• Adil Ibragimov's avatar
    Several type of formal refactoring: · 8a4a1bb0
    Adil Ibragimov authored
    1. someMatrix.data -> someMatrix.prt()
    2. someMatrix.data + someMatrix.step * lineIndex -> someMatrix.ptr( lineIndex )
    3. (SomeType*) someMatrix.data -> someMatrix.ptr<SomeType>()
    4. someMatrix.data -> !someMatrix.empty() ( or !someMatrix.data -> someMatrix.empty() ) in logical expressions
    8a4a1bb0
stereosgbm.cpp 49.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/*
 This is a variation of
 "Stereo Processing by Semiglobal Matching and Mutual Information"
 by Heiko Hirschmuller.

 We match blocks rather than individual pixels, thus the algorithm is called
 SGBM (Semi-global block matching)
 */

#include "precomp.hpp"
#include <limits.h>

namespace cv
{

typedef uchar PixType;
typedef short CostType;
typedef short DispType;

enum { NR = 16, NR2 = NR/2 };


struct StereoSGBMParams
{
    StereoSGBMParams()
    {
        minDisparity = numDisparities = 0;
        SADWindowSize = 0;
        P1 = P2 = 0;
        disp12MaxDiff = 0;
        preFilterCap = 0;
        uniquenessRatio = 0;
        speckleWindowSize = 0;
        speckleRange = 0;
        mode = StereoSGBM::MODE_SGBM;
    }

    StereoSGBMParams( int _minDisparity, int _numDisparities, int _SADWindowSize,
                      int _P1, int _P2, int _disp12MaxDiff, int _preFilterCap,
                      int _uniquenessRatio, int _speckleWindowSize, int _speckleRange,
                      int _mode )
    {
        minDisparity = _minDisparity;
        numDisparities = _numDisparities;
        SADWindowSize = _SADWindowSize;
        P1 = _P1;
        P2 = _P2;
        disp12MaxDiff = _disp12MaxDiff;
        preFilterCap = _preFilterCap;
        uniquenessRatio = _uniquenessRatio;
        speckleWindowSize = _speckleWindowSize;
        speckleRange = _speckleRange;
        mode = _mode;
    }

    int minDisparity;
    int numDisparities;
    int SADWindowSize;
    int preFilterCap;
    int uniquenessRatio;
    int P1;
    int P2;
    int speckleWindowSize;
    int speckleRange;
    int disp12MaxDiff;
    int mode;
};

/*
 For each pixel row1[x], max(-maxD, 0) <= minX <= x < maxX <= width - max(0, -minD),
 and for each disparity minD<=d<maxD the function
 computes the cost (cost[(x-minX)*(maxD - minD) + (d - minD)]), depending on the difference between
 row1[x] and row2[x-d]. The subpixel algorithm from
 "Depth Discontinuities by Pixel-to-Pixel Stereo" by Stan Birchfield and C. Tomasi
 is used, hence the suffix BT.

 the temporary buffer should contain width2*2 elements
 */
static void calcPixelCostBT( const Mat& img1, const Mat& img2, int y,
                            int minD, int maxD, CostType* cost,
                            PixType* buffer, const PixType* tab,
                            int tabOfs, int )
{
    int x, c, width = img1.cols, cn = img1.channels();
    int minX1 = std::max(-maxD, 0), maxX1 = width + std::min(minD, 0);
    int minX2 = std::max(minX1 - maxD, 0), maxX2 = std::min(maxX1 - minD, width);
    int D = maxD - minD, width1 = maxX1 - minX1, width2 = maxX2 - minX2;
    const PixType *row1 = img1.ptr<PixType>(y), *row2 = img2.ptr<PixType>(y);
    PixType *prow1 = buffer + width2*2, *prow2 = prow1 + width*cn*2;

    tab += tabOfs;

    for( c = 0; c < cn*2; c++ )
    {
        prow1[width*c] = prow1[width*c + width-1] =
        prow2[width*c] = prow2[width*c + width-1] = tab[0];
    }

    int n1 = y > 0 ? -(int)img1.step : 0, s1 = y < img1.rows-1 ? (int)img1.step : 0;
    int n2 = y > 0 ? -(int)img2.step : 0, s2 = y < img2.rows-1 ? (int)img2.step : 0;

    if( cn == 1 )
    {
        for( x = 1; x < width-1; x++ )
        {
            prow1[x] = tab[(row1[x+1] - row1[x-1])*2 + row1[x+n1+1] - row1[x+n1-1] + row1[x+s1+1] - row1[x+s1-1]];
            prow2[width-1-x] = tab[(row2[x+1] - row2[x-1])*2 + row2[x+n2+1] - row2[x+n2-1] + row2[x+s2+1] - row2[x+s2-1]];

            prow1[x+width] = row1[x];
            prow2[width-1-x+width] = row2[x];
        }
    }
    else
    {
        for( x = 1; x < width-1; x++ )
        {
            prow1[x] = tab[(row1[x*3+3] - row1[x*3-3])*2 + row1[x*3+n1+3] - row1[x*3+n1-3] + row1[x*3+s1+3] - row1[x*3+s1-3]];
            prow1[x+width] = tab[(row1[x*3+4] - row1[x*3-2])*2 + row1[x*3+n1+4] - row1[x*3+n1-2] + row1[x*3+s1+4] - row1[x*3+s1-2]];
            prow1[x+width*2] = tab[(row1[x*3+5] - row1[x*3-1])*2 + row1[x*3+n1+5] - row1[x*3+n1-1] + row1[x*3+s1+5] - row1[x*3+s1-1]];

            prow2[width-1-x] = tab[(row2[x*3+3] - row2[x*3-3])*2 + row2[x*3+n2+3] - row2[x*3+n2-3] + row2[x*3+s2+3] - row2[x*3+s2-3]];
            prow2[width-1-x+width] = tab[(row2[x*3+4] - row2[x*3-2])*2 + row2[x*3+n2+4] - row2[x*3+n2-2] + row2[x*3+s2+4] - row2[x*3+s2-2]];
            prow2[width-1-x+width*2] = tab[(row2[x*3+5] - row2[x*3-1])*2 + row2[x*3+n2+5] - row2[x*3+n2-1] + row2[x*3+s2+5] - row2[x*3+s2-1]];

            prow1[x+width*3] = row1[x*3];
            prow1[x+width*4] = row1[x*3+1];
            prow1[x+width*5] = row1[x*3+2];

            prow2[width-1-x+width*3] = row2[x*3];
            prow2[width-1-x+width*4] = row2[x*3+1];
            prow2[width-1-x+width*5] = row2[x*3+2];
        }
    }

    memset( cost, 0, width1*D*sizeof(cost[0]) );

    buffer -= minX2;
    cost -= minX1*D + minD; // simplify the cost indices inside the loop

#if CV_SSE2
    volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2);
#endif

#if 1
    for( c = 0; c < cn*2; c++, prow1 += width, prow2 += width )
    {
        int diff_scale = c < cn ? 0 : 2;

        // precompute
        //   v0 = min(row2[x-1/2], row2[x], row2[x+1/2]) and
        //   v1 = max(row2[x-1/2], row2[x], row2[x+1/2]) and
        for( x = minX2; x < maxX2; x++ )
        {
            int v = prow2[x];
            int vl = x > 0 ? (v + prow2[x-1])/2 : v;
            int vr = x < width-1 ? (v + prow2[x+1])/2 : v;
            int v0 = std::min(vl, vr); v0 = std::min(v0, v);
            int v1 = std::max(vl, vr); v1 = std::max(v1, v);
            buffer[x] = (PixType)v0;
            buffer[x + width2] = (PixType)v1;
        }

        for( x = minX1; x < maxX1; x++ )
        {
            int u = prow1[x];
            int ul = x > 0 ? (u + prow1[x-1])/2 : u;
            int ur = x < width-1 ? (u + prow1[x+1])/2 : u;
            int u0 = std::min(ul, ur); u0 = std::min(u0, u);
            int u1 = std::max(ul, ur); u1 = std::max(u1, u);

        #if CV_SSE2
            if( useSIMD )
            {
                __m128i _u = _mm_set1_epi8((char)u), _u0 = _mm_set1_epi8((char)u0);
                __m128i _u1 = _mm_set1_epi8((char)u1), z = _mm_setzero_si128();
                __m128i ds = _mm_cvtsi32_si128(diff_scale);

                for( int d = minD; d < maxD; d += 16 )
                {
                    __m128i _v = _mm_loadu_si128((const __m128i*)(prow2 + width-x-1 + d));
                    __m128i _v0 = _mm_loadu_si128((const __m128i*)(buffer + width-x-1 + d));
                    __m128i _v1 = _mm_loadu_si128((const __m128i*)(buffer + width-x-1 + d + width2));
                    __m128i c0 = _mm_max_epu8(_mm_subs_epu8(_u, _v1), _mm_subs_epu8(_v0, _u));
                    __m128i c1 = _mm_max_epu8(_mm_subs_epu8(_v, _u1), _mm_subs_epu8(_u0, _v));
                    __m128i diff = _mm_min_epu8(c0, c1);

                    c0 = _mm_load_si128((__m128i*)(cost + x*D + d));
                    c1 = _mm_load_si128((__m128i*)(cost + x*D + d + 8));

                    _mm_store_si128((__m128i*)(cost + x*D + d), _mm_adds_epi16(c0, _mm_srl_epi16(_mm_unpacklo_epi8(diff,z), ds)));
                    _mm_store_si128((__m128i*)(cost + x*D + d + 8), _mm_adds_epi16(c1, _mm_srl_epi16(_mm_unpackhi_epi8(diff,z), ds)));
                }
            }
            else
        #endif
            {
                for( int d = minD; d < maxD; d++ )
                {
                    int v = prow2[width-x-1 + d];
                    int v0 = buffer[width-x-1 + d];
                    int v1 = buffer[width-x-1 + d + width2];
                    int c0 = std::max(0, u - v1); c0 = std::max(c0, v0 - u);
                    int c1 = std::max(0, v - u1); c1 = std::max(c1, u0 - v);

                    cost[x*D + d] = (CostType)(cost[x*D+d] + (std::min(c0, c1) >> diff_scale));
                }
            }
        }
    }
#else
    for( c = 0; c < cn*2; c++, prow1 += width, prow2 += width )
    {
        for( x = minX1; x < maxX1; x++ )
        {
            int u = prow1[x];
        #if CV_SSE2
            if( useSIMD )
            {
                __m128i _u = _mm_set1_epi8(u), z = _mm_setzero_si128();

                for( int d = minD; d < maxD; d += 16 )
                {
                    __m128i _v = _mm_loadu_si128((const __m128i*)(prow2 + width-1-x + d));
                    __m128i diff = _mm_adds_epu8(_mm_subs_epu8(_u,_v), _mm_subs_epu8(_v,_u));
                    __m128i c0 = _mm_load_si128((__m128i*)(cost + x*D + d));
                    __m128i c1 = _mm_load_si128((__m128i*)(cost + x*D + d + 8));

                    _mm_store_si128((__m128i*)(cost + x*D + d), _mm_adds_epi16(c0, _mm_unpacklo_epi8(diff,z)));
                    _mm_store_si128((__m128i*)(cost + x*D + d + 8), _mm_adds_epi16(c1, _mm_unpackhi_epi8(diff,z)));
                }
            }
            else
        #endif
            {
                for( int d = minD; d < maxD; d++ )
                {
                    int v = prow2[width-1-x + d];
                    cost[x*D + d] = (CostType)(cost[x*D + d] + (CostType)std::abs(u - v));
                }
            }
        }
    }
#endif
}


/*
 computes disparity for "roi" in img1 w.r.t. img2 and write it to disp1buf.
 that is, disp1buf(x, y)=d means that img1(x+roi.x, y+roi.y) ~ img2(x+roi.x-d, y+roi.y).
 minD <= d < maxD.
 disp2full is the reverse disparity map, that is:
 disp2full(x+roi.x,y+roi.y)=d means that img2(x+roi.x, y+roi.y) ~ img1(x+roi.x+d, y+roi.y)

 note that disp1buf will have the same size as the roi and
 disp2full will have the same size as img1 (or img2).
 On exit disp2buf is not the final disparity, it is an intermediate result that becomes
 final after all the tiles are processed.

 the disparity in disp1buf is written with sub-pixel accuracy
 (4 fractional bits, see StereoSGBM::DISP_SCALE),
 using quadratic interpolation, while the disparity in disp2buf
 is written as is, without interpolation.

 disp2cost also has the same size as img1 (or img2).
 It contains the minimum current cost, used to find the best disparity, corresponding to the minimal cost.
 */
static void computeDisparitySGBM( const Mat& img1, const Mat& img2,
                                 Mat& disp1, const StereoSGBMParams& params,
                                 Mat& buffer )
{
#if CV_SSE2
    static const uchar LSBTab[] =
    {
        0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
        5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
        6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
        5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
        7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
        5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
        6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
        5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
    };

    volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2);
#endif

    const int ALIGN = 16;
    const int DISP_SHIFT = StereoMatcher::DISP_SHIFT;
    const int DISP_SCALE = (1 << DISP_SHIFT);
    const CostType MAX_COST = SHRT_MAX;

    int minD = params.minDisparity, maxD = minD + params.numDisparities;
    Size SADWindowSize;
    SADWindowSize.width = SADWindowSize.height = params.SADWindowSize > 0 ? params.SADWindowSize : 5;
    int ftzero = std::max(params.preFilterCap, 15) | 1;
    int uniquenessRatio = params.uniquenessRatio >= 0 ? params.uniquenessRatio : 10;
    int disp12MaxDiff = params.disp12MaxDiff > 0 ? params.disp12MaxDiff : 1;
    int P1 = params.P1 > 0 ? params.P1 : 2, P2 = std::max(params.P2 > 0 ? params.P2 : 5, P1+1);
    int k, width = disp1.cols, height = disp1.rows;
    int minX1 = std::max(-maxD, 0), maxX1 = width + std::min(minD, 0);
    int D = maxD - minD, width1 = maxX1 - minX1;
    int INVALID_DISP = minD - 1, INVALID_DISP_SCALED = INVALID_DISP*DISP_SCALE;
    int SW2 = SADWindowSize.width/2, SH2 = SADWindowSize.height/2;
    bool fullDP = params.mode == StereoSGBM::MODE_HH;
    int npasses = fullDP ? 2 : 1;
    const int TAB_OFS = 256*4, TAB_SIZE = 256 + TAB_OFS*2;
    PixType clipTab[TAB_SIZE];

    for( k = 0; k < TAB_SIZE; k++ )
        clipTab[k] = (PixType)(std::min(std::max(k - TAB_OFS, -ftzero), ftzero) + ftzero);

    if( minX1 >= maxX1 )
    {
        disp1 = Scalar::all(INVALID_DISP_SCALED);
        return;
    }

    CV_Assert( D % 16 == 0 );

    // NR - the number of directions. the loop on x below that computes Lr assumes that NR == 8.
    // if you change NR, please, modify the loop as well.
    int D2 = D+16, NRD2 = NR2*D2;

    // the number of L_r(.,.) and min_k L_r(.,.) lines in the buffer:
    // for 8-way dynamic programming we need the current row and
    // the previous row, i.e. 2 rows in total
    const int NLR = 2;
    const int LrBorder = NLR - 1;

    // for each possible stereo match (img1(x,y) <=> img2(x-d,y))
    // we keep pixel difference cost (C) and the summary cost over NR directions (S).
    // we also keep all the partial costs for the previous line L_r(x,d) and also min_k L_r(x, k)
    size_t costBufSize = width1*D;
    size_t CSBufSize = costBufSize*(fullDP ? height : 1);
    size_t minLrSize = (width1 + LrBorder*2)*NR2, LrSize = minLrSize*D2;
    int hsumBufNRows = SH2*2 + 2;
    size_t totalBufSize = (LrSize + minLrSize)*NLR*sizeof(CostType) + // minLr[] and Lr[]
    costBufSize*(hsumBufNRows + 1)*sizeof(CostType) + // hsumBuf, pixdiff
    CSBufSize*2*sizeof(CostType) + // C, S
    width*16*img1.channels()*sizeof(PixType) + // temp buffer for computing per-pixel cost
    width*(sizeof(CostType) + sizeof(DispType)) + 1024; // disp2cost + disp2

    if( buffer.empty() || !buffer.isContinuous() ||
        buffer.cols*buffer.rows*buffer.elemSize() < totalBufSize )
        buffer.create(1, (int)totalBufSize, CV_8U);

    // summary cost over different (nDirs) directions
    CostType* Cbuf = (CostType*)alignPtr(buffer.ptr(), ALIGN);
    CostType* Sbuf = Cbuf + CSBufSize;
    CostType* hsumBuf = Sbuf + CSBufSize;
    CostType* pixDiff = hsumBuf + costBufSize*hsumBufNRows;

    CostType* disp2cost = pixDiff + costBufSize + (LrSize + minLrSize)*NLR;
    DispType* disp2ptr = (DispType*)(disp2cost + width);
    PixType* tempBuf = (PixType*)(disp2ptr + width);

    // add P2 to every C(x,y). it saves a few operations in the inner loops
    for( k = 0; k < width1*D; k++ )
        Cbuf[k] = (CostType)P2;

    for( int pass = 1; pass <= npasses; pass++ )
    {
        int x1, y1, x2, y2, dx, dy;

        if( pass == 1 )
        {
            y1 = 0; y2 = height; dy = 1;
            x1 = 0; x2 = width1; dx = 1;
        }
        else
        {
            y1 = height-1; y2 = -1; dy = -1;
            x1 = width1-1; x2 = -1; dx = -1;
        }

        CostType *Lr[NLR]={0}, *minLr[NLR]={0};

        for( k = 0; k < NLR; k++ )
        {
            // shift Lr[k] and minLr[k] pointers, because we allocated them with the borders,
            // and will occasionally use negative indices with the arrays
            // we need to shift Lr[k] pointers by 1, to give the space for d=-1.
            // however, then the alignment will be imperfect, i.e. bad for SSE,
            // thus we shift the pointers by 8 (8*sizeof(short) == 16 - ideal alignment)
            Lr[k] = pixDiff + costBufSize + LrSize*k + NRD2*LrBorder + 8;
            memset( Lr[k] - LrBorder*NRD2 - 8, 0, LrSize*sizeof(CostType) );
            minLr[k] = pixDiff + costBufSize + LrSize*NLR + minLrSize*k + NR2*LrBorder;
            memset( minLr[k] - LrBorder*NR2, 0, minLrSize*sizeof(CostType) );
        }

        for( int y = y1; y != y2; y += dy )
        {
            int x, d;
            DispType* disp1ptr = disp1.ptr<DispType>(y);
            CostType* C = Cbuf + (!fullDP ? 0 : y*costBufSize);
            CostType* S = Sbuf + (!fullDP ? 0 : y*costBufSize);

            if( pass == 1 ) // compute C on the first pass, and reuse it on the second pass, if any.
            {
                int dy1 = y == 0 ? 0 : y + SH2, dy2 = y == 0 ? SH2 : dy1;

                for( k = dy1; k <= dy2; k++ )
                {
                    CostType* hsumAdd = hsumBuf + (std::min(k, height-1) % hsumBufNRows)*costBufSize;

                    if( k < height )
                    {
                        calcPixelCostBT( img1, img2, k, minD, maxD, pixDiff, tempBuf, clipTab, TAB_OFS, ftzero );

                        memset(hsumAdd, 0, D*sizeof(CostType));
                        for( x = 0; x <= SW2*D; x += D )
                        {
                            int scale = x == 0 ? SW2 + 1 : 1;
                            for( d = 0; d < D; d++ )
                                hsumAdd[d] = (CostType)(hsumAdd[d] + pixDiff[x + d]*scale);
                        }

                        if( y > 0 )
                        {
                            const CostType* hsumSub = hsumBuf + (std::max(y - SH2 - 1, 0) % hsumBufNRows)*costBufSize;
                            const CostType* Cprev = !fullDP || y == 0 ? C : C - costBufSize;

                            for( x = D; x < width1*D; x += D )
                            {
                                const CostType* pixAdd = pixDiff + std::min(x + SW2*D, (width1-1)*D);
                                const CostType* pixSub = pixDiff + std::max(x - (SW2+1)*D, 0);

                            #if CV_SSE2
                                if( useSIMD )
                                {
                                    for( d = 0; d < D; d += 8 )
                                    {
                                        __m128i hv = _mm_load_si128((const __m128i*)(hsumAdd + x - D + d));
                                        __m128i Cx = _mm_load_si128((__m128i*)(Cprev + x + d));
                                        hv = _mm_adds_epi16(_mm_subs_epi16(hv,
                                                                           _mm_load_si128((const __m128i*)(pixSub + d))),
                                                            _mm_load_si128((const __m128i*)(pixAdd + d)));
                                        Cx = _mm_adds_epi16(_mm_subs_epi16(Cx,
                                                                           _mm_load_si128((const __m128i*)(hsumSub + x + d))),
                                                            hv);
                                        _mm_store_si128((__m128i*)(hsumAdd + x + d), hv);
                                        _mm_store_si128((__m128i*)(C + x + d), Cx);
                                    }
                                }
                                else
                            #endif
                                {
                                    for( d = 0; d < D; d++ )
                                    {
                                        int hv = hsumAdd[x + d] = (CostType)(hsumAdd[x - D + d] + pixAdd[d] - pixSub[d]);
                                        C[x + d] = (CostType)(Cprev[x + d] + hv - hsumSub[x + d]);
                                    }
                                }
                            }
                        }
                        else
                        {
                            for( x = D; x < width1*D; x += D )
                            {
                                const CostType* pixAdd = pixDiff + std::min(x + SW2*D, (width1-1)*D);
                                const CostType* pixSub = pixDiff + std::max(x - (SW2+1)*D, 0);

                                for( d = 0; d < D; d++ )
                                    hsumAdd[x + d] = (CostType)(hsumAdd[x - D + d] + pixAdd[d] - pixSub[d]);
                            }
                        }
                    }

                    if( y == 0 )
                    {
                        int scale = k == 0 ? SH2 + 1 : 1;
                        for( x = 0; x < width1*D; x++ )
                            C[x] = (CostType)(C[x] + hsumAdd[x]*scale);
                    }
                }

                // also, clear the S buffer
                for( k = 0; k < width1*D; k++ )
                    S[k] = 0;
            }

            // clear the left and the right borders
            memset( Lr[0] - NRD2*LrBorder - 8, 0, NRD2*LrBorder*sizeof(CostType) );
            memset( Lr[0] + width1*NRD2 - 8, 0, NRD2*LrBorder*sizeof(CostType) );
            memset( minLr[0] - NR2*LrBorder, 0, NR2*LrBorder*sizeof(CostType) );
            memset( minLr[0] + width1*NR2, 0, NR2*LrBorder*sizeof(CostType) );

            /*
             [formula 13 in the paper]
             compute L_r(p, d) = C(p, d) +
             min(L_r(p-r, d),
             L_r(p-r, d-1) + P1,
             L_r(p-r, d+1) + P1,
             min_k L_r(p-r, k) + P2) - min_k L_r(p-r, k)
             where p = (x,y), r is one of the directions.
             we process all the directions at once:
             0: r=(-dx, 0)
             1: r=(-1, -dy)
             2: r=(0, -dy)
             3: r=(1, -dy)
             4: r=(-2, -dy)
             5: r=(-1, -dy*2)
             6: r=(1, -dy*2)
             7: r=(2, -dy)
             */
            for( x = x1; x != x2; x += dx )
            {
                int xm = x*NR2, xd = xm*D2;

                int delta0 = minLr[0][xm - dx*NR2] + P2, delta1 = minLr[1][xm - NR2 + 1] + P2;
                int delta2 = minLr[1][xm + 2] + P2, delta3 = minLr[1][xm + NR2 + 3] + P2;

                CostType* Lr_p0 = Lr[0] + xd - dx*NRD2;
                CostType* Lr_p1 = Lr[1] + xd - NRD2 + D2;
                CostType* Lr_p2 = Lr[1] + xd + D2*2;
                CostType* Lr_p3 = Lr[1] + xd + NRD2 + D2*3;

                Lr_p0[-1] = Lr_p0[D] = Lr_p1[-1] = Lr_p1[D] =
                Lr_p2[-1] = Lr_p2[D] = Lr_p3[-1] = Lr_p3[D] = MAX_COST;

                CostType* Lr_p = Lr[0] + xd;
                const CostType* Cp = C + x*D;
                CostType* Sp = S + x*D;

            #if CV_SSE2
                if( useSIMD )
                {
                    __m128i _P1 = _mm_set1_epi16((short)P1);

                    __m128i _delta0 = _mm_set1_epi16((short)delta0);
                    __m128i _delta1 = _mm_set1_epi16((short)delta1);
                    __m128i _delta2 = _mm_set1_epi16((short)delta2);
                    __m128i _delta3 = _mm_set1_epi16((short)delta3);
                    __m128i _minL0 = _mm_set1_epi16((short)MAX_COST);

                    for( d = 0; d < D; d += 8 )
                    {
                        __m128i Cpd = _mm_load_si128((const __m128i*)(Cp + d));
                        __m128i L0, L1, L2, L3;

                        L0 = _mm_load_si128((const __m128i*)(Lr_p0 + d));
                        L1 = _mm_load_si128((const __m128i*)(Lr_p1 + d));
                        L2 = _mm_load_si128((const __m128i*)(Lr_p2 + d));
                        L3 = _mm_load_si128((const __m128i*)(Lr_p3 + d));

                        L0 = _mm_min_epi16(L0, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p0 + d - 1)), _P1));
                        L0 = _mm_min_epi16(L0, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p0 + d + 1)), _P1));

                        L1 = _mm_min_epi16(L1, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p1 + d - 1)), _P1));
                        L1 = _mm_min_epi16(L1, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p1 + d + 1)), _P1));

                        L2 = _mm_min_epi16(L2, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p2 + d - 1)), _P1));
                        L2 = _mm_min_epi16(L2, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p2 + d + 1)), _P1));

                        L3 = _mm_min_epi16(L3, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p3 + d - 1)), _P1));
                        L3 = _mm_min_epi16(L3, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p3 + d + 1)), _P1));

                        L0 = _mm_min_epi16(L0, _delta0);
                        L0 = _mm_adds_epi16(_mm_subs_epi16(L0, _delta0), Cpd);

                        L1 = _mm_min_epi16(L1, _delta1);
                        L1 = _mm_adds_epi16(_mm_subs_epi16(L1, _delta1), Cpd);

                        L2 = _mm_min_epi16(L2, _delta2);
                        L2 = _mm_adds_epi16(_mm_subs_epi16(L2, _delta2), Cpd);

                        L3 = _mm_min_epi16(L3, _delta3);
                        L3 = _mm_adds_epi16(_mm_subs_epi16(L3, _delta3), Cpd);

                        _mm_store_si128( (__m128i*)(Lr_p + d), L0);
                        _mm_store_si128( (__m128i*)(Lr_p + d + D2), L1);
                        _mm_store_si128( (__m128i*)(Lr_p + d + D2*2), L2);
                        _mm_store_si128( (__m128i*)(Lr_p + d + D2*3), L3);

                        __m128i t0 = _mm_min_epi16(_mm_unpacklo_epi16(L0, L2), _mm_unpackhi_epi16(L0, L2));
                        __m128i t1 = _mm_min_epi16(_mm_unpacklo_epi16(L1, L3), _mm_unpackhi_epi16(L1, L3));
                        t0 = _mm_min_epi16(_mm_unpacklo_epi16(t0, t1), _mm_unpackhi_epi16(t0, t1));
                        _minL0 = _mm_min_epi16(_minL0, t0);

                        __m128i Sval = _mm_load_si128((const __m128i*)(Sp + d));

                        L0 = _mm_adds_epi16(L0, L1);
                        L2 = _mm_adds_epi16(L2, L3);
                        Sval = _mm_adds_epi16(Sval, L0);
                        Sval = _mm_adds_epi16(Sval, L2);

                        _mm_store_si128((__m128i*)(Sp + d), Sval);
                    }

                    _minL0 = _mm_min_epi16(_minL0, _mm_srli_si128(_minL0, 8));
                    _mm_storel_epi64((__m128i*)&minLr[0][xm], _minL0);
                }
                else
            #endif
                {
                    int minL0 = MAX_COST, minL1 = MAX_COST, minL2 = MAX_COST, minL3 = MAX_COST;

                    for( d = 0; d < D; d++ )
                    {
                        int Cpd = Cp[d], L0, L1, L2, L3;

                        L0 = Cpd + std::min((int)Lr_p0[d], std::min(Lr_p0[d-1] + P1, std::min(Lr_p0[d+1] + P1, delta0))) - delta0;
                        L1 = Cpd + std::min((int)Lr_p1[d], std::min(Lr_p1[d-1] + P1, std::min(Lr_p1[d+1] + P1, delta1))) - delta1;
                        L2 = Cpd + std::min((int)Lr_p2[d], std::min(Lr_p2[d-1] + P1, std::min(Lr_p2[d+1] + P1, delta2))) - delta2;
                        L3 = Cpd + std::min((int)Lr_p3[d], std::min(Lr_p3[d-1] + P1, std::min(Lr_p3[d+1] + P1, delta3))) - delta3;

                        Lr_p[d] = (CostType)L0;
                        minL0 = std::min(minL0, L0);

                        Lr_p[d + D2] = (CostType)L1;
                        minL1 = std::min(minL1, L1);

                        Lr_p[d + D2*2] = (CostType)L2;
                        minL2 = std::min(minL2, L2);

                        Lr_p[d + D2*3] = (CostType)L3;
                        minL3 = std::min(minL3, L3);

                        Sp[d] = saturate_cast<CostType>(Sp[d] + L0 + L1 + L2 + L3);
                    }
                    minLr[0][xm] = (CostType)minL0;
                    minLr[0][xm+1] = (CostType)minL1;
                    minLr[0][xm+2] = (CostType)minL2;
                    minLr[0][xm+3] = (CostType)minL3;
                }
            }

            if( pass == npasses )
            {
                for( x = 0; x < width; x++ )
                {
                    disp1ptr[x] = disp2ptr[x] = (DispType)INVALID_DISP_SCALED;
                    disp2cost[x] = MAX_COST;
                }

                for( x = width1 - 1; x >= 0; x-- )
                {
                    CostType* Sp = S + x*D;
                    int minS = MAX_COST, bestDisp = -1;

                    if( npasses == 1 )
                    {
                        int xm = x*NR2, xd = xm*D2;

                        int minL0 = MAX_COST;
                        int delta0 = minLr[0][xm + NR2] + P2;
                        CostType* Lr_p0 = Lr[0] + xd + NRD2;
                        Lr_p0[-1] = Lr_p0[D] = MAX_COST;
                        CostType* Lr_p = Lr[0] + xd;

                        const CostType* Cp = C + x*D;

                    #if CV_SSE2
                        if( useSIMD )
                        {
                            __m128i _P1 = _mm_set1_epi16((short)P1);
                            __m128i _delta0 = _mm_set1_epi16((short)delta0);

                            __m128i _minL0 = _mm_set1_epi16((short)minL0);
                            __m128i _minS = _mm_set1_epi16(MAX_COST), _bestDisp = _mm_set1_epi16(-1);
                            __m128i _d8 = _mm_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7), _8 = _mm_set1_epi16(8);

                            for( d = 0; d < D; d += 8 )
                            {
                                __m128i Cpd = _mm_load_si128((const __m128i*)(Cp + d)), L0;

                                L0 = _mm_load_si128((const __m128i*)(Lr_p0 + d));
                                L0 = _mm_min_epi16(L0, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p0 + d - 1)), _P1));
                                L0 = _mm_min_epi16(L0, _mm_adds_epi16(_mm_loadu_si128((const __m128i*)(Lr_p0 + d + 1)), _P1));
                                L0 = _mm_min_epi16(L0, _delta0);
                                L0 = _mm_adds_epi16(_mm_subs_epi16(L0, _delta0), Cpd);

                                _mm_store_si128((__m128i*)(Lr_p + d), L0);
                                _minL0 = _mm_min_epi16(_minL0, L0);
                                L0 = _mm_adds_epi16(L0, *(__m128i*)(Sp + d));
                                _mm_store_si128((__m128i*)(Sp + d), L0);

                                __m128i mask = _mm_cmpgt_epi16(_minS, L0);
                                _minS = _mm_min_epi16(_minS, L0);
                                _bestDisp = _mm_xor_si128(_bestDisp, _mm_and_si128(_mm_xor_si128(_bestDisp,_d8), mask));
                                _d8 = _mm_adds_epi16(_d8, _8);
                            }

                            short CV_DECL_ALIGNED(16) bestDispBuf[8];
                            _mm_store_si128((__m128i*)bestDispBuf, _bestDisp);

                            _minL0 = _mm_min_epi16(_minL0, _mm_srli_si128(_minL0, 8));
                            _minL0 = _mm_min_epi16(_minL0, _mm_srli_si128(_minL0, 4));
                            _minL0 = _mm_min_epi16(_minL0, _mm_srli_si128(_minL0, 2));

                            __m128i qS = _mm_min_epi16(_minS, _mm_srli_si128(_minS, 8));
                            qS = _mm_min_epi16(qS, _mm_srli_si128(qS, 4));
                            qS = _mm_min_epi16(qS, _mm_srli_si128(qS, 2));

                            minLr[0][xm] = (CostType)_mm_cvtsi128_si32(_minL0);
                            minS = (CostType)_mm_cvtsi128_si32(qS);

                            qS = _mm_shuffle_epi32(_mm_unpacklo_epi16(qS, qS), 0);
                            qS = _mm_cmpeq_epi16(_minS, qS);
                            int idx = _mm_movemask_epi8(_mm_packs_epi16(qS, qS)) & 255;

                            bestDisp = bestDispBuf[LSBTab[idx]];
                        }
                        else
                    #endif
                        {
                            for( d = 0; d < D; d++ )
                            {
                                int L0 = Cp[d] + std::min((int)Lr_p0[d], std::min(Lr_p0[d-1] + P1, std::min(Lr_p0[d+1] + P1, delta0))) - delta0;

                                Lr_p[d] = (CostType)L0;
                                minL0 = std::min(minL0, L0);

                                int Sval = Sp[d] = saturate_cast<CostType>(Sp[d] + L0);
                                if( Sval < minS )
                                {
                                    minS = Sval;
                                    bestDisp = d;
                                }
                            }
                            minLr[0][xm] = (CostType)minL0;
                        }
                    }
                    else
                    {
                        for( d = 0; d < D; d++ )
                        {
                            int Sval = Sp[d];
                            if( Sval < minS )
                            {
                                minS = Sval;
                                bestDisp = d;
                            }
                        }
                    }

                    for( d = 0; d < D; d++ )
                    {
                        if( Sp[d]*(100 - uniquenessRatio) < minS*100 && std::abs(bestDisp - d) > 1 )
                            break;
                    }
                    if( d < D )
                        continue;
                    d = bestDisp;
                    int _x2 = x + minX1 - d - minD;
                    if( disp2cost[_x2] > minS )
                    {
                        disp2cost[_x2] = (CostType)minS;
                        disp2ptr[_x2] = (DispType)(d + minD);
                    }

                    if( 0 < d && d < D-1 )
                    {
                        // do subpixel quadratic interpolation:
                        //   fit parabola into (x1=d-1, y1=Sp[d-1]), (x2=d, y2=Sp[d]), (x3=d+1, y3=Sp[d+1])
                        //   then find minimum of the parabola.
                        int denom2 = std::max(Sp[d-1] + Sp[d+1] - 2*Sp[d], 1);
                        d = d*DISP_SCALE + ((Sp[d-1] - Sp[d+1])*DISP_SCALE + denom2)/(denom2*2);
                    }
                    else
                        d *= DISP_SCALE;
                    disp1ptr[x + minX1] = (DispType)(d + minD*DISP_SCALE);
                }

                for( x = minX1; x < maxX1; x++ )
                {
                    // we round the computed disparity both towards -inf and +inf and check
                    // if either of the corresponding disparities in disp2 is consistent.
                    // This is to give the computed disparity a chance to look valid if it is.
                    int d1 = disp1ptr[x];
                    if( d1 == INVALID_DISP_SCALED )
                        continue;
                    int _d = d1 >> DISP_SHIFT;
                    int d_ = (d1 + DISP_SCALE-1) >> DISP_SHIFT;
                    int _x = x - _d, x_ = x - d_;
                    if( 0 <= _x && _x < width && disp2ptr[_x] >= minD && std::abs(disp2ptr[_x] - _d) > disp12MaxDiff &&
                       0 <= x_ && x_ < width && disp2ptr[x_] >= minD && std::abs(disp2ptr[x_] - d_) > disp12MaxDiff )
                        disp1ptr[x] = (DispType)INVALID_DISP_SCALED;
                }
            }

            // now shift the cyclic buffers
            std::swap( Lr[0], Lr[1] );
            std::swap( minLr[0], minLr[1] );
        }
    }
}

class StereoSGBMImpl : public StereoSGBM
{
public:
    StereoSGBMImpl()
    {
        params = StereoSGBMParams();
    }

    StereoSGBMImpl( int _minDisparity, int _numDisparities, int _SADWindowSize,
                    int _P1, int _P2, int _disp12MaxDiff, int _preFilterCap,
                    int _uniquenessRatio, int _speckleWindowSize, int _speckleRange,
                    int _mode )
    {
        params = StereoSGBMParams( _minDisparity, _numDisparities, _SADWindowSize,
                                   _P1, _P2, _disp12MaxDiff, _preFilterCap,
                                   _uniquenessRatio, _speckleWindowSize, _speckleRange,
                                   _mode );
    }

    void compute( InputArray leftarr, InputArray rightarr, OutputArray disparr )
    {
        Mat left = leftarr.getMat(), right = rightarr.getMat();
        CV_Assert( left.size() == right.size() && left.type() == right.type() &&
                   left.depth() == CV_8U );

        disparr.create( left.size(), CV_16S );
        Mat disp = disparr.getMat();

        computeDisparitySGBM( left, right, disp, params, buffer );
        medianBlur(disp, disp, 3);

        if( params.speckleWindowSize > 0 )
            filterSpeckles(disp, (params.minDisparity - 1)*StereoMatcher::DISP_SCALE, params.speckleWindowSize,
                           StereoMatcher::DISP_SCALE*params.speckleRange, buffer);
    }

    AlgorithmInfo* info() const { return 0; }

    int getMinDisparity() const { return params.minDisparity; }
    void setMinDisparity(int minDisparity) { params.minDisparity = minDisparity; }

    int getNumDisparities() const { return params.numDisparities; }
    void setNumDisparities(int numDisparities) { params.numDisparities = numDisparities; }

    int getBlockSize() const { return params.SADWindowSize; }
    void setBlockSize(int blockSize) { params.SADWindowSize = blockSize; }

    int getSpeckleWindowSize() const { return params.speckleWindowSize; }
    void setSpeckleWindowSize(int speckleWindowSize) { params.speckleWindowSize = speckleWindowSize; }

    int getSpeckleRange() const { return params.speckleRange; }
    void setSpeckleRange(int speckleRange) { params.speckleRange = speckleRange; }

    int getDisp12MaxDiff() const { return params.disp12MaxDiff; }
    void setDisp12MaxDiff(int disp12MaxDiff) { params.disp12MaxDiff = disp12MaxDiff; }

    int getPreFilterCap() const { return params.preFilterCap; }
    void setPreFilterCap(int preFilterCap) { params.preFilterCap = preFilterCap; }

    int getUniquenessRatio() const { return params.uniquenessRatio; }
    void setUniquenessRatio(int uniquenessRatio) { params.uniquenessRatio = uniquenessRatio; }

    int getP1() const { return params.P1; }
    void setP1(int P1) { params.P1 = P1; }

    int getP2() const { return params.P2; }
    void setP2(int P2) { params.P2 = P2; }

    int getMode() const { return params.mode; }
    void setMode(int mode) { params.mode = mode; }

    void write(FileStorage& fs) const
    {
        fs << "name" << name_
        << "minDisparity" << params.minDisparity
        << "numDisparities" << params.numDisparities
        << "blockSize" << params.SADWindowSize
        << "speckleWindowSize" << params.speckleWindowSize
        << "speckleRange" << params.speckleRange
        << "disp12MaxDiff" << params.disp12MaxDiff
        << "preFilterCap" << params.preFilterCap
        << "uniquenessRatio" << params.uniquenessRatio
        << "P1" << params.P1
        << "P2" << params.P2
        << "mode" << params.mode;
    }

    void read(const FileNode& fn)
    {
        FileNode n = fn["name"];
        CV_Assert( n.isString() && String(n) == name_ );
        params.minDisparity = (int)fn["minDisparity"];
        params.numDisparities = (int)fn["numDisparities"];
        params.SADWindowSize = (int)fn["blockSize"];
        params.speckleWindowSize = (int)fn["speckleWindowSize"];
        params.speckleRange = (int)fn["speckleRange"];
        params.disp12MaxDiff = (int)fn["disp12MaxDiff"];
        params.preFilterCap = (int)fn["preFilterCap"];
        params.uniquenessRatio = (int)fn["uniquenessRatio"];
        params.P1 = (int)fn["P1"];
        params.P2 = (int)fn["P2"];
        params.mode = (int)fn["mode"];
    }

    StereoSGBMParams params;
    Mat buffer;
    static const char* name_;
};

const char* StereoSGBMImpl::name_ = "StereoMatcher.SGBM";


Ptr<StereoSGBM> createStereoSGBM(int minDisparity, int numDisparities, int SADWindowSize,
                                 int P1, int P2, int disp12MaxDiff,
                                 int preFilterCap, int uniquenessRatio,
                                 int speckleWindowSize, int speckleRange,
                                 int mode)
{
    return Ptr<StereoSGBM>(
        new StereoSGBMImpl(minDisparity, numDisparities, SADWindowSize,
                           P1, P2, disp12MaxDiff,
                           preFilterCap, uniquenessRatio,
                           speckleWindowSize, speckleRange,
                           mode));
}

Rect getValidDisparityROI( Rect roi1, Rect roi2,
                          int minDisparity,
                          int numberOfDisparities,
                          int SADWindowSize )
{
    int SW2 = SADWindowSize/2;
    int minD = minDisparity, maxD = minDisparity + numberOfDisparities - 1;

    int xmin = std::max(roi1.x, roi2.x + maxD) + SW2;
    int xmax = std::min(roi1.x + roi1.width, roi2.x + roi2.width - minD) - SW2;
    int ymin = std::max(roi1.y, roi2.y) + SW2;
    int ymax = std::min(roi1.y + roi1.height, roi2.y + roi2.height) - SW2;

    Rect r(xmin, ymin, xmax - xmin, ymax - ymin);

    return r.width > 0 && r.height > 0 ? r : Rect();
}

typedef cv::Point_<short> Point2s;

template <typename T>
void filterSpecklesImpl(cv::Mat& img, int newVal, int maxSpeckleSize, int maxDiff, cv::Mat& _buf)
{
    using namespace cv;

    int width = img.cols, height = img.rows, npixels = width*height;
    size_t bufSize = npixels*(int)(sizeof(Point2s) + sizeof(int) + sizeof(uchar));
    if( !_buf.isContinuous() || _buf.empty() || _buf.cols*_buf.rows*_buf.elemSize() < bufSize )
        _buf.create(1, (int)bufSize, CV_8U);

    uchar* buf = _buf.ptr();
    int i, j, dstep = (int)(img.step/sizeof(T));
    int* labels = (int*)buf;
    buf += npixels*sizeof(labels[0]);
    Point2s* wbuf = (Point2s*)buf;
    buf += npixels*sizeof(wbuf[0]);
    uchar* rtype = (uchar*)buf;
    int curlabel = 0;

    // clear out label assignments
    memset(labels, 0, npixels*sizeof(labels[0]));

    for( i = 0; i < height; i++ )
    {
        T* ds = img.ptr<T>(i);
        int* ls = labels + width*i;

        for( j = 0; j < width; j++ )
        {
            if( ds[j] != newVal )   // not a bad disparity
            {
                if( ls[j] )     // has a label, check for bad label
                {
                    if( rtype[ls[j]] ) // small region, zero out disparity
                        ds[j] = (T)newVal;
                }
                // no label, assign and propagate
                else
                {
                    Point2s* ws = wbuf; // initialize wavefront
                    Point2s p((short)j, (short)i);  // current pixel
                    curlabel++; // next label
                    int count = 0;  // current region size
                    ls[j] = curlabel;

                    // wavefront propagation
                    while( ws >= wbuf ) // wavefront not empty
                    {
                        count++;
                        // put neighbors onto wavefront
                        T* dpp = &img.at<T>(p.y, p.x);
                        T dp = *dpp;
                        int* lpp = labels + width*p.y + p.x;

                        if( p.y < height-1 && !lpp[+width] && dpp[+dstep] != newVal && std::abs(dp - dpp[+dstep]) <= maxDiff )
                        {
                            lpp[+width] = curlabel;
                            *ws++ = Point2s(p.x, p.y+1);
                        }

                        if( p.y > 0 && !lpp[-width] && dpp[-dstep] != newVal && std::abs(dp - dpp[-dstep]) <= maxDiff )
                        {
                            lpp[-width] = curlabel;
                            *ws++ = Point2s(p.x, p.y-1);
                        }

                        if( p.x < width-1 && !lpp[+1] && dpp[+1] != newVal && std::abs(dp - dpp[+1]) <= maxDiff )
                        {
                            lpp[+1] = curlabel;
                            *ws++ = Point2s(p.x+1, p.y);
                        }

                        if( p.x > 0 && !lpp[-1] && dpp[-1] != newVal && std::abs(dp - dpp[-1]) <= maxDiff )
                        {
                            lpp[-1] = curlabel;
                            *ws++ = Point2s(p.x-1, p.y);
                        }

                        // pop most recent and propagate
                        // NB: could try least recent, maybe better convergence
                        p = *--ws;
                    }

                    // assign label type
                    if( count <= maxSpeckleSize )   // speckle region
                    {
                        rtype[ls[j]] = 1;   // small region label
                        ds[j] = (T)newVal;
                    }
                    else
                        rtype[ls[j]] = 0;   // large region label
                }
            }
        }
    }
}

}

void cv::filterSpeckles( InputOutputArray _img, double _newval, int maxSpeckleSize,
                         double _maxDiff, InputOutputArray __buf )
{
    Mat img = _img.getMat();
    int type = img.type();
    Mat temp, &_buf = __buf.needed() ? __buf.getMatRef() : temp;
    CV_Assert( type == CV_8UC1 || type == CV_16SC1 );

    int newVal = cvRound(_newval), maxDiff = cvRound(_maxDiff);

#if IPP_VERSION_X100 >= 801
    Ipp32s bufsize = 0;
    IppiSize roisize = { img.cols, img.rows };
    IppDataType datatype = type == CV_8UC1 ? ipp8u : ipp16s;

    if (!__buf.needed() && (type == CV_8UC1 || type == CV_16SC1))
    {
        IppStatus status = ippiMarkSpecklesGetBufferSize(roisize, datatype, CV_MAT_CN(type), &bufsize);
        Ipp8u * buffer = ippsMalloc_8u(bufsize);

        if ((int)status >= 0)
        {
            if (type == CV_8UC1)
                status = ippiMarkSpeckles_8u_C1IR(img.ptr<Ipp8u>(), (int)img.step, roisize,
                                                  (Ipp8u)newVal, maxSpeckleSize, (Ipp8u)maxDiff, ippiNormL1, buffer);
            else
                status = ippiMarkSpeckles_16s_C1IR(img.ptr<Ipp16s>(), (int)img.step, roisize,
                                                   (Ipp16s)newVal, maxSpeckleSize, (Ipp16s)maxDiff, ippiNormL1, buffer);
        }

        if (status >= 0)
            return;
        setIppErrorStatus();
    }
#endif

    if (type == CV_8UC1)
        filterSpecklesImpl<uchar>(img, newVal, maxSpeckleSize, maxDiff, _buf);
    else
        filterSpecklesImpl<short>(img, newVal, maxSpeckleSize, maxDiff, _buf);
}

void cv::validateDisparity( InputOutputArray _disp, InputArray _cost, int minDisparity,
                            int numberOfDisparities, int disp12MaxDiff )
{
    Mat disp = _disp.getMat(), cost = _cost.getMat();
    int cols = disp.cols, rows = disp.rows;
    int minD = minDisparity, maxD = minDisparity + numberOfDisparities;
    int x, minX1 = std::max(maxD, 0), maxX1 = cols + std::min(minD, 0);
    AutoBuffer<int> _disp2buf(cols*2);
    int* disp2buf = _disp2buf;
    int* disp2cost = disp2buf + cols;
    const int DISP_SHIFT = 4, DISP_SCALE = 1 << DISP_SHIFT;
    int INVALID_DISP = minD - 1, INVALID_DISP_SCALED = INVALID_DISP*DISP_SCALE;
    int costType = cost.type();

    disp12MaxDiff *= DISP_SCALE;

    CV_Assert( numberOfDisparities > 0 && disp.type() == CV_16S &&
              (costType == CV_16S || costType == CV_32S) &&
              disp.size() == cost.size() );

    for( int y = 0; y < rows; y++ )
    {
        short* dptr = disp.ptr<short>(y);

        for( x = 0; x < cols; x++ )
        {
            disp2buf[x] = INVALID_DISP_SCALED;
            disp2cost[x] = INT_MAX;
        }

        if( costType == CV_16S )
        {
            const short* cptr = cost.ptr<short>(y);

            for( x = minX1; x < maxX1; x++ )
            {
                int d = dptr[x], c = cptr[x];
                int x2 = x - ((d + DISP_SCALE/2) >> DISP_SHIFT);

                if( disp2cost[x2] > c )
                {
                    disp2cost[x2] = c;
                    disp2buf[x2] = d;
                }
            }
        }
        else
        {
            const int* cptr = cost.ptr<int>(y);

            for( x = minX1; x < maxX1; x++ )
            {
                int d = dptr[x], c = cptr[x];
                int x2 = x - ((d + DISP_SCALE/2) >> DISP_SHIFT);

                if( disp2cost[x2] < c )
                {
                    disp2cost[x2] = c;
                    disp2buf[x2] = d;
                }
            }
        }

        for( x = minX1; x < maxX1; x++ )
        {
            // we round the computed disparity both towards -inf and +inf and check
            // if either of the corresponding disparities in disp2 is consistent.
            // This is to give the computed disparity a chance to look valid if it is.
            int d = dptr[x];
            if( d == INVALID_DISP_SCALED )
                continue;
            int d0 = d >> DISP_SHIFT;
            int d1 = (d + DISP_SCALE-1) >> DISP_SHIFT;
            int x0 = x - d0, x1 = x - d1;
            if( (0 <= x0 && x0 < cols && disp2buf[x0] > INVALID_DISP_SCALED && std::abs(disp2buf[x0] - d) > disp12MaxDiff) &&
                (0 <= x1 && x1 < cols && disp2buf[x1] > INVALID_DISP_SCALED && std::abs(disp2buf[x1] - d) > disp12MaxDiff) )
                dptr[x] = (short)INVALID_DISP_SCALED;
        }
    }
}