object belongs to class k // Param c is a confidence that object belongs to class k
// Param k is an object class // Param k is an object class
Detection(const cv::Rect& b, const float c, int k = PEDESTRIAN) : bb(b), confidence(c), kind(k) {} Detection(const cv::Rect& b, const float c, int k = PEDESTRIAN);
cv::Rect bb() const;
enum {PEDESTRIAN = 1};
cv::Rect bb; ushort x;
ushort y;
ushort w;
ushort h;
float confidence; float confidence;
int kind; int kind;
}; };
...@@ -247,19 +250,6 @@ class CV_EXPORTS SCascade : public cv::Algorithm ...@@ -247,19 +250,6 @@ class CV_EXPORTS SCascade : public cv::Algorithm
{ {
public: public:
// Representation of detectors result.
struct CV_EXPORTS Detection
{
ushort x;
ushort y;
ushort w;
ushort h;
float confidence;
int kind;
enum {PEDESTRIAN = 0};
};
enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,*/ DEFAULT = NO_REJECT, NMS_MASK = 0xF}; enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,*/ DEFAULT = NO_REJECT, NMS_MASK = 0xF};
// An empty cascade will be created. // An empty cascade will be created.
......
...@@ -27,8 +27,8 @@ void fixture##_##name::__cpu() { FAIL() << "No such CPU implementation analogy"; ...@@ -27,8 +27,8 @@ void fixture##_##name::__cpu() { FAIL() << "No such CPU implementation analogy";
namespace { namespace {
struct DetectionLess struct DetectionLess
{ {
bool operator()(const cv::softcascade::SCascade::Detection& a, bool operator()(const cv::softcascade::Detection& a,
const cv::softcascade::SCascade::Detection& b) const const cv::softcascade::Detection& b) const
{ {
if (a.x != b.x) return a.x < b.x; if (a.x != b.x) return a.x < b.x;
else if (a.y != b.y) return a.y < b.y; else if (a.y != b.y) return a.y < b.y;
...@@ -41,7 +41,7 @@ namespace { ...@@ -41,7 +41,7 @@ namespace {
{ {
cv::Mat detections(objects); cv::Mat detections(objects);
typedef cv::softcascade::SCascade::Detection Detection; typedef cv::softcascade::Detection Detection;
Detection* begin = (Detection*)(detections.ptr<char>(0)); Detection* begin = (Detection*)(detections.ptr<char>(0));
Detection* end = (Detection*)(detections.ptr<char>(0) + detections.cols); Detection* end = (Detection*)(detections.ptr<char>(0) + detections.cols);
std::sort(begin, end, DetectionLess()); std::sort(begin, end, DetectionLess());
...@@ -73,7 +73,7 @@ RUN_GPU(SCascadeTest, detect) ...@@ -73,7 +73,7 @@ RUN_GPU(SCascadeTest, detect)
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode())); ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::softcascade::SCascade::Detection), CV_8UC1), rois(colored.size(), CV_8UC1); cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::softcascade::Detection), CV_8UC1), rois(colored.size(), CV_8UC1);
rois.setTo(1); rois.setTo(1);
cascade.detect(colored, rois, objectBoxes); cascade.detect(colored, rois, objectBoxes);
...@@ -215,7 +215,7 @@ RUN_GPU(SCascadeTest, detectStream) ...@@ -215,7 +215,7 @@ RUN_GPU(SCascadeTest, detectStream)
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode())); ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::softcascade::SCascade::Detection), CV_8UC1), rois(colored.size(), CV_8UC1); cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::softcascade::Detection), CV_8UC1), rois(colored.size(), CV_8UC1);
rois.setTo(1); rois.setTo(1);
cv::gpu::Stream s; cv::gpu::Stream s;
......
...@@ -17,7 +17,7 @@ void extractRacts(std::vector<Detection> objectBoxes, std::vector<Rect>& rects) ...@@ -17,7 +17,7 @@ void extractRacts(std::vector<Detection> objectBoxes, std::vector<Rect>& rects)
{ {
rects.clear(); rects.clear();
for (int i = 0; i < (int)objectBoxes.size(); ++i) for (int i = 0; i < (int)objectBoxes.size(); ++i)
rects.push_back(objectBoxes[i].bb); rects.push_back(objectBoxes[i].bb());
} }
} }
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2013, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and / or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
cv::softcascade::Detection::Detection(const cv::Rect& b, const float c, int k)
: x(b.x), y(b.y), w(b.width), h(b.height), confidence(c), kind(k) {}
cv::Rect cv::softcascade::Detection::bb() const
{
return cv::Rect(x, y, w, h);
}
\ No newline at end of file
...@@ -473,7 +473,7 @@ void DollarNMS(dvector& objects) ...@@ -473,7 +473,7 @@ void DollarNMS(dvector& objects)
{ {
const Detection &b = *next; const Detection &b = *next;
const float ovl = overlap(a.bb, b.bb) / std::min(a.bb.area(), b.bb.area()); const float ovl = overlap(a.bb(), b.bb()) / std::min(a.bb().area(), b.bb().area());
if (ovl > DollarThreshold) if (ovl > DollarThreshold)
next = objects.erase(next); next = objects.erase(next);
...@@ -588,7 +588,7 @@ void Detector::detect(InputArray _image, InputArray _rois, OutputArray _rects, ...@@ -588,7 +588,7 @@ void Detector::detect(InputArray _image, InputArray _rois, OutputArray _rects,
int i = 0; int i = 0;
for (IDet it = objects.begin(); it != objects.end(); ++it, ++i) for (IDet it = objects.begin(); it != objects.end(); ++it, ++i)
{ {
rectPtr[i] = (*it).bb; rectPtr[i] = (*it).bb();
confPtr[i] = (*it).confidence; confPtr[i] = (*it).confidence;
} }
} }
\ No newline at end of file
...@@ -76,7 +76,7 @@ TEST(SCascadeTest, readCascade) ...@@ -76,7 +76,7 @@ TEST(SCascadeTest, readCascade)
namespace namespace
{ {
typedef cv::softcascade::SCascade::Detection Detection; typedef cv::softcascade::Detection Detection;
cv::Rect getFromTable(int idx) cv::Rect getFromTable(int idx)
{ {
...@@ -194,7 +194,7 @@ TEST_P(SCascadeTestRoi, Detect) ...@@ -194,7 +194,7 @@ TEST_P(SCascadeTestRoi, Detect)
cascade.detect(colored, rois, objectBoxes); cascade.detect(colored, rois, objectBoxes);
cv::Mat dt(objectBoxes); cv::Mat dt(objectBoxes);
typedef cv::softcascade::SCascade::Detection Detection; typedef cv::softcascade::Detection Detection;
Detection* dts = ((Detection*)dt.data) + 1; Detection* dts = ((Detection*)dt.data) + 1;
int* count = dt.ptr<int>(0); int* count = dt.ptr<int>(0);
...@@ -262,7 +262,7 @@ TEST_P(SCascadeTestAll, detect) ...@@ -262,7 +262,7 @@ TEST_P(SCascadeTestAll, detect)
cascade.detect(colored, rois, objectBoxes); cascade.detect(colored, rois, objectBoxes);
typedef cv::softcascade::SCascade::Detection Detection; typedef cv::softcascade::Detection Detection;
cv::Mat dt(objectBoxes); cv::Mat dt(objectBoxes);
...@@ -303,7 +303,7 @@ TEST_P(SCascadeTestAll, detectStream) ...@@ -303,7 +303,7 @@ TEST_P(SCascadeTestAll, detectStream)
cascade.detect(colored, rois, objectBoxes, s); cascade.detect(colored, rois, objectBoxes, s);
s.waitForCompletion(); s.waitForCompletion();
typedef cv::softcascade::SCascade::Detection Detection; typedef cv::softcascade::Detection Detection;
cv::Mat detections(objectBoxes); cv::Mat detections(objectBoxes);
int a = *(detections.ptr<int>(0)); int a = *(detections.ptr<int>(0));
ASSERT_EQ(a, expected); ASSERT_EQ(a, expected);
......
...@@ -139,12 +139,11 @@ int main(int argc, char** argv) ...@@ -139,12 +139,11 @@ int main(int argc, char** argv)
std::stringstream conf(std::stringstream::in | std::stringstream::out); std::stringstream conf(std::stringstream::in | std::stringstream::out);
conf << d.confidence; conf << d.confidence;
cv::rectangle(frame, cv::Rect(d.bb.x, d.bb.y, d.bb.width, d.bb.height), cv::Scalar(b, 0, 255 - b, 255), 2); cv::rectangle(frame, cv::Rect((int)d.x, (int)d.y, (int)d.w, (int)d.h), cv::Scalar(b, 0, 255 - b, 255), 2);
cv::putText(frame, conf.str() , cv::Point(d.bb.x + 10, d.bb.y - 5),1, 1.1, cv::Scalar(25, 133, 255, 0), 1, CV_AA); cv::putText(frame, conf.str() , cv::Point((int)d.x + 10, (int)d.y - 5),1, 1.1, cv::Scalar(25, 133, 255, 0), 1, CV_AA);
if (wf) if (wf)
myfile << d.bb.x << "," << d.bb.y << "," myfile << d.x << "," << d.y << "," << d.w << "," << d.h << "," << d.confidence << "\n";
<< d.bb.width << "," << d.bb.height << "," << d.confidence << "\n";
} }
} }
} }
......
...@@ -3,6 +3,8 @@ ...@@ -3,6 +3,8 @@
#include <opencv2/highgui.hpp> #include <opencv2/highgui.hpp>
#include <iostream> #include <iostream>
typedef cv::softcascade::Detection Detection;
int main(int argc, char** argv) int main(int argc, char** argv)
{ {
const std::string keys = const std::string keys =
...@@ -64,7 +66,7 @@ int main(int argc, char** argv) ...@@ -64,7 +66,7 @@ int main(int argc, char** argv)
return 1; return 1;
} }
cv::gpu::GpuMat objects(1, sizeof(SCascade::Detection) * 10000, CV_8UC1); cv::gpu::GpuMat objects(1, sizeof(Detection) * 10000, CV_8UC1);
cv::gpu::printShortCudaDeviceInfo(parser.get<int>("device")); cv::gpu::printShortCudaDeviceInfo(parser.get<int>("device"));
for (;;) for (;;)
{ {
...@@ -80,7 +82,6 @@ int main(int argc, char** argv) ...@@ -80,7 +82,6 @@ int main(int argc, char** argv)
cascade.detect(dframe, roi, objects); cascade.detect(dframe, roi, objects);
cv::Mat dt(objects); cv::Mat dt(objects);
typedef cv::softcascade::SCascade::Detection Detection;
Detection* dts = ((Detection*)dt.data) + 1; Detection* dts = ((Detection*)dt.data) + 1;
int* count = dt.ptr<int>(0); int* count = dt.ptr<int>(0);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment