Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
013d54c2
Commit
013d54c2
authored
Feb 01, 2013
by
LeonidBeynenson
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Changed types of some variables from int64 back to int.
Also corrected some indexes to be size_t.
parent
6de42270
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
28 additions
and
28 deletions
+28
-28
ertrees.cpp
modules/ml/src/ertrees.cpp
+13
-13
tree.cpp
modules/ml/src/tree.cpp
+15
-15
No files found.
modules/ml/src/ertrees.cpp
View file @
013d54c2
...
...
@@ -75,13 +75,13 @@ void CvERTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
int
sample_all
=
0
,
r_type
,
cv_n
;
int
total_c_count
=
0
;
int
tree_block_size
,
temp_block_size
,
max_split_size
,
nv_size
,
cv_size
=
0
;
int
64
ds_step
,
dv_step
,
ms_step
=
0
,
mv_step
=
0
;
// {data|mask}{sample|var}_step
int
64
vi
,
i
,
size
;
int
ds_step
,
dv_step
,
ms_step
=
0
,
mv_step
=
0
;
// {data|mask}{sample|var}_step
int
vi
,
i
,
size
;
char
err
[
100
];
const
int
*
sidx
=
0
,
*
vidx
=
0
;
uint64
effective_buf_size
=
-
1
;
int
effective_buf_height
=
-
1
,
effective_buf_width
=
-
1
;
uint64
effective_buf_size
=
0
;
int
effective_buf_height
=
0
,
effective_buf_width
=
0
;
if
(
_params
.
use_surrogates
)
CV_ERROR
(
CV_StsBadArg
,
"CvERTrees do not support surrogate splits"
);
...
...
@@ -312,17 +312,17 @@ void CvERTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
for
(
i
=
0
;
i
<
sample_count
;
i
++
)
{
int
val
=
INT_MAX
,
si
=
sidx
?
sidx
[
i
]
:
i
;
if
(
!
mask
||
!
mask
[
si
*
m_step
]
)
if
(
!
mask
||
!
mask
[
(
size_t
)
si
*
m_step
]
)
{
if
(
idata
)
val
=
idata
[
si
*
step
];
val
=
idata
[
(
size_t
)
si
*
step
];
else
{
float
t
=
fdata
[
si
*
step
];
float
t
=
fdata
[
(
size_t
)
si
*
step
];
val
=
cvRound
(
t
);
if
(
val
!=
t
)
{
sprintf
(
err
,
"%
ld-th value of %l
d-th (categorical) "
sprintf
(
err
,
"%
d-th value of %
d-th (categorical) "
"variable is not an integer"
,
i
,
vi
);
CV_ERROR
(
CV_StsBadArg
,
err
);
}
...
...
@@ -330,7 +330,7 @@ void CvERTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
if
(
val
==
INT_MAX
)
{
sprintf
(
err
,
"%
ld-th value of %l
d-th (categorical) "
sprintf
(
err
,
"%
d-th value of %
d-th (categorical) "
"variable is too large"
,
i
,
vi
);
CV_ERROR
(
CV_StsBadArg
,
err
);
}
...
...
@@ -424,16 +424,16 @@ void CvERTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
{
float
val
=
ord_nan
;
int
si
=
sidx
?
sidx
[
i
]
:
i
;
if
(
!
mask
||
!
mask
[
si
*
m_step
]
)
if
(
!
mask
||
!
mask
[
(
size_t
)
si
*
m_step
]
)
{
if
(
idata
)
val
=
(
float
)
idata
[
si
*
step
];
val
=
(
float
)
idata
[
(
size_t
)
si
*
step
];
else
val
=
fdata
[
si
*
step
];
val
=
fdata
[
(
size_t
)
si
*
step
];
if
(
fabs
(
val
)
>=
ord_nan
)
{
sprintf
(
err
,
"%
ld-th value of %l
d-th (ordered) "
sprintf
(
err
,
"%
d-th value of %
d-th (ordered) "
"variable (=%g) is too large"
,
i
,
vi
,
val
);
CV_ERROR
(
CV_StsBadArg
,
err
);
}
...
...
modules/ml/src/tree.cpp
View file @
013d54c2
...
...
@@ -154,8 +154,8 @@ void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
int
sample_all
=
0
,
r_type
,
cv_n
;
int
total_c_count
=
0
;
int
tree_block_size
,
temp_block_size
,
max_split_size
,
nv_size
,
cv_size
=
0
;
int
64
ds_step
,
dv_step
,
ms_step
=
0
,
mv_step
=
0
;
// {data|mask}{sample|var}_step
int
64
vi
,
i
,
size
;
int
ds_step
,
dv_step
,
ms_step
=
0
,
mv_step
=
0
;
// {data|mask}{sample|var}_step
int
vi
,
i
,
size
;
char
err
[
100
];
const
int
*
sidx
=
0
,
*
vidx
=
0
;
...
...
@@ -421,17 +421,17 @@ void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
for
(
i
=
0
;
i
<
sample_count
;
i
++
)
{
int
val
=
INT_MAX
,
si
=
sidx
?
sidx
[
i
]
:
i
;
if
(
!
mask
||
!
mask
[
si
*
m_step
]
)
if
(
!
mask
||
!
mask
[
(
size_t
)
si
*
m_step
]
)
{
if
(
idata
)
val
=
idata
[
si
*
step
];
val
=
idata
[
(
size_t
)
si
*
step
];
else
{
float
t
=
fdata
[
si
*
step
];
float
t
=
fdata
[
(
size_t
)
si
*
step
];
val
=
cvRound
(
t
);
if
(
fabs
(
t
-
val
)
>
FLT_EPSILON
)
{
sprintf
(
err
,
"%
ld-th value of %l
d-th (categorical) "
sprintf
(
err
,
"%
d-th value of %
d-th (categorical) "
"variable is not an integer"
,
i
,
vi
);
CV_ERROR
(
CV_StsBadArg
,
err
);
}
...
...
@@ -439,7 +439,7 @@ void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
if
(
val
==
INT_MAX
)
{
sprintf
(
err
,
"%
ld-th value of %l
d-th (categorical) "
sprintf
(
err
,
"%
d-th value of %
d-th (categorical) "
"variable is too large"
,
i
,
vi
);
CV_ERROR
(
CV_StsBadArg
,
err
);
}
...
...
@@ -537,16 +537,16 @@ void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
{
float
val
=
ord_nan
;
int
si
=
sidx
?
sidx
[
i
]
:
i
;
if
(
!
mask
||
!
mask
[
si
*
m_step
]
)
if
(
!
mask
||
!
mask
[
(
size_t
)
si
*
m_step
]
)
{
if
(
idata
)
val
=
(
float
)
idata
[
si
*
step
];
val
=
(
float
)
idata
[
(
size_t
)
si
*
step
];
else
val
=
fdata
[
si
*
step
];
val
=
fdata
[
(
size_t
)
si
*
step
];
if
(
fabs
(
val
)
>=
ord_nan
)
{
sprintf
(
err
,
"%
ld-th value of %l
d-th (ordered) "
sprintf
(
err
,
"%
d-th value of %
d-th (ordered) "
"variable (=%g) is too large"
,
i
,
vi
,
val
);
CV_ERROR
(
CV_StsBadArg
,
err
);
}
...
...
@@ -3333,7 +3333,7 @@ float CvDTree::calc_error( CvMLData* _data, int type, vector<float> *resp )
float
r
=
(
float
)
predict
(
&
sample
,
missing
?
&
miss
:
0
)
->
value
;
if
(
pred_resp
)
pred_resp
[
i
]
=
r
;
int
d
=
fabs
((
double
)
r
-
response
->
data
.
fl
[
si
*
r_step
])
<=
FLT_EPSILON
?
0
:
1
;
int
d
=
fabs
((
double
)
r
-
response
->
data
.
fl
[
(
size_t
)
si
*
r_step
])
<=
FLT_EPSILON
?
0
:
1
;
err
+=
d
;
}
err
=
sample_count
?
err
/
(
float
)
sample_count
*
100
:
-
FLT_MAX
;
...
...
@@ -3350,7 +3350,7 @@ float CvDTree::calc_error( CvMLData* _data, int type, vector<float> *resp )
float
r
=
(
float
)
predict
(
&
sample
,
missing
?
&
miss
:
0
)
->
value
;
if
(
pred_resp
)
pred_resp
[
i
]
=
r
;
float
d
=
r
-
response
->
data
.
fl
[
si
*
r_step
];
float
d
=
r
-
response
->
data
.
fl
[
(
size_t
)
si
*
r_step
];
err
+=
d
*
d
;
}
err
=
sample_count
?
err
/
(
float
)
sample_count
:
-
FLT_MAX
;
...
...
@@ -3656,8 +3656,8 @@ CvDTreeNode* CvDTree::predict( const CvMat* _sample,
int
vi
=
split
->
var_idx
;
int
ci
=
vtype
[
vi
];
i
=
vidx
?
vidx
[
vi
]
:
vi
;
float
val
=
sample
[
i
*
step
];
if
(
m
&&
m
[
i
*
mstep
]
)
float
val
=
sample
[
(
size_t
)
i
*
step
];
if
(
m
&&
m
[
(
size_t
)
i
*
mstep
]
)
continue
;
if
(
ci
<
0
)
// ordered
dir
=
val
<=
split
->
ord
.
c
?
-
1
:
1
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment