Commit 01e351de authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

refactored downhill simplex implementation a bit; hopefully, fixed the bug with…

refactored downhill simplex implementation a bit; hopefully, fixed the bug with random failures in the tests
parent a33d7928
...@@ -1475,13 +1475,15 @@ Mat_<_Tp> Mat_<_Tp>::operator()( const Range* ranges ) const ...@@ -1475,13 +1475,15 @@ Mat_<_Tp> Mat_<_Tp>::operator()( const Range* ranges ) const
template<typename _Tp> inline template<typename _Tp> inline
_Tp* Mat_<_Tp>::operator [](int y) _Tp* Mat_<_Tp>::operator [](int y)
{ {
return (_Tp*)ptr(y); CV_DbgAssert( 0 <= y && y < rows );
return (_Tp*)(data + y*step.p[0]);
} }
template<typename _Tp> inline template<typename _Tp> inline
const _Tp* Mat_<_Tp>::operator [](int y) const const _Tp* Mat_<_Tp>::operator [](int y) const
{ {
return (const _Tp*)ptr(y); CV_DbgAssert( 0 <= y && y < rows );
return (const _Tp*)(data + y*step.p[0]);
} }
template<typename _Tp> inline template<typename _Tp> inline
......
...@@ -40,6 +40,9 @@ ...@@ -40,6 +40,9 @@
//M*/ //M*/
#include "precomp.hpp" #include "precomp.hpp"
/*#define dprintf(x) printf x
#define print_matrix(x) print(x)*/
#define dprintf(x) #define dprintf(x)
#define print_matrix(x) #define print_matrix(x)
...@@ -51,7 +54,7 @@ Downhill Simplex method in OpenCV dev 3.0.0 getting this error: ...@@ -51,7 +54,7 @@ Downhill Simplex method in OpenCV dev 3.0.0 getting this error:
OpenCV Error: Assertion failed (dims <= 2 && data && (unsigned)i0 < (unsigned)(s ize.p[0] * size.p[1]) OpenCV Error: Assertion failed (dims <= 2 && data && (unsigned)i0 < (unsigned)(s ize.p[0] * size.p[1])
&& elemSize() == (((((DataType<_Tp>::type) & ((512 - 1) << 3)) >> 3) + 1) << ((((sizeof(size_t)/4+1)16384|0x3a50) && elemSize() == (((((DataType<_Tp>::type) & ((512 - 1) << 3)) >> 3) + 1) << ((((sizeof(size_t)/4+1)16384|0x3a50)
>> ((DataType<_Tp>::typ e) & ((1 << 3) - 1))2) & 3))) in cv::Mat::at, >> ((DataType<_Tp>::typ e) & ((1 << 3) - 1))2) & 3))) in Mat::at,
file C:\builds\master_PackSlave-w in32-vc12-shared\opencv\modules\core\include\opencv2/core/mat.inl.hpp, line 893 file C:\builds\master_PackSlave-w in32-vc12-shared\opencv\modules\core\include\opencv2/core/mat.inl.hpp, line 893
****Problem and Possible Fix********************************************************************************************************* ****Problem and Possible Fix*********************************************************************************************************
...@@ -135,275 +138,279 @@ multiple lines in three dimensions as not all lines intersect in three dimension ...@@ -135,275 +138,279 @@ multiple lines in three dimensions as not all lines intersect in three dimension
namespace cv namespace cv
{ {
class DownhillSolverImpl : public DownhillSolver class DownhillSolverImpl : public DownhillSolver
{
public:
DownhillSolverImpl()
{ {
public: _Function=Ptr<Function>();
void getInitStep(OutputArray step) const; _step=Mat_<double>();
void setInitStep(InputArray step); }
Ptr<Function> getFunction() const;
void setFunction(const Ptr<Function>& f); void getInitStep(OutputArray step) const { _step.copyTo(step); }
TermCriteria getTermCriteria() const; void setInitStep(InputArray step)
DownhillSolverImpl();
void setTermCriteria(const TermCriteria& termcrit);
double minimize(InputOutputArray x);
protected:
Ptr<MinProblemSolver::Function> _Function;
TermCriteria _termcrit;
Mat _step;
Mat_<double> buf_x;
private:
inline void createInitialSimplex(Mat_<double>& simplex,Mat& step);
inline double innerDownhillSimplex(cv::Mat_<double>& p,double MinRange,double MinError,int& nfunk,
const Ptr<MinProblemSolver::Function>& f,int nmax);
inline double tryNewPoint(Mat_<double>& p,Mat_<double>& y,Mat_<double>& coord_sum,const Ptr<MinProblemSolver::Function>& f,int ihi,
double fac,Mat_<double>& ptry);
};
double DownhillSolverImpl::tryNewPoint(
Mat_<double>& p,
Mat_<double>& y,
Mat_<double>& coord_sum,
const Ptr<MinProblemSolver::Function>& f,
int ihi,
double fac,
Mat_<double>& ptry
)
{ {
int ndim=p.cols; // set dimensionality and make a deep copy of step
int j; Mat m = step.getMat();
double fac1,fac2,ytry; dprintf(("m.cols=%d\nm.rows=%d\n", m.cols, m.rows));
CV_Assert( std::min(m.cols, m.rows) == 1 && m.type() == CV_64FC1 );
if( m.rows == 1 )
m.copyTo(_step);
else
transpose(m, _step);
}
Ptr<MinProblemSolver::Function> getFunction() const { return _Function; }
void setFunction(const Ptr<Function>& f) { _Function=f; }
TermCriteria getTermCriteria() const { return _termcrit; }
void setTermCriteria( const TermCriteria& termcrit )
{
CV_Assert( termcrit.type == (TermCriteria::MAX_ITER + TermCriteria::EPS) &&
termcrit.epsilon > 0 &&
termcrit.maxCount > 0 );
_termcrit=termcrit;
}
double minimize( InputOutputArray x_ )
{
dprintf(("hi from minimize\n"));
CV_Assert( !_Function.empty() );
dprintf(("termcrit:\n\ttype: %d\n\tmaxCount: %d\n\tEPS: %g\n",_termcrit.type,_termcrit.maxCount,_termcrit.epsilon));
dprintf(("step\n"));
print_matrix(_step);
Mat x = x_.getMat();
Mat_<double> simplex;
createInitialSimplex(x, simplex, _step);
int count = 0;
double res = innerDownhillSimplex(simplex,_termcrit.epsilon, _termcrit.epsilon,
count, _Function, _termcrit.maxCount);
dprintf(("%d iterations done\n",count));
fac1=(1.0-fac)/ndim; if( !x.empty() )
fac2=fac1-fac;
for (j=0;j<ndim;j++)
{ {
ptry(j)=coord_sum(j)*fac1-p(ihi,j)*fac2; Mat simplex_0m(x.rows, x.cols, CV_64F, simplex.ptr<double>());
simplex_0m.convertTo(x, x.type());
} }
ytry=f->calc(ptry.ptr<double>()); else
if (ytry < y(ihi))
{ {
y(ihi)=ytry; int x_type = x_.fixedType() ? x_.type() : CV_64F;
for (j=0;j<ndim;j++) simplex.row(0).convertTo(x_, x_type);
{
coord_sum(j) += ptry(j)-p(ihi,j);
p(ihi,j)=ptry(j);
}
} }
return res;
}
protected:
Ptr<MinProblemSolver::Function> _Function;
TermCriteria _termcrit;
Mat _step;
return ytry; inline void updateCoordSum(const Mat_<double>& p, Mat_<double>& coord_sum)
{
int i, j, m = p.rows, n = p.cols;
double* coord_sum_ = coord_sum.ptr<double>();
CV_Assert( coord_sum.cols == n && coord_sum.rows == 1 );
for( j = 0; j < n; j++ )
coord_sum_[j] = 0.;
for( i = 0; i < m; i++ )
{
const double* p_i = p.ptr<double>(i);
for( j = 0; j < n; j++ )
coord_sum_[j] += p_i[j];
}
}
inline void createInitialSimplex( const Mat& x0, Mat_<double>& simplex, Mat& step )
{
int i, j, ndim = step.cols;
Mat x = x0;
if( x0.empty() )
x = Mat::zeros(1, ndim, CV_64F);
CV_Assert( (x.cols == 1 && x.rows == ndim) || (x.cols == ndim && x.rows == 1) );
CV_Assert( x.type() == CV_32F || x.type() == CV_64F );
simplex.create(ndim + 1, ndim);
Mat simplex_0m(x.rows, x.cols, CV_64F, simplex.ptr<double>());
x.convertTo(simplex_0m, CV_64F);
double* simplex_0 = simplex.ptr<double>();
const double* step_ = step.ptr<double>();
for( i = 1; i <= ndim; i++ )
{
double* simplex_i = simplex.ptr<double>(i);
for( j = 0; j < ndim; j++ )
simplex_i[j] = simplex_0[j];
simplex_i[i-1] += 0.5*step_[i-1];
}
for( j = 0; j < ndim; j++ )
simplex_0[j] -= 0.5*step_[j];
dprintf(("this is simplex\n"));
print_matrix(simplex);
} }
/* /*
Performs the actual minimization of MinProblemSolver::Function f (after the initialization was done) Performs the actual minimization of MinProblemSolver::Function f (after the initialization was done)
The matrix p[ndim+1][1..ndim] represents ndim+1 vertices that The matrix p[ndim+1][1..ndim] represents ndim+1 vertices that
form a simplex - each row is an ndim vector. form a simplex - each row is an ndim vector.
On output, nfunk gives the number of function evaluations taken. On output, nfunk gives the number of function evaluations taken.
*/ */
double DownhillSolverImpl::innerDownhillSimplex( double innerDownhillSimplex( Mat_<double>& p,double MinRange,double MinError, int& nfunk,
cv::Mat_<double>& p, const Ptr<MinProblemSolver::Function>& f, int nmax )
double MinRange,
double MinError,
int& nfunk,
const Ptr<MinProblemSolver::Function>& f,
int nmax
)
{ {
int ndim=p.cols; int i, j, ndim = p.cols;
double res; Mat_<double> coord_sum(1, ndim), buf(1, ndim), y(1, ndim+1);
int i,ihi,ilo,inhi,j,mpts=ndim+1; double* y_ = y.ptr<double>();
double error, range,ysave,ytry;
Mat_<double> coord_sum(1,ndim,0.0),buf(1,ndim,0.0),y(1,ndim+1,0.0);
nfunk = 0; nfunk = 0;
for(i=0;i<ndim+1;++i) for( i = 0; i <= ndim; i++ )
{ y_[i] = f->calc(p[i]);
y(i) = f->calc(p[i]);
}
nfunk = ndim+1; nfunk = ndim+1;
updateCoordSum(p, coord_sum);
reduce(p,coord_sum,0,CV_REDUCE_SUM);
for (;;) for (;;)
{ {
ilo=0;
/* find highest (worst), next-to-worst, and lowest /* find highest (worst), next-to-worst, and lowest
(best) points by going through all of them. */ (best) points by going through all of them. */
ihi = y(0)>y(1) ? (inhi=1,0) : (inhi=0,1); int ilo = 0, ihi, inhi;
for (i=0;i<mpts;i++) if( y_[0] > y_[1] )
{
ihi = 0; inhi = 1;
}
else
{ {
if (y(i) <= y(ilo)) ihi = 1; inhi = 0;
ilo=i; }
if (y(i) > y(ihi)) for( i = 0; i <= ndim; i++ )
{
double yval = y_[i];
if (yval <= y_[ilo])
ilo = i;
if (yval > y_[ihi])
{ {
inhi=ihi; inhi = ihi;
ihi=i; ihi = i;
} }
else if (y(i) > y(inhi) && i != ihi) else if (yval > y_[inhi] && i != ihi)
inhi=i; inhi = i;
} }
CV_Assert( ilo != ihi && ilo != inhi && ihi != inhi );
dprintf(("this is y on iteration %d:\n",nfunk));
print_matrix(y);
/* check stop criterion */ /* check stop criterion */
error=fabs(y(ihi)-y(ilo)); double error = fabs(y_[ihi] - y_[ilo]);
range=0; double range = 0;
for(i=0;i<ndim;++i) for( j = 0; j < ndim; j++ )
{ {
double min = p(0,i); double minval, maxval;
double max = p(0,i); minval = maxval = p(0, j);
double d; for( i = 1; i <= ndim; i++ )
for(j=1;j<=ndim;++j)
{ {
if( min > p(j,i) ) min = p(j,i); double pval = p(i, j);
if( max < p(j,i) ) max = p(j,i); minval = std::min(minval, pval);
maxval = std::max(maxval, pval);
} }
d = fabs(max-min); range = std::max(range, fabs(maxval - minval));
if(range < d) range = d;
} }
if(range <= MinRange || error <= MinError) if( range <= MinRange || error <= MinError || nfunk >= nmax )
{ /* Put best point and value in first slot. */ {
std::swap(y(0),y(ilo)); /* Put best point and value in first slot. */
for (i=0;i<ndim;i++) std::swap(y(0), y(ilo));
for( j = 0; j < ndim; j++ )
{ {
std::swap(p(0,i),p(ilo,i)); std::swap(p(0, j), p(ilo, j));
} }
break; break;
} }
if (nfunk >= nmax){
dprintf(("nmax exceeded\n"));
return y(ilo);
}
nfunk += 2; nfunk += 2;
/*Begin a new iteration. First, reflect the worst point about the centroid of others */
ytry = tryNewPoint(p,y,coord_sum,f,ihi,-1.0,buf); double ylo = y_[ilo], ynhi = y_[inhi];
if (ytry <= y(ilo)) /* Begin a new iteration. First, reflect the worst point about the centroid of others */
{ /*If that's better than the best point, go twice as far in that direction*/ double ytry = tryNewPoint(p, y, coord_sum, f, ihi, -1.0, buf);
ytry = tryNewPoint(p,y,coord_sum,f,ihi,2.0,buf); if( ytry <= ylo )
{
/* If that's better than the best point, go twice as far in that direction */
ytry = tryNewPoint(p, y, coord_sum, f, ihi, 2.0, buf);
} }
else if (ytry >= y(inhi)) else if( ytry >= ynhi )
{ /* The new point is worse than the second-highest, but better {
than the worst so do not go so far in that direction */ /* The new point is worse than the second-highest,
ysave = y(ihi); do not go so far in that direction */
ytry = tryNewPoint(p,y,coord_sum,f,ihi,0.5,buf); double ysave = y(ihi);
ytry = tryNewPoint(p, y, coord_sum, f, ihi, 0.5, buf);
if (ytry >= ysave) if (ytry >= ysave)
{ /* Can't seem to improve things. Contract the simplex to good point {
in hope to find a simplex landscape. */ /* Can't seem to improve things. Contract the simplex to good point
for (i=0;i<mpts;i++) in hope to find a simplex landscape. */
for( i = 0; i <= ndim; i++ )
{ {
if (i != ilo) if (i != ilo)
{ {
for (j=0;j<ndim;j++) for( j = 0; j < ndim; j++ )
{ p(i,j) = 0.5*(p(i,j) + p(ilo,j));
p(i,j) = coord_sum(j) = 0.5*(p(i,j)+p(ilo,j)); y(i)=f->calc(p.ptr<double>(i));
}
y(i)=f->calc(coord_sum.ptr<double>());
} }
} }
nfunk += ndim; nfunk += ndim;
reduce(p,coord_sum,0,CV_REDUCE_SUM); updateCoordSum(p, coord_sum);
} }
} else --(nfunk); /* correct nfunk */ }
else --(nfunk); /* correct nfunk */
dprintf(("this is simplex on iteration %d\n",nfunk)); dprintf(("this is simplex on iteration %d\n",nfunk));
print_matrix(p); print_matrix(p);
} /* go to next iteration. */ } /* go to next iteration. */
res = y(0); return y(0);
return res;
} }
void DownhillSolverImpl::createInitialSimplex(Mat_<double>& simplex,Mat& step){ inline double tryNewPoint(Mat_<double>& p, Mat_<double>& y, Mat_<double>& coord_sum,
for(int i=1;i<=step.cols;++i) const Ptr<MinProblemSolver::Function>& f, int ihi,
{ double fac, Mat_<double>& ptry)
simplex.row(0).copyTo(simplex.row(i)); {
simplex(i,i-1)+= 0.5*step.at<double>(0,i-1); int j, ndim = p.cols;
}
simplex.row(0) -= 0.5*step;
dprintf(("this is simplex\n"));
print_matrix(simplex);
}
double DownhillSolverImpl::minimize(InputOutputArray x){
dprintf(("hi from minimize\n"));
CV_Assert(_Function.empty()==false);
dprintf(("termcrit:\n\ttype: %d\n\tmaxCount: %d\n\tEPS: %g\n",_termcrit.type,_termcrit.maxCount,_termcrit.epsilon));
dprintf(("step\n"));
print_matrix(_step);
Mat x_mat=x.getMat(); double fac1 = (1.0 - fac)/ndim;
CV_Assert(MIN(x_mat.rows,x_mat.cols)==1); double fac2 = fac1 - fac;
CV_Assert(MAX(x_mat.rows,x_mat.cols)==_step.cols); double* p_ihi = p.ptr<double>(ihi);
CV_Assert(x_mat.type()==CV_64FC1); double* ptry_ = ptry.ptr<double>();
double* coord_sum_ = coord_sum.ptr<double>();
Mat_<double> proxy_x; for( j = 0; j < ndim; j++ )
ptry_[j] = coord_sum_[j]*fac1 - p_ihi[j]*fac2;
if(x_mat.rows>1){ double ytry = f->calc(ptry_);
buf_x.create(1,_step.cols); if (ytry < y(ihi))
Mat_<double> proxy(_step.cols,1,buf_x.ptr<double>()); {
x_mat.copyTo(proxy); y(ihi) = ytry;
proxy_x=buf_x; for( j = 0; j < ndim; j++ )
}else{ p_ihi[j] = ptry_[j];
proxy_x=x_mat; updateCoordSum(p, coord_sum);
} }
int count=0; return ytry;
int ndim=_step.cols; }
Mat_<double> simplex=Mat_<double>(ndim+1,ndim,0.0); };
proxy_x.copyTo(simplex.row(0));
createInitialSimplex(simplex,_step);
double res = innerDownhillSimplex(
simplex,_termcrit.epsilon, _termcrit.epsilon, count,_Function,_termcrit.maxCount);
simplex.row(0).copyTo(proxy_x);
dprintf(("%d iterations done\n",count)); // both minRange & minError are specified by termcrit.epsilon;
// In addition, user may specify the number of iterations that the algorithm does.
Ptr<DownhillSolver> DownhillSolver::create( const Ptr<MinProblemSolver::Function>& f,
InputArray initStep, TermCriteria termcrit )
{
Ptr<DownhillSolver> DS = makePtr<DownhillSolverImpl>();
DS->setFunction(f);
DS->setInitStep(initStep);
DS->setTermCriteria(termcrit);
return DS;
}
if(x_mat.rows>1){
Mat(x_mat.rows, 1, CV_64F, proxy_x.ptr<double>()).copyTo(x);
}
return res;
}
DownhillSolverImpl::DownhillSolverImpl(){
_Function=Ptr<Function>();
_step=Mat_<double>();
}
Ptr<MinProblemSolver::Function> DownhillSolverImpl::getFunction()const{
return _Function;
}
void DownhillSolverImpl::setFunction(const Ptr<Function>& f){
_Function=f;
}
TermCriteria DownhillSolverImpl::getTermCriteria()const{
return _termcrit;
}
void DownhillSolverImpl::setTermCriteria(const TermCriteria& termcrit){
CV_Assert(termcrit.type==(TermCriteria::MAX_ITER+TermCriteria::EPS) && termcrit.epsilon>0 && termcrit.maxCount>0);
_termcrit=termcrit;
}
// both minRange & minError are specified by termcrit.epsilon; In addition, user may specify the number of iterations that the algorithm does.
Ptr<DownhillSolver> DownhillSolver::create(const Ptr<MinProblemSolver::Function>& f, InputArray initStep, TermCriteria termcrit){
Ptr<DownhillSolver> DS = makePtr<DownhillSolverImpl>();
DS->setFunction(f);
DS->setInitStep(initStep);
DS->setTermCriteria(termcrit);
return DS;
}
void DownhillSolverImpl::getInitStep(OutputArray step)const{
_step.copyTo(step);
}
void DownhillSolverImpl::setInitStep(InputArray step){
//set dimensionality and make a deep copy of step
Mat m=step.getMat();
dprintf(("m.cols=%d\nm.rows=%d\n",m.cols,m.rows));
CV_Assert(MIN(m.cols,m.rows)==1 && m.type()==CV_64FC1);
if(m.rows==1){
m.copyTo(_step);
}else{
transpose(m,_step);
}
}
} }
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment