Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
0081dc47
Commit
0081dc47
authored
Jun 27, 2018
by
Nesterov Alexander
Committed by
Vadim Pisarevsky
Jun 27, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Init qrcode algo (#11829)
parent
5dc0e516
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
857 additions
and
0 deletions
+857
-0
objdetect.hpp
modules/objdetect/include/opencv2/objdetect.hpp
+8
-0
qrcode.cpp
modules/objdetect/src/qrcode.cpp
+775
-0
test_qrcode.cpp
modules/objdetect/test/test_qrcode.cpp
+74
-0
No files found.
modules/objdetect/include/opencv2/objdetect.hpp
View file @
0081dc47
...
...
@@ -670,6 +670,14 @@ public:
void
groupRectangles
(
std
::
vector
<
cv
::
Rect
>&
rectList
,
std
::
vector
<
double
>&
weights
,
int
groupThreshold
,
double
eps
)
const
;
};
/** @brief Detect QR code in image and return minimum area of quadrangle that describes QR code.
@param in Matrix of the type CV_8UC1 containing an image where QR code are detected.
@param points Output vector of vertices of a quadrangle of minimal area that describes QR code.
@param eps_x Epsilon neighborhood, which allows you to determine the horizontal pattern of the scheme 1:1:3:1:1 according to QR code standard.
@param eps_y Epsilon neighborhood, which allows you to determine the vertical pattern of the scheme 1:1:3:1:1 according to QR code standard.
*/
CV_EXPORTS
bool
detectQRCode
(
InputArray
in
,
std
::
vector
<
Point
>
&
points
,
double
eps_x
=
0.2
,
double
eps_y
=
0.1
);
//! @} objdetect
}
...
...
modules/objdetect/src/qrcode.cpp
0 → 100644
View file @
0081dc47
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "precomp.hpp"
#include "opencv2/objdetect.hpp"
// #include "opencv2/calib3d.hpp"
#include <limits>
#include <cmath>
#include <iostream>
namespace
cv
{
class
QRDecode
{
public
:
void
init
(
Mat
src
,
double
eps_vertical_
=
0.19
,
double
eps_horizontal_
=
0.09
);
void
binarization
();
bool
localization
();
bool
transformation
();
Mat
getBinBarcode
()
{
return
bin_barcode
;
}
Mat
getLocalizationBarcode
()
{
return
local_barcode
;
}
Mat
getTransformationBarcode
()
{
return
transform_barcode
;
}
std
::
vector
<
Point
>
getTransformationPoints
()
{
return
transformation_points
;
}
Mat
getStraightBarcode
()
{
return
straight_barcode
;
}
protected
:
std
::
vector
<
Vec3d
>
searchVerticalLines
();
std
::
vector
<
Vec3d
>
separateHorizontalLines
(
std
::
vector
<
Vec3d
>
list_lines
);
std
::
vector
<
Vec3d
>
pointClustering
(
std
::
vector
<
Vec3d
>
list_lines
);
void
fixationPoints
(
std
::
vector
<
Point
>
&
local_point
,
std
::
vector
<
double
>
&
local_len
);
Point
getTransformationPoint
(
Point
left
,
Point
center
,
double
cos_angle_rotation
,
bool
right_rotate
=
true
);
Point
intersectionLines
(
Point
a1
,
Point
a2
,
Point
b1
,
Point
b2
);
std
::
vector
<
Point
>
getQuadrilateral
(
std
::
vector
<
Point
>
angle_list
);
double
getQuadrilateralArea
(
Point
a
,
Point
b
,
Point
c
,
Point
d
);
double
getCosVectors
(
Point
a
,
Point
b
,
Point
c
);
Mat
barcode
,
bin_barcode
,
local_barcode
,
transform_barcode
,
straight_barcode
;
std
::
vector
<
Point
>
localization_points
,
transformation_points
;
std
::
vector
<
double
>
localization_length
;
double
experimental_area
;
double
eps_vertical
,
eps_horizontal
;
std
::
vector
<
Vec3d
>
result
;
std
::
vector
<
double
>
test_lines
;
uint8_t
next_pixel
,
future_pixel
;
double
length
,
weight
;
};
void
QRDecode
::
init
(
Mat
src
,
double
eps_vertical_
,
double
eps_horizontal_
)
{
barcode
=
src
;
eps_vertical
=
eps_vertical_
;
eps_horizontal
=
eps_horizontal_
;
}
void
QRDecode
::
binarization
()
{
Mat
filter_barcode
;
GaussianBlur
(
barcode
,
filter_barcode
,
Size
(
3
,
3
),
0
);
threshold
(
filter_barcode
,
bin_barcode
,
0
,
255
,
THRESH_BINARY
+
THRESH_OTSU
);
}
bool
QRDecode
::
localization
()
{
cvtColor
(
bin_barcode
,
local_barcode
,
COLOR_GRAY2RGB
);
Point
begin
,
end
;
std
::
vector
<
Vec3d
>
list_lines_x
=
searchVerticalLines
();
std
::
vector
<
Vec3d
>
list_lines_y
=
separateHorizontalLines
(
list_lines_x
);
std
::
vector
<
Vec3d
>
result_point
=
pointClustering
(
list_lines_y
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
localization_points
.
push_back
(
Point
(
static_cast
<
int
>
(
result_point
[
i
][
0
]),
static_cast
<
int
>
(
result_point
[
i
][
1
]
+
result_point
[
i
][
2
])));
localization_length
.
push_back
(
result_point
[
i
][
2
]);
}
fixationPoints
(
localization_points
,
localization_length
);
if
(
localization_points
.
size
()
!=
3
)
{
return
false
;
}
return
true
;
}
std
::
vector
<
Vec3d
>
QRDecode
::
searchVerticalLines
()
{
result
.
clear
();
int
temp_length
=
0
;
for
(
int
x
=
0
;
x
<
bin_barcode
.
rows
;
x
++
)
{
for
(
int
y
=
0
;
y
<
bin_barcode
.
cols
;
y
++
)
{
if
(
bin_barcode
.
at
<
uint8_t
>
(
x
,
y
)
>
0
)
{
continue
;
}
// --------------- Search vertical lines --------------- //
test_lines
.
clear
();
future_pixel
=
255
;
for
(
int
i
=
x
;
i
<
bin_barcode
.
rows
-
1
;
i
++
)
{
next_pixel
=
bin_barcode
.
at
<
uint8_t
>
(
i
+
1
,
y
);
temp_length
++
;
if
(
next_pixel
==
future_pixel
)
{
future_pixel
=
255
-
future_pixel
;
test_lines
.
push_back
(
temp_length
);
temp_length
=
0
;
if
(
test_lines
.
size
()
==
5
)
{
break
;
}
}
}
// --------------- Compute vertical lines --------------- //
if
(
test_lines
.
size
()
==
5
)
{
length
=
0.0
;
weight
=
0.0
;
for
(
size_t
i
=
0
;
i
<
test_lines
.
size
();
i
++
)
{
length
+=
test_lines
[
i
];
}
for
(
size_t
i
=
0
;
i
<
test_lines
.
size
();
i
++
)
{
if
(
i
==
2
)
{
weight
+=
abs
((
test_lines
[
i
]
/
length
)
-
3.0
/
7.0
);
}
else
{
weight
+=
abs
((
test_lines
[
i
]
/
length
)
-
1.0
/
7.0
);
}
}
if
(
weight
<
eps_vertical
)
{
Vec3d
line
;
line
[
0
]
=
x
;
line
[
1
]
=
y
,
line
[
2
]
=
length
;
result
.
push_back
(
line
);
}
}
}
}
return
result
;
}
std
::
vector
<
Vec3d
>
QRDecode
::
separateHorizontalLines
(
std
::
vector
<
Vec3d
>
list_lines
)
{
result
.
clear
();
int
temp_length
=
0
;
int
x
,
y
;
for
(
size_t
pnt
=
0
;
pnt
<
list_lines
.
size
();
pnt
++
)
{
x
=
static_cast
<
int
>
(
list_lines
[
pnt
][
0
]
+
list_lines
[
pnt
][
2
]
/
2
);
y
=
static_cast
<
int
>
(
list_lines
[
pnt
][
1
]);
// --------------- Search horizontal up-lines --------------- //
test_lines
.
clear
();
future_pixel
=
255
;
for
(
int
j
=
y
;
j
<
bin_barcode
.
cols
-
1
;
j
++
)
{
next_pixel
=
bin_barcode
.
at
<
uint8_t
>
(
x
,
j
+
1
);
temp_length
++
;
if
(
next_pixel
==
future_pixel
)
{
future_pixel
=
255
-
future_pixel
;
test_lines
.
push_back
(
temp_length
);
temp_length
=
0
;
if
(
test_lines
.
size
()
==
3
)
{
break
;
}
}
}
// --------------- Search horizontal down-lines --------------- //
future_pixel
=
255
;
for
(
int
j
=
y
;
j
>=
1
;
j
--
)
{
next_pixel
=
bin_barcode
.
at
<
uint8_t
>
(
x
,
j
-
1
);
temp_length
++
;
if
(
next_pixel
==
future_pixel
)
{
future_pixel
=
255
-
future_pixel
;
test_lines
.
push_back
(
temp_length
);
temp_length
=
0
;
if
(
test_lines
.
size
()
==
6
)
{
break
;
}
}
}
// --------------- Compute horizontal lines --------------- //
if
(
test_lines
.
size
()
==
6
)
{
length
=
0.0
;
weight
=
0.0
;
for
(
size_t
i
=
0
;
i
<
test_lines
.
size
();
i
++
)
{
length
+=
test_lines
[
i
];
}
for
(
size_t
i
=
0
;
i
<
test_lines
.
size
();
i
++
)
{
if
(
i
%
3
==
0
)
{
weight
+=
abs
((
test_lines
[
i
]
/
length
)
-
3.0
/
14.0
);
}
else
{
weight
+=
abs
((
test_lines
[
i
]
/
length
)
-
1.0
/
7.0
);
}
}
}
if
(
weight
<
eps_horizontal
)
{
result
.
push_back
(
list_lines
[
pnt
]);
}
}
return
result
;
}
std
::
vector
<
Vec3d
>
QRDecode
::
pointClustering
(
std
::
vector
<
Vec3d
>
list_lines
)
{
std
::
vector
<
Vec3d
>
centers
;
std
::
vector
<
Point
>
clusters
[
3
];
double
weight_clusters
[
3
]
=
{
0.0
,
0.0
,
0.0
};
Point
basis
[
3
],
temp_pnt
;
double
temp_norm
=
0.0
,
temp_compute_norm
,
distance
[
3
];
basis
[
0
]
=
Point
(
static_cast
<
int
>
(
list_lines
[
0
][
1
]),
static_cast
<
int
>
(
list_lines
[
0
][
0
]));
for
(
size_t
i
=
1
;
i
<
list_lines
.
size
();
i
++
)
{
temp_pnt
=
Point
(
static_cast
<
int
>
(
list_lines
[
i
][
1
]),
static_cast
<
int
>
(
list_lines
[
i
][
0
]));
temp_compute_norm
=
norm
(
basis
[
0
]
-
temp_pnt
);
if
(
temp_norm
<
temp_compute_norm
)
{
basis
[
1
]
=
temp_pnt
;
temp_norm
=
temp_compute_norm
;
}
}
for
(
size_t
i
=
1
;
i
<
list_lines
.
size
();
i
++
)
{
temp_pnt
=
Point
(
static_cast
<
int
>
(
list_lines
[
i
][
1
]),
static_cast
<
int
>
(
list_lines
[
i
][
0
]));
temp_compute_norm
=
norm
(
basis
[
0
]
-
temp_pnt
)
+
norm
(
basis
[
1
]
-
temp_pnt
);
if
(
temp_norm
<
temp_compute_norm
)
{
basis
[
2
]
=
temp_pnt
;
temp_norm
=
temp_compute_norm
;
}
}
for
(
size_t
i
=
0
;
i
<
list_lines
.
size
();
i
++
)
{
temp_pnt
=
Point
(
static_cast
<
int
>
(
list_lines
[
i
][
1
]),
static_cast
<
int
>
(
list_lines
[
i
][
0
]));
distance
[
0
]
=
norm
(
basis
[
0
]
-
temp_pnt
);
distance
[
1
]
=
norm
(
basis
[
1
]
-
temp_pnt
);
distance
[
2
]
=
norm
(
basis
[
2
]
-
temp_pnt
);
if
(
distance
[
0
]
<
distance
[
1
]
&&
distance
[
0
]
<
distance
[
2
])
{
clusters
[
0
].
push_back
(
temp_pnt
);
weight_clusters
[
0
]
+=
list_lines
[
i
][
2
];
}
else
if
(
distance
[
1
]
<
distance
[
0
]
&&
distance
[
1
]
<
distance
[
2
])
{
clusters
[
1
].
push_back
(
temp_pnt
);
weight_clusters
[
1
]
+=
list_lines
[
i
][
2
];
}
else
{
clusters
[
2
].
push_back
(
temp_pnt
);
weight_clusters
[
2
]
+=
list_lines
[
i
][
2
];
}
}
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
basis
[
i
]
=
Point
(
0
,
0
);
for
(
size_t
j
=
0
;
j
<
clusters
[
i
].
size
();
j
++
)
{
basis
[
i
]
+=
clusters
[
i
][
j
];
}
basis
[
i
]
=
basis
[
i
]
/
static_cast
<
int
>
(
clusters
[
i
].
size
());
weight
=
weight_clusters
[
i
]
/
(
2
*
clusters
[
i
].
size
());
centers
.
push_back
(
Vec3d
(
basis
[
i
].
x
,
basis
[
i
].
y
,
weight
));
}
return
centers
;
}
void
QRDecode
::
fixationPoints
(
std
::
vector
<
Point
>
&
local_point
,
std
::
vector
<
double
>
&
local_len
)
{
double
cos_angles
[
3
],
norm_triangl
[
3
];
norm_triangl
[
0
]
=
norm
(
local_point
[
1
]
-
local_point
[
2
]);
norm_triangl
[
1
]
=
norm
(
local_point
[
0
]
-
local_point
[
2
]);
norm_triangl
[
2
]
=
norm
(
local_point
[
1
]
-
local_point
[
0
]);
cos_angles
[
0
]
=
(
pow
(
norm_triangl
[
1
],
2
)
+
pow
(
norm_triangl
[
2
],
2
)
-
pow
(
norm_triangl
[
0
],
2
))
/
(
2
*
norm_triangl
[
1
]
*
norm_triangl
[
2
]);
cos_angles
[
1
]
=
(
pow
(
norm_triangl
[
0
],
2
)
+
pow
(
norm_triangl
[
2
],
2
)
-
pow
(
norm_triangl
[
1
],
2
))
/
(
2
*
norm_triangl
[
0
]
*
norm_triangl
[
2
]);
cos_angles
[
2
]
=
(
pow
(
norm_triangl
[
0
],
2
)
+
pow
(
norm_triangl
[
1
],
2
)
-
pow
(
norm_triangl
[
2
],
2
))
/
(
2
*
norm_triangl
[
0
]
*
norm_triangl
[
1
]);
int
i_min_cos
=
(
cos_angles
[
0
]
<
cos_angles
[
1
]
&&
cos_angles
[
0
]
<
cos_angles
[
2
])
?
0
:
(
cos_angles
[
1
]
<
cos_angles
[
0
]
&&
cos_angles
[
1
]
<
cos_angles
[
2
])
?
1
:
2
;
Point
temp_pnt
;
double
tmp_len
;
temp_pnt
=
local_point
[
0
];
tmp_len
=
local_len
[
0
];
local_point
[
0
]
=
local_point
[
i_min_cos
];
local_len
[
0
]
=
local_len
[
i_min_cos
];
local_point
[
i_min_cos
]
=
temp_pnt
;
local_len
[
i_min_cos
]
=
tmp_len
;
Mat
vector_mult
(
Size
(
3
,
3
),
CV_32FC1
);
vector_mult
.
at
<
float
>
(
0
,
0
)
=
1
;
vector_mult
.
at
<
float
>
(
1
,
0
)
=
1
;
vector_mult
.
at
<
float
>
(
2
,
0
)
=
1
;
vector_mult
.
at
<
float
>
(
0
,
1
)
=
static_cast
<
float
>
((
local_point
[
1
]
-
local_point
[
0
]).
x
);
vector_mult
.
at
<
float
>
(
1
,
1
)
=
static_cast
<
float
>
((
local_point
[
1
]
-
local_point
[
0
]).
y
);
vector_mult
.
at
<
float
>
(
0
,
2
)
=
static_cast
<
float
>
((
local_point
[
2
]
-
local_point
[
0
]).
x
);
vector_mult
.
at
<
float
>
(
1
,
2
)
=
static_cast
<
float
>
((
local_point
[
2
]
-
local_point
[
0
]).
y
);
double
res_vect_mult
=
determinant
(
vector_mult
);
if
(
res_vect_mult
<
0
)
{
temp_pnt
=
local_point
[
1
];
tmp_len
=
local_len
[
1
];
local_point
[
1
]
=
local_point
[
2
];
local_len
[
1
]
=
local_len
[
2
];
local_point
[
2
]
=
temp_pnt
;
local_len
[
2
]
=
tmp_len
;
}
}
bool
QRDecode
::
transformation
()
{
cvtColor
(
bin_barcode
,
transform_barcode
,
COLOR_GRAY2RGB
);
if
(
localization_points
.
size
()
!=
3
)
{
return
false
;
}
Point
red
=
localization_points
[
0
];
Point
green
=
localization_points
[
1
];
Point
blue
=
localization_points
[
2
];
Point
adj_b_r_pnt
,
adj_r_b_pnt
,
adj_g_r_pnt
,
adj_r_g_pnt
;
Point
line_r_b_pnt
,
line_r_g_pnt
,
norm_r_b_pnt
,
norm_r_g_pnt
;
adj_b_r_pnt
=
getTransformationPoint
(
blue
,
red
,
-
1
);
adj_r_b_pnt
=
getTransformationPoint
(
red
,
blue
,
-
1
);
adj_g_r_pnt
=
getTransformationPoint
(
green
,
red
,
-
1
);
adj_r_g_pnt
=
getTransformationPoint
(
red
,
green
,
-
1
);
line_r_b_pnt
=
getTransformationPoint
(
red
,
blue
,
-
0.91
);
line_r_g_pnt
=
getTransformationPoint
(
red
,
green
,
-
0.91
);
norm_r_b_pnt
=
getTransformationPoint
(
red
,
blue
,
0.0
,
true
);
norm_r_g_pnt
=
getTransformationPoint
(
red
,
green
,
0.0
,
false
);
transformation_points
.
push_back
(
intersectionLines
(
adj_r_g_pnt
,
line_r_g_pnt
,
adj_r_b_pnt
,
line_r_b_pnt
));
transformation_points
.
push_back
(
intersectionLines
(
adj_b_r_pnt
,
norm_r_g_pnt
,
adj_r_g_pnt
,
line_r_g_pnt
));
transformation_points
.
push_back
(
intersectionLines
(
norm_r_b_pnt
,
adj_g_r_pnt
,
adj_b_r_pnt
,
norm_r_g_pnt
));
transformation_points
.
push_back
(
intersectionLines
(
norm_r_b_pnt
,
adj_g_r_pnt
,
adj_r_b_pnt
,
line_r_b_pnt
));
experimental_area
=
getQuadrilateralArea
(
transformation_points
[
0
],
transformation_points
[
1
],
transformation_points
[
2
],
transformation_points
[
3
]);
std
::
vector
<
Point
>
quadrilateral
=
getQuadrilateral
(
transformation_points
);
transformation_points
=
quadrilateral
;
int
max_length_norm
=
-
1
;
size_t
transform_size
=
transformation_points
.
size
();
for
(
size_t
i
=
0
;
i
<
transform_size
;
i
++
)
{
int
len_norm
=
static_cast
<
int
>
(
norm
(
transformation_points
[
i
%
transform_size
]
-
transformation_points
[(
i
+
1
)
%
transform_size
]));
if
(
max_length_norm
<
len_norm
)
{
max_length_norm
=
len_norm
;
}
}
std
::
vector
<
Point
>
perspective_points
;
perspective_points
.
push_back
(
Point
(
0
,
0
));
perspective_points
.
push_back
(
Point
(
0
,
max_length_norm
));
perspective_points
.
push_back
(
Point
(
max_length_norm
,
max_length_norm
));
perspective_points
.
push_back
(
Point
(
max_length_norm
,
0
));
// warpPerspective(bin_barcode, straight_barcode,
// findHomography(transformation_points, perspective_points),
// Size(max_length_norm, max_length_norm));
return
true
;
}
Point
QRDecode
::
getTransformationPoint
(
Point
left
,
Point
center
,
double
cos_angle_rotation
,
bool
right_rotate
)
{
Point
temp_pnt
,
prev_pnt
(
0
,
0
),
next_pnt
,
start_pnt
(
center
);
double
temp_delta
,
min_delta
;
int
steps
=
0
;
future_pixel
=
255
;
while
(
true
)
{
min_delta
=
std
::
numeric_limits
<
double
>::
max
();
for
(
int
i
=
-
1
;
i
<
2
;
i
++
)
{
for
(
int
j
=
-
1
;
j
<
2
;
j
++
)
{
if
(
i
==
0
&&
j
==
0
)
{
continue
;
}
temp_pnt
=
Point
(
start_pnt
.
x
+
i
,
start_pnt
.
y
+
j
);
temp_delta
=
abs
(
getCosVectors
(
left
,
center
,
temp_pnt
)
-
cos_angle_rotation
);
if
(
temp_delta
<
min_delta
&&
prev_pnt
!=
temp_pnt
)
{
next_pnt
=
temp_pnt
;
min_delta
=
temp_delta
;
}
}
}
prev_pnt
=
start_pnt
;
start_pnt
=
next_pnt
;
next_pixel
=
bin_barcode
.
at
<
uint8_t
>
(
start_pnt
.
y
,
start_pnt
.
x
);
if
(
next_pixel
==
future_pixel
)
{
future_pixel
=
255
-
future_pixel
;
steps
++
;
if
(
steps
==
3
)
{
break
;
}
}
}
if
(
cos_angle_rotation
==
0.0
)
{
Mat
vector_mult
(
Size
(
3
,
3
),
CV_32FC1
);
vector_mult
.
at
<
float
>
(
0
,
0
)
=
1
;
vector_mult
.
at
<
float
>
(
1
,
0
)
=
1
;
vector_mult
.
at
<
float
>
(
2
,
0
)
=
1
;
vector_mult
.
at
<
float
>
(
0
,
1
)
=
static_cast
<
float
>
((
left
-
center
).
x
);
vector_mult
.
at
<
float
>
(
1
,
1
)
=
static_cast
<
float
>
((
left
-
center
).
y
);
vector_mult
.
at
<
float
>
(
0
,
2
)
=
static_cast
<
float
>
((
left
-
start_pnt
).
x
);
vector_mult
.
at
<
float
>
(
1
,
2
)
=
static_cast
<
float
>
((
left
-
start_pnt
).
y
);
double
res_vect_mult
=
determinant
(
vector_mult
);
if
((
right_rotate
&&
res_vect_mult
<
0
)
||
(
!
right_rotate
&&
res_vect_mult
>
0
))
{
start_pnt
=
getTransformationPoint
(
start_pnt
,
center
,
-
1
);
}
}
return
start_pnt
;
}
Point
QRDecode
::
intersectionLines
(
Point
a1
,
Point
a2
,
Point
b1
,
Point
b2
)
{
Point
result_square_angle
(
static_cast
<
int
>
(
static_cast
<
double
>
((
a1
.
x
*
a2
.
y
-
a1
.
y
*
a2
.
x
)
*
(
b1
.
x
-
b2
.
x
)
-
(
b1
.
x
*
b2
.
y
-
b1
.
y
*
b2
.
x
)
*
(
a1
.
x
-
a2
.
x
))
/
((
a1
.
x
-
a2
.
x
)
*
(
b1
.
y
-
b2
.
y
)
-
(
a1
.
y
-
a2
.
y
)
*
(
b1
.
x
-
b2
.
x
))),
static_cast
<
int
>
(
static_cast
<
double
>
((
a1
.
x
*
a2
.
y
-
a1
.
y
*
a2
.
x
)
*
(
b1
.
y
-
b2
.
y
)
-
(
b1
.
x
*
b2
.
y
-
b1
.
y
*
b2
.
x
)
*
(
a1
.
y
-
a2
.
y
))
/
((
a1
.
x
-
a2
.
x
)
*
(
b1
.
y
-
b2
.
y
)
-
(
a1
.
y
-
a2
.
y
)
*
(
b1
.
x
-
b2
.
x
)))
);
return
result_square_angle
;
}
std
::
vector
<
Point
>
QRDecode
::
getQuadrilateral
(
std
::
vector
<
Point
>
angle_list
)
{
size_t
angle_size
=
angle_list
.
size
();
uint8_t
value
,
mask_value
;
Mat
mask
(
bin_barcode
.
rows
+
2
,
bin_barcode
.
cols
+
2
,
CV_8UC1
);
for
(
size_t
i
=
0
;
i
<
angle_size
;
i
++
)
{
LineIterator
line_iter
(
bin_barcode
,
angle_list
[
i
%
angle_size
],
angle_list
[(
i
+
1
)
%
angle_size
]);
for
(
int
j
=
0
;
j
<
line_iter
.
count
;
j
++
,
++
line_iter
)
{
value
=
bin_barcode
.
at
<
uint8_t
>
(
line_iter
.
pos
());
mask_value
=
mask
.
at
<
uint8_t
>
(
line_iter
.
pos
()
+
Point
(
1
,
1
));
if
(
value
==
0
&&
mask_value
==
0
)
{
floodFill
(
bin_barcode
,
mask
,
line_iter
.
pos
(),
255
);
}
}
}
std
::
vector
<
Point
>
locations
;
Mat
mask_roi
=
mask
(
Range
(
1
,
bin_barcode
.
rows
-
1
),
Range
(
1
,
bin_barcode
.
cols
-
1
));
cv
::
findNonZero
(
mask_roi
,
locations
);
for
(
size_t
i
=
0
;
i
<
angle_list
.
size
();
i
++
)
{
locations
.
push_back
(
angle_list
[
i
]);
}
std
::
vector
<
std
::
vector
<
Point
>
>
hull
(
1
),
approx_hull
(
1
);
convexHull
(
Mat
(
locations
),
hull
[
0
]);
int
hull_size
=
static_cast
<
int
>
(
hull
[
0
].
size
());
Point
min_pnt
;
std
::
vector
<
Point
>
min_abc
;
double
min_abs_cos_abc
,
abs_cos_abc
;
for
(
int
count
=
0
;
count
<
4
;
count
++
)
{
min_abs_cos_abc
=
std
::
numeric_limits
<
double
>::
max
();
for
(
int
i
=
0
;
i
<
hull_size
;
i
++
)
{
Point
a
=
hull
[
0
][
i
%
hull_size
];
Point
b
=
hull
[
0
][(
i
+
1
)
%
hull_size
];
Point
c
=
hull
[
0
][(
i
+
2
)
%
hull_size
];
abs_cos_abc
=
abs
(
getCosVectors
(
a
,
b
,
c
));
bool
flag_detect
=
true
;
for
(
size_t
j
=
0
;
j
<
min_abc
.
size
();
j
++
)
{
if
(
min_abc
[
j
]
==
b
)
{
flag_detect
=
false
;
break
;
}
}
if
(
flag_detect
&&
(
abs_cos_abc
<
min_abs_cos_abc
))
{
min_pnt
=
b
;
min_abs_cos_abc
=
abs_cos_abc
;
}
}
min_abc
.
push_back
(
min_pnt
);
}
int
min_abc_size
=
static_cast
<
int
>
(
min_abc
.
size
());
std
::
vector
<
int
>
index_min_abc
(
min_abc_size
);
for
(
int
i
=
0
;
i
<
min_abc_size
;
i
++
)
{
for
(
int
j
=
0
;
j
<
hull_size
;
j
++
)
{
if
(
hull
[
0
][
j
]
==
min_abc
[
i
])
{
index_min_abc
[
i
]
=
j
;
break
;
}
}
}
std
::
vector
<
Point
>
result_hull_point
(
angle_size
);
double
min_norm
,
temp_norm
;
for
(
size_t
i
=
0
;
i
<
angle_size
;
i
++
)
{
min_norm
=
std
::
numeric_limits
<
double
>::
max
();
Point
closest_pnt
;
for
(
int
j
=
0
;
j
<
min_abc_size
;
j
++
)
{
if
(
min_norm
>
norm
(
hull
[
0
][
index_min_abc
[
j
]]
-
angle_list
[
i
]))
{
min_norm
=
norm
(
hull
[
0
][
index_min_abc
[
j
]]
-
angle_list
[
i
]);
closest_pnt
=
hull
[
0
][
index_min_abc
[
j
]];
}
}
result_hull_point
[
i
]
=
closest_pnt
;
}
int
start_line
[
2
]
=
{
0
,
0
},
finish_line
[
2
]
=
{
0
,
0
},
unstable_pnt
=
0
;
for
(
int
i
=
0
;
i
<
hull_size
;
i
++
)
{
if
(
result_hull_point
[
3
]
==
hull
[
0
][
i
])
{
start_line
[
0
]
=
i
;
}
if
(
result_hull_point
[
2
]
==
hull
[
0
][
i
])
{
finish_line
[
0
]
=
start_line
[
1
]
=
i
;
}
if
(
result_hull_point
[
1
]
==
hull
[
0
][
i
])
{
finish_line
[
1
]
=
i
;
}
if
(
result_hull_point
[
0
]
==
hull
[
0
][
i
])
{
unstable_pnt
=
i
;
}
}
int
index_hull
,
extra_index_hull
,
next_index_hull
,
extra_next_index_hull
,
count_points
;
Point
result_side_begin
[
4
],
result_side_end
[
4
];
min_norm
=
std
::
numeric_limits
<
double
>::
max
();
index_hull
=
start_line
[
0
];
count_points
=
abs
(
start_line
[
0
]
-
finish_line
[
0
]);
do
{
if
(
count_points
>
hull_size
/
2
)
{
next_index_hull
=
index_hull
+
1
;
}
else
{
next_index_hull
=
index_hull
-
1
;
}
if
(
next_index_hull
==
hull_size
)
{
next_index_hull
=
0
;
}
if
(
next_index_hull
==
-
1
)
{
next_index_hull
=
hull_size
-
1
;
}
Point
angle_closest_pnt
=
norm
(
hull
[
0
][
index_hull
]
-
angle_list
[
2
])
>
norm
(
hull
[
0
][
index_hull
]
-
angle_list
[
3
])
?
angle_list
[
3
]
:
angle_list
[
2
];
Point
intrsc_line_hull
=
intersectionLines
(
hull
[
0
][
index_hull
],
hull
[
0
][
next_index_hull
],
angle_list
[
2
],
angle_list
[
3
]);
temp_norm
=
getCosVectors
(
hull
[
0
][
index_hull
],
intrsc_line_hull
,
angle_closest_pnt
);
if
(
min_norm
>
temp_norm
&&
norm
(
hull
[
0
][
index_hull
]
-
hull
[
0
][
next_index_hull
])
>
norm
(
angle_list
[
2
]
-
angle_list
[
3
])
/
10
)
{
min_norm
=
temp_norm
;
result_side_begin
[
0
]
=
hull
[
0
][
index_hull
];
result_side_end
[
0
]
=
hull
[
0
][
next_index_hull
];
}
index_hull
=
next_index_hull
;
}
while
(
index_hull
!=
finish_line
[
0
]);
if
(
min_norm
==
std
::
numeric_limits
<
double
>::
max
())
{
result_side_begin
[
0
]
=
angle_list
[
2
];
result_side_end
[
0
]
=
angle_list
[
3
];
}
min_norm
=
std
::
numeric_limits
<
double
>::
max
();
index_hull
=
start_line
[
1
];
count_points
=
abs
(
start_line
[
1
]
-
finish_line
[
1
]);
do
{
if
(
count_points
>
hull_size
/
2
)
{
next_index_hull
=
index_hull
+
1
;
}
else
{
next_index_hull
=
index_hull
-
1
;
}
if
(
next_index_hull
==
hull_size
)
{
next_index_hull
=
0
;
}
if
(
next_index_hull
==
-
1
)
{
next_index_hull
=
hull_size
-
1
;
}
Point
angle_closest_pnt
=
norm
(
hull
[
0
][
index_hull
]
-
angle_list
[
1
])
>
norm
(
hull
[
0
][
index_hull
]
-
angle_list
[
2
])
?
angle_list
[
2
]
:
angle_list
[
1
];
Point
intrsc_line_hull
=
intersectionLines
(
hull
[
0
][
index_hull
],
hull
[
0
][
next_index_hull
],
angle_list
[
1
],
angle_list
[
2
]);
temp_norm
=
getCosVectors
(
hull
[
0
][
index_hull
],
intrsc_line_hull
,
angle_closest_pnt
);
if
(
min_norm
>
temp_norm
&&
norm
(
hull
[
0
][
index_hull
]
-
hull
[
0
][
next_index_hull
])
>
norm
(
angle_list
[
1
]
-
angle_list
[
2
])
/
20
)
{
min_norm
=
temp_norm
;
result_side_begin
[
1
]
=
hull
[
0
][
index_hull
];
result_side_end
[
1
]
=
hull
[
0
][
next_index_hull
];
}
index_hull
=
next_index_hull
;
}
while
(
index_hull
!=
finish_line
[
1
]);
if
(
min_norm
==
std
::
numeric_limits
<
double
>::
max
())
{
result_side_begin
[
1
]
=
angle_list
[
1
];
result_side_end
[
1
]
=
angle_list
[
2
];
}
double
test_norm
[
4
]
=
{
0.0
,
0.0
,
0.0
,
0.0
};
int
test_index
[
4
];
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
test_index
[
i
]
=
(
i
<
2
)
?
static_cast
<
int
>
(
start_line
[
0
])
:
static_cast
<
int
>
(
finish_line
[
1
]);
do
{
next_index_hull
=
((
i
+
1
)
%
2
!=
0
)
?
test_index
[
i
]
+
1
:
test_index
[
i
]
-
1
;
if
(
next_index_hull
==
hull_size
)
{
next_index_hull
=
0
;
}
if
(
next_index_hull
==
-
1
)
{
next_index_hull
=
hull_size
-
1
;
}
test_norm
[
i
]
+=
norm
(
hull
[
0
][
next_index_hull
]
-
hull
[
0
][
unstable_pnt
]);
test_index
[
i
]
=
next_index_hull
;
}
while
(
test_index
[
i
]
!=
unstable_pnt
);
}
std
::
vector
<
Point
>
result_angle_list
(
4
),
test_result_angle_list
(
4
);
double
min_area
=
std
::
numeric_limits
<
double
>::
max
(),
test_area
;
index_hull
=
start_line
[
0
];
do
{
if
(
test_norm
[
0
]
<
test_norm
[
1
])
{
next_index_hull
=
index_hull
+
1
;
}
else
{
next_index_hull
=
index_hull
-
1
;
}
if
(
next_index_hull
==
hull_size
)
{
next_index_hull
=
0
;
}
if
(
next_index_hull
==
-
1
)
{
next_index_hull
=
hull_size
-
1
;
}
extra_index_hull
=
finish_line
[
1
];
do
{
if
(
test_norm
[
2
]
<
test_norm
[
3
])
{
extra_next_index_hull
=
extra_index_hull
+
1
;
}
else
{
extra_next_index_hull
=
extra_index_hull
-
1
;
}
if
(
extra_next_index_hull
==
hull_size
)
{
extra_next_index_hull
=
0
;
}
if
(
extra_next_index_hull
==
-
1
)
{
extra_next_index_hull
=
hull_size
-
1
;
}
test_result_angle_list
[
0
]
=
intersectionLines
(
result_side_begin
[
0
],
result_side_end
[
0
],
result_side_begin
[
1
],
result_side_end
[
1
]);
test_result_angle_list
[
1
]
=
intersectionLines
(
result_side_begin
[
1
],
result_side_end
[
1
],
hull
[
0
][
extra_index_hull
],
hull
[
0
][
extra_next_index_hull
]);
test_result_angle_list
[
2
]
=
intersectionLines
(
hull
[
0
][
extra_index_hull
],
hull
[
0
][
extra_next_index_hull
],
hull
[
0
][
index_hull
],
hull
[
0
][
next_index_hull
]);
test_result_angle_list
[
3
]
=
intersectionLines
(
hull
[
0
][
index_hull
],
hull
[
0
][
next_index_hull
],
result_side_begin
[
0
],
result_side_end
[
0
]);
test_area
=
getQuadrilateralArea
(
test_result_angle_list
[
0
],
test_result_angle_list
[
1
],
test_result_angle_list
[
2
],
test_result_angle_list
[
3
]);
if
(
min_area
>
test_area
)
{
min_area
=
test_area
;
for
(
size_t
i
=
0
;
i
<
test_result_angle_list
.
size
();
i
++
)
{
result_angle_list
[
i
]
=
test_result_angle_list
[
i
];
}
}
extra_index_hull
=
extra_next_index_hull
;
}
while
(
extra_index_hull
!=
unstable_pnt
);
index_hull
=
next_index_hull
;
}
while
(
index_hull
!=
unstable_pnt
);
if
(
norm
(
result_angle_list
[
0
]
-
angle_list
[
2
])
>
norm
(
angle_list
[
2
]
-
angle_list
[
1
])
/
3
)
{
result_angle_list
[
0
]
=
angle_list
[
2
];
}
if
(
norm
(
result_angle_list
[
1
]
-
angle_list
[
1
])
>
norm
(
angle_list
[
1
]
-
angle_list
[
0
])
/
3
)
{
result_angle_list
[
1
]
=
angle_list
[
1
];
}
if
(
norm
(
result_angle_list
[
2
]
-
angle_list
[
0
])
>
norm
(
angle_list
[
0
]
-
angle_list
[
3
])
/
3
)
{
result_angle_list
[
2
]
=
angle_list
[
0
];
}
if
(
norm
(
result_angle_list
[
3
]
-
angle_list
[
3
])
>
norm
(
angle_list
[
3
]
-
angle_list
[
2
])
/
3
)
{
result_angle_list
[
3
]
=
angle_list
[
3
];
}
return
result_angle_list
;
}
// b __________ c
// / |
// / |
// / S |
// / |
// a --------------- d
double
QRDecode
::
getQuadrilateralArea
(
Point
a
,
Point
b
,
Point
c
,
Point
d
)
{
double
length_sides
[
4
],
perimeter
=
0.0
,
result_area
=
1.0
;
length_sides
[
0
]
=
norm
(
a
-
b
);
length_sides
[
1
]
=
norm
(
b
-
c
);
length_sides
[
2
]
=
norm
(
c
-
d
);
length_sides
[
3
]
=
norm
(
d
-
a
);
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
perimeter
+=
length_sides
[
i
];
}
perimeter
/=
2
;
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
result_area
*=
(
perimeter
-
length_sides
[
i
]);
}
result_area
=
sqrt
(
result_area
);
return
result_area
;
}
// / | b
// / |
// / |
// a/ | c
double
QRDecode
::
getCosVectors
(
Point
a
,
Point
b
,
Point
c
)
{
return
((
a
-
b
).
x
*
(
c
-
b
).
x
+
(
a
-
b
).
y
*
(
c
-
b
).
y
)
/
(
norm
(
a
-
b
)
*
norm
(
c
-
b
));
}
CV_EXPORTS
bool
detectQRCode
(
InputArray
in
,
std
::
vector
<
Point
>
&
points
,
double
eps_x
,
double
eps_y
)
{
CV_Assert
(
in
.
isMat
());
CV_Assert
(
in
.
getMat
().
type
()
==
CV_8UC1
);
QRDecode
qrdec
;
qrdec
.
init
(
in
.
getMat
(),
eps_x
,
eps_y
);
qrdec
.
binarization
();
if
(
!
qrdec
.
localization
())
{
return
false
;
}
if
(
!
qrdec
.
transformation
())
{
return
false
;
}
points
=
qrdec
.
getTransformationPoints
();
return
true
;
}
}
modules/objdetect/test/test_qrcode.cpp
0 → 100644
View file @
0081dc47
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
namespace
opencv_test
{
namespace
{
TEST
(
Objdetect_QRCode
,
regression
)
{
String
root
=
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
"qrcode/"
;
// String cascades[] =
// {
// root + "haarcascade_frontalface_alt.xml",
// root + "lbpcascade_frontalface.xml",
// String()
// };
// vector<Rect> objects;
// RNG rng((uint64)-1);
// for( int i = 0; !cascades[i].empty(); i++ )
// {
// printf("%d. %s\n", i, cascades[i].c_str());
// CascadeClassifier cascade(cascades[i]);
// for( int j = 0; j < 100; j++ )
// {
// int width = rng.uniform(1, 100);
// int height = rng.uniform(1, 100);
// Mat img(height, width, CV_8U);
// randu(img, 0, 256);
// cascade.detectMultiScale(img, objects);
// }
// }
}
}}
// namespace
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment